
Software Defined Radio Forum SDRF-06-A-0012-V0.00

Comments on

Software Communications Architecture
Specification Version 2.2.2

prepared by

SCA Working Group

SDRF-06-A-0012-V0.00
Approved 20 April 2007

Software Defined Radio Forum SDRF-06-A-0012-V0.00

1 Introduction
The SDR Forum SCA Working Group has collected comments regarding Software
Communications Architecture Specification Final / 15 May 2006 Version 2.2.2. These
comments are respectfully submitted to the Joint Program Executive Office (JPEO)
Joint Tactical Radio System (JTRS) for consideration of incorporation into future
versions of the SCA Specification. As a key element of its charter, the SCA Working
Group is intended to supply the SDR community with a venue to evaluate and provide
commentary and recommendations for change proposals against the Software
Communications Architecture (SCA) Specification. This document represents the first
such submission to the JTRS JPEO on behalf of the SDR Forum.

2 Detailed Comments
1. The Application interface contains four attributes, componentNamingContexts,

componentProcessIds, componentDevices, and componentImplemenations, which
expose the implementation details of the interface. The SCA should clearly define
the use cases for these attributes or remove them from the interface.
If use cases are defined and these attributes are kept in the SCA, the
componentNamingContexts attribute needs amending. Section 3.1.3.2.1.4.3 of the
SCA states that an Application will maintain a list of naming service contexts in the
componentNamingContexts attribute. It is the understanding of the SCA Working
Group that a naming context is comparable to knowing the folder or directory
location, but not the object name. In order to be useful, a binding name is also
required.

2. Section 3.1.3.1.4 defines the PortSupplier interface which contains the getPort()
function. SCA Working Group recommends consideration of extending this interface
which allows all provides ports to be requested in a single call. Such a function
would require the definition of a PortInfo structure containing the port name and the
port object reference. This function could reduce the number of calls between the
CF and the WF during application instantiation and improve startup efficiency. As a
further extension to the PortSupplier interface, the SCA Working Group recommends
the addition of two new functions which allows multiple ports to be
connected/disconnected with a single call. The addition of these operations would
greatly reduce the number of calls between the CF and the WF during application
instantiation and teardown which improves startup efficiency. The SCA Working
Group understands that this addition could potentially invalidate implementations
that rely on multiple getPort() invocations when connecting to a port multiple times;
however, there are no requirements in the SCA today mandating that a CF make
multiple getPort() invocations to retrieve the same port and this behavior should not
be expected from a CF.

 Page 1

Software Defined Radio Forum SDRF-06-A-0012-V0.00

3. The SCA Working Group recommends clarification of the requirements for obtaining

port references when the componentSupportedInterface (SCA Specification Section
D.6.1.5.1.3) is specified. The current understanding is that a CF is not required to
call getPort() on the component once found. Instead the component itself is the
object to use in the connectPort() operation.

4. In the SCA Specification, the terms Resource, Device, and Service define different
classes of objects (refer to SCA Specification section 2.2.3); however, definitions
and interfaces are only provided for Resources and Devices. The SCA Working
Group recommends that a definition and interface for Services be added to the
specification.

5. The SCA Working Group recommends adding port disconnect behavior to the
releaseObject() operation as an optimization for tearing down waveforms. Currently,
a CF must make myriad individual disconnectPort() CORBA invocations (one for
each port connection) prior to invoking releaseObject() on a Resource. If port
disconnection requirements are added to the releaseObject() behavior of a
Resource, then the extra CORBA invocations to disconnect the ports would be
optimized to local invocations made within the Resource itself.

6. The current structure of the XML files only allows the CF to establish connections
between the components of a single waveform, between waveform components and
devices, and between waveform components and services (during application
instantiation). The only way in which an application’s external ports can be
connected is through calls from a third-party application which uses the correct
sequence of getPort() and connectPort() calls. The SCA Working Group
recommends extending the SPD definition to allow an assembly to connect to other
assemblies. An assemblyimplementation XML element would be added to the SPD
such that a SAD could reference components that are themselves assemblies.

7. The SCA Working Group recommends that it should be possible to model
sequences of an enumerated type in D.4.1.2, similar to D.4.1.1 where a simple
property type can be modeled with an enumerations attribute.

8. The SCA Working Group recommends clarification of the definition of the OE. The
current definition found in section 2.2.3 does not include the Board Support Package
(BSP) which forms the foundation with which the O/S and middleware are built upon.
It also does not mention the Log service. Lastly, it is unclear how to classify the
devices and services of the platform. The definition of the OE found in section 2.2.3
does not include the devices and services although they are provided as part of a
platform and not as part of a waveform. The SCA Working group further
recommends clarifying Figure 3.1 of the SCA pending resolution of the OE definition.
This figure should clearly distinguish between Core Framework Control/File Access
on one hand and System Components (services and devices) on the other hand.
Furthermore, depending on the final definition of the OE, the Systems Components
should be shown outside of the OE area. Also, the SCA Working Group
recommends updating Figure 3.1 to clearly depict the following CORBA services:
naming service, event service and the log service.

 Page 2

Software Defined Radio Forum SDRF-06-A-0012-V0.00

9. The current requirements for the ApplicationFactory’s create() operation mandate

that component identifiers be passed as execute parameters using the format
“Component_Instantiation_Identifier: Application_Name” The Application_Name
field is intended to provide a “specific instance qualifier for executed components”.
However, the SCA places no uniqueness constraints on the Application_Name field
which gets set to the create() operation’s name parameter. Thus, it is legal for a
platform to create multiple instances of an application using the same application
name. When this happens, the components of the different application instances will
contain identifiers that are identical. To maintain the uniqueness of identifiers, the
SCA working group recommends placing uniqueness constraints on the create()
operation’s name parameter.

10. There is currently no specification for the Application interface’s identifier attribute
(inherited from the Resource interface). Some CFs interpret the identifier to be the
id attribute of the softwareassembly element from the SAD file. However, the
identifier for an application should not be the SAD.softwareassembly.id for two
reasons. First, the SAD.softwareassembly.id is the identifier for the
ApplicationFactory. If the same identifier is used for another object, then it is no
longer unique. Second, if the SAD.asoftwareassembly.id were used for an
Application instance, there would be no way to distinguish between multiple,
simultaneous instances of the same application. The SCA Working Group
recommends adding paragraph 3.1.3.2.1.4.7 to define the identifier attribute for an
Application. In keeping with current Resource identifier requirements, the SCA
Working Group further recommends using the format “Application_Identifier:
Application_Name” to create a unique identifier for each Application instance
(pending resolution of proposal 9 above). The Application_Identifier field is identical
to the id attribute of the sorftwareassembly element from the SAD file. The
Application_Name field is identical to the name parameter of the
ApplicationFactory’s create() operation.

11. The SCA Working Group recommends clarifying the identifier attribute of the
ResourceFactory interface. Section 3.1.3.1.7.4.1 defines the attribute as the unique
identifier for a ResourceFactory but does not specify its origin or format. The
ApplicationFactory sets the identifier when creating the component using the format
“Component_Instantiation_Identifier: Application_Name” where
Component_Instantiation_Identifier is the componentinstantiation element id
attribute found in the SAD file and Application_Name is the input name parameter of
the create() operation.

12. The SCA remains ambiguous for the origin of many of the readonly attributes
available in the run-time through the primary Core Framework objects. Vendors
have typically imposed their own interpretations making it difficult to write portable
software. We propose a table similar to the following that clarifies the interpretation
of run-time parameters (note that some of the details of this table are pending the
resolution of proposals 9 and 10 above):

 Page 3

Software Defined Radio Forum SDRF-06-A-0012-V0.00

CF Object Attribute Format

Resource identifier <SAD.componentinstantiation.id>:<Application
Name>

softwareProfile
profile.filename = <SPD filename>

profile.type = SPD (optional)

label <DCD.componentinstantiation.usagename>
Device

identifier <DCD.componentinstantiation.id>

deviceConfigurationProfile
profile.filename = <DCD filename>

profile.type = DCD (optional)

identifier <DCD.deviceconfiguration.id>

label <DCD.deviceconfiguration.name>

DeviceManager

registeredServices.serviceName <DCD.componentinstantiation.usagename>

ResourceFactory identifier <SAD.componentinstantiation.id>:<Application
Name>

identifier <SAD.softwareassembly.id>:<Application
Name>

profile
profile.filename = <SAD filename>

profile.type = SAD (optional)
Application

name <Application Name>

identifier <SAD.softwareassembly.id>

name <SAD.softwareassembly.name>
ApplicationFactory

softwareProfile
profile.filename = <SAD filename>

profile.type = SAD (optional)

identifier <DMD.domainmanagerconfiguration.id>

DomainManager
domainManagerProfile

profile.filename = <DMD filename>

profile.type = DMD (optional)

 Page 4

	1 Introduction
	2 Detailed Comments

