
 SDRF-03-A-0005-V0.0

Software Defined Radio Forum

API Position Paper

System Interface Working Group

Document Number: SDRF-03-A-0005-V0.00

July 19, 2003

 SDRF-03-A-0005-V0.0

Goal of this Document
The System Interface Working Group (SIWG) feels it is necessary to provide input on the importance and
development of APIs for SDR to the general community. We also would like to influence the API
development occurring on the Joint Tactical Radio System (JTRS) program within the US Department of
Defense, as this very large program is working to set standards for the entire SDR community.
We propose a number of recommendations to the SDR community.

Introduction and Background
For modular, open-system, Software Defined Radios (SDR) well defined, commonly used, or standard,
Application Programming Interfaces (APIs) are crucial.

An Application Programming Interface (API) is an agreement of services provided and required
behavior among related software and/or hardware modules. It does not prescribe an implementation; is
not a section of code or a program or an application. In many ways, this can cause confusion because
an API is an abstraction and not a physical entity.

To allow the successful replacement of modules in different implementations (i.e. replacing a
software-based module by a hardware version), the interfaces which define the boundary of the module
must be designed in such a way so that the interface does not imply or exclude a potential
implementation. If it does, then its appeal and its ability to attract components that conform and thus
be reused will be limited.

The Need and Benefit of an API

1. Application Portability - An API is a defined set of function invocations that provide a level of
abstraction between the application and the operating environment, including the operating
system and/or other (Hardware) platform services. This enables portability of software
applications among different platforms that provide the implementations of the same APIs.

2. Upgrade/Enhancement - A well defined set of APIs provide the syntax and semantics of
message formats, procedure calls, and/or global data shared between entities. Software
applications can be easily ported between systems that use common APIs. Furthermore, if the
APIs are well known and understood, open to the community for use, then anyone can write
code that can be hosted on hardware platforms that employ these APIs and thus can be easily
added to numerous and diverse platform implementations.

What makes a good API?
A good API will have the following characteristics:
• It should be written so that it is understandable and testable, unambiguous and have
 only one interpretation
• It should be extensible and allow the use of proprietary implementations.
• It should have reasonable granularity within the system partitioning
• It should identify behavior under failure conditions
• It should support interface revisions and enhancements.
• It should adjust to match the available resources.
• It should describe the operation and its parameters.
• It should be independent of the transport mechanism.

What must an interface or API not do?
• It should NOT have two or more APIs or interfaces controlling a single resource without

resource sharing management.

 SDRF-03-A-0005-V0.0
• It should NOT allow applications to go through APIs directly to lower levels.
• It should NOT be under-specified.
• It should NOT have knowledge of the implementation or any APIs below it.

Level of Detail of an API
The desired degree of application “portability” determines the number and granularity of APIs.
Without a low enough level of granularity, the opportunities for multiple sources of components that
can easily work together will be lost. A fine-grained approach provides developers with the freedom
to mix, match, and combine modules like building blocks. The finer-grained the approach, the more
overhead required.

Structure and Format of an API
The preferred method of encapsulating discrete functional elements in an Object Oriented domain is
via “components” – a logical and/or physical (and replaceable) part of the overall system. A
component’s APIs should be defined using a graphical representation, such as the Unified Modeling
Language (UML).

Waveform Portability Issues
APIs are found throughout a system at all levels where modules or components interface, hardware and
software. Many APIs have been addressed to date and adopted into documents, such as the Joint
Tactical Radio System (JTRS) Software Communications Architecture (SCA), to achieve
standardization in implementations. Examples include POSIX for the operating system and
minimumCORBA as a middleware. These serve to establish a common operating environment upon
which to build a platform.

The JTRS SCA is a specification that separates the waveform “resources” from the platform “devices”.
The resource/device boundary defines the waveform API. The SCA allows developers to move most
of their waveform functionality into the “devices” - such that the “resources” become very simple.
Therefore, the Waveform API's could result in relatively simple API's, with much of the waveform
functionality hidden within the “devices” severely limiting the portability. Furthermore, the API's are
built from SCA API "building blocks" which are like templates. The API development procedures
should require that developers create classes from the building blocks with consistent semantics and
naming conventions applied across all waveforms. This is not currently being done for the JTRS
program.

Recommendation #1
We recommend that waveform developers create a platform independent model of the waveform
before the implementation is decided to avoid pushing all functionality into the devices thus limiting
portability. When the platform specific implementation is created the developer should then provide
rationale for the allocation of functionality to devices.

API Development
The SIWG has taken on the challenge to address the APIs that focus on the portability of applications.
The focus is defining those APIs between an application and a platform. For reference the SIWG is
using the diagram below to define the specific interfaces addresses. This model was taken from the
Telecommunications Information Network Architecture (TINA) system reference model which
describes, from a system perspective, a generic system architecture.

 SDRF-03-A-0005-V0.0

ConfigurationManagement

Waveform/Application

System_Control

Antenna RF Interference
Management

Modem INFOSEC Network

HMI

Framework

global

IO

System_Fabric

initiates management

Services inherit framework services from
system control which inherits from
Framework

SDR Domain Architecture
Components Logical Model

provides physical interconnects

managed managedmanaged

managed

Local or
Remote

Black
Processing

Red Processing

managed
managedmanagedmanagedmanaged

Amp

managed

FaultManagement

uses services/resources

uses services/resources
uses services/resources

uses services/resources

uses services/resources

managed

uses services/resources
uses services/resources

uses services/resources
uses services/resources

uses services/resources

PerformanceMa
nagement

VirtualChannel
Management

NetworkManagement

SecurityManagement

uses framework services

manages manages

ConfigurationManagement

Waveform/Application

System_Control

Antenna RF Interference
Management

Modem INFOSEC Network

HMI

Framework

global

IO

System_Fabric

initiates management

Services inherit framework services from
system control which inherits from
Framework

SDR Domain Architecture
Components Logical Model

provides physical interconnects

managed managedmanaged

managed

Local or
Remote

Black
Processing

Red Processing

managed
managedmanagedmanagedmanaged

Amp

managed

FaultManagement

uses services/resources

uses services/resources
uses services/resources

uses services/resources

uses services/resources

managed

uses services/resources
uses services/resources

uses services/resources
uses services/resources

uses services/resources

PerformanceMa
nagement

VirtualChannel
Management

NetworkManagement

SecurityManagement

uses framework services

manages manages

Computational
Architecture

Services Architecture

Management
Architecture

Waveform/Applications

Applications/waveforms
and platform APIs

 SDRF-03-A-0005-V0.0
Recommendation #2
The SIWG has developed a draft SDR Interface Definitions document. The SIWG is also coordinating
with the Object Management Group (OMG) Software Radio (SWRADIO) Domain Special Interest
Group (DSIG) through a formal liaison relationship and participation of the common membership. We
recommend that the SDR community in general and the JTRS JPO specifically, review both the SDR
Interface Definitions document and the OMG SWRADIO submission as a starting place for the
development of a common set of APIs. The SDR Interface Definitions document has been provided as
input to the OMG submission for anticipated voting at the September 2003 meeting of the OMG.

SDR Dictionary
To ensure maximum understanding and utility of APIs, there should be an agreed upon set of terms
and a naming convention.

There is currently no standard dictionary of radio terms for developers to reference. For instance, the
SCA uses XML tags to control software deployment, but does not specify standard terms for waveform
properties. There are several groups who could contribute to a standard set of terms for SDR:

• Mercury has proposed an XML dialect to the OMG SWRADIO DSIG;
• The OMG’s SWRADIO DSIG has a Platform Independent Model(PIM) document which

contains a set of terms for the SDR environment;
• South West Research Institute has proposed an XML dialect under DARPA MoBIES.

Tool vendors such as Mathworks (MATLAB/SIMULINK) and Elanix (Systemview) would be
interested in such a dictionary, since they already have their own versions for radio terms.

The System Interface Working Group, in cooperation with the SWRADIO DSIG, will develop a
naming convention and dictionary of SDR terms. This common set for SDR could be used across the
industry. In the development of naming conventions the practice of using long terms promotes clarity,
terms should rarely be abbreviated. The SDR Forum will publish a dictionary that defines common
and agreed upon names.

Recommendation #3
We recommend that the SDR community adopt a common naming convention and dictionary of terms.
For the JTRS program this could be added as an annex to the SCA or through a reference to a current
standard dictionary.

	The System Interface Working Group, in cooperation with the SWRADIO DSIG, will develop a naming convention and dictionary of SDR terms. This common set for SDR could be used across the industry. In the development of naming conventions the practice of
	Recommendation #3
	We recommend that the SDR community adopt a common naming convention and dictionary of terms. For the JTRS program this could be added as an annex to the SCA or through a reference to a current standard dictionary.

