WInnForum Time Service Facility and SOSA™: Alignment with Objectives

WInnForum Webinar Series #32
Webinar Administrivia

Slides presented during this webinar will be posted here:
 • http://www.wirelessinnovation.org/webinars

Recorded Webinar will be available on the Forum’s You Tube Channel:
 • https://www.youtube.com/channel/UCYUeZvOuJTP27OzoKsyys0w

Email Lee.Pucker@wirelessinnovation.org if you need more information
Participants in this webinar are reminded that the Forum is an international organization, and they are prohibited from disclosing export restricted or controlled information during the course of this webinar.

Participants wishing additional information on this prohibition are referred to the Forum’s Policy on Restricted and Controlled Information (SDRF Policy 009) available on the web.
Today’s Moderator:
- Ken Dingman, L3 Harris and Chair of the WInnForum’s Software Defined Systems Committee

WInnForum Facilities Approach
- Eric Nicollet, Thales

Overview of Time Service Facility,
- Chuck Linn, L3Harris, and
- David Hagood, Cynosure

Time Service Usage in SOSA
- Round table discussion
Eric Nicollet (Thales)

Presentation to SOSA Mission Operation Subcommittee
8 November 2022
Introduction

Principles for WInnForum Facility Standards

WInnForum Facility PSMs Mapping Rules
WlnnForum developed a formally structured framework for Facilities specification.

Two technical report capture this structure

- TR-2007 Principles for WlnnForum Facility Standards
- TR-2008 WlnnForum Facility PSMs Mapping Rules

Consistent with 2 Facility finalized WlnnForum Facilities

- TS-0008 Transceiver Facility V2.1
- TS-3004 Time Service Facility V1.1
WINNF-TR-2007-V1.0.0
• October 2020
• 13 pages

Technical Report
Sets the reference concepts for specification of WInnForum Facilities
Introduction (§ 1)

Addresses functional support capabilities (e.g., transceiver, timing service, audio)
Service-oriented approach
OMG Model Driven Architecture (MDA) paradigm
Specification of one **PIM specification** and several **PSM specifications**
Specification of services, associated API and attributes
Flexibility and scalability thanks to formalized optionality model

➡️ What is a WInnForum Facility?

*[A WInnForum *facility* is defined as a WInnForum specification that applies the “Principles for WInnForum Facility Standards”]*.
Radio capability

A radio capability is defined as a capability available on a radio product based on over-the-air radio operation (transmit-receive, transmit-only or receive-only).

Software Defined Radio and radio applications

A software defined radio is defined as a radio that implements radio capabilities through execution of software applications.

A radio application is defined as a software application instance that implements a radio capability within a software defined radio.

A radio platform is defined as the hardware and software environment provided by a software defined radio for execution of radio applications.

Portability and hospitality

The portability concept is defined as, for a radio application, the level of reduction of effort in having an existing radio application running on new radio platform.

The hospitality concept is defined as, for a radio platform, the level of reduction of effort in having a radio application running on that radio platform.

➡️ WinnForum Facilities aim at improving portability and hospitality
Component-based radio applications

Application component and processing nodes

- An application component is defined as a software component of a radio application.
- A processing node is defined as a processor of the radio platform capable to execute application components.

» Need to address a large variety of processing nodes: GPP, DSP, FPGA…
Software support and environment

The software support is defined as the capabilities of a radio platform that enable execution of application components throughout the available processing nodes. A software environment is defined as the capabilities of a given processing node that enable execution of application components.

Some key constituents
• Scheduling (e.g. POSIX)
• Connectivity (e.g. CORBA)
• Components handling (e.g. SCA CF)

⇒ Not what WInnForum Facilities address

![Figure 3: Software support](image-url)
Functional support and capabilities

The functional support is defined as the capabilities of a radio platform that provide functionalities specific to the radio domain in support of application components.

A functional support capability is defined as one elementary capability of the functional support.

Examples of Functional Support Capabilities

- Transceiver
- Time service
- Audio

Facades and access paradigms

A façade is defined as the software segment of a functional support capability implementation that executes on a given processing node.

An access paradigm is defined as the software mechanisms enabling an application component to access to a façade within the concerned processing node.

⇒ What WiInnForum facilities address
Service-oriented functional support (§ 3.1.2)

Service and service name

- A service is defined as one elementary capability provided by a functional support capability to radio applications.
- A service name is defined as the name of a service.

Service implementation and interface

- A service implementation is defined as an implementation of a particular service by a particular façade.
- A service interface is defined as the software interface presented by a service to the radio application(s) employing it.

1 service = 1 interface
- Very strong structural assumption

➡ WInnForum facilities not only specify the software interface of services, but the associated capability

Figure 5 Services
Provide and use services (§ 3.2.2)

Provide and use services

- **A provide service** is defined as a service whose service interface is used by radio applications and provided by a functional support capability.
- **A use service** is defined as a service whose service interface is used by a functional support capability and provided by radio applications.

Services groups

- **A services group** is defined as a consistent set of use services and provide services of a functional support capability that answers to a common use case.
- **A services group name** is defined as the name of a services group.

Primitive and implementation

- **A primitive** is defined as one of the primitives composing a service interface.
- **A primitive implementation** is defined as an implementation of a particular primitive within a service implementation.

The following software engineering concepts are attached to primitives:
- **D6 signature**,
- **D7 parameter**,
- **D8 direction** ("in", "out", "inout" indicator),
- **D9 semantics** of:
 - **parameters** (meaning and behaviors attached to parameters),
 - **primitives**,
- **D8 type**,
- **D1 exception**.

Figure 6 Services orientation
Real-time concepts (§ 3.2.5)

Call time and return time

The call time of a primitive implementation is defined as the instant when it is called. t_{call} denotes the call time of a primitive implementation.

The return time of a primitive implementation is defined as the instant when it returns. t_{return} denotes the return time of a primitive implementation.

Worst-case execution time

The worst-case execution time (WCET) of a primitive implementation of a provide service is defined as the maximum time taken by the implementation between its call time and return time.

The worst-case external execution time (WCEET) of a primitive implementation of a use service is defined as the maximum time supported by the implementation between t_{call} and t_{return}.

Figure 7 Services primitives call and return time
Facility attributes

A facility attribute is defined as an object-oriented attribute of a functional support capability that conditions its correct joint execution with a radio application.

Examples
- Set of supported services
- Behavioral option
- Transfer function
- Real-time performance values

Counter-examples
- SWaP of implementations
- Features with no impact on radio application

Capabilities, properties and variables

A capability is defined as a facility attribute constant over the lifetime of a functional support capability implementation.

A property is defined as a facility attribute constant over the configured state of a functional support capability implementation.

A variable is defined as a facility attribute of a functional support capability implementation that is not meant to be constant.
Facility composition

A facility is composed of a PIM (Platform-Independent Model) specification completed by derived PSM (Platform-Specific Model) specifications.

PIM specification

A PIM specification is defined as a specification that answers to the definition of a PIM provided by [Ref2]: “A PIM exhibits a sufficient degree of independence so as to enable its mapping to one or more platforms. This is commonly achieved by defining a set of services in a way that abstracts out technical details. Other models then specify a realization of these services in a platform specific manner.”.

A PIM specification uses the WiNonForum “IDL Profiles for Platform-Independent Modeling of SDR Applications” [Ref3] to specify the service interfaces of the functional support capability. This is consistent with usage of SCA 4.1 Appendix E-1 “Application Interface Definition Language Platform Independent Model Profiles” (see [Ref4]).

PSM specification

A PSM specification is defined as a specification that answers to the definition of a PSM provided by [Ref2]: “A PSM combines the specifications in the PIM with the details required to stipulate how a system uses a particular type of platform. If the PSM does not include all of the details necessary to produce an implementation of that platform it is considered abstract (meaning that it relies on other explicit or implicit models which do contain the necessary details).”.
Mapping rules for programming paradigms

- Native C++
- SCA
- FPGA

WINNF-TR-2008 V1.0
Early 2022 (in approval)
42 pages
A radio application is possibly composed of a number of application components distributed across a composition of processing nodes.

The radio platform implements a number of functional support capabilities, accessible on a number of processing nodes through software interfaces presented by façades.

The façades are the software parts of a functional support capability implementation that present a number of service interfaces for employment by application components.

The set of service interfaces supported by a façade belong to the API specified by the PIM specification of the considered functional support capability, and are derived by the PSM specification according to the applied access paradigm.

Nothing prevents a given processing node to support more than one access paradigm.

Figure 1 Reference architectural pattern
The native C++ access paradigm is defined as an access paradigm based on direct native C++ connection between application components and façades. It is based on two C++ versions: C++11 (see [Ref2]) and C++2003 (see [Ref3]).

A native C++ PSM specification is defined as a standard specifying, according to the native C++ access paradigm, interfaces between instances of radio applications and instances of the addressed functional support capability.

A native C++ application component can:
- Be a component of the radio application running in the same native C++ node,
- A proxy of a component of the radio application running in a remote processing node.

In the proxy case, the remote component complies with a PSM specification that may be:
- The native C++ PSM specification, if the remote processing node is another native C++ node.
- Another PSM specification, if the remote processing node is not a native C++ node.

The proxy uses a connectivity mechanism between the native C++ node and the remote processing node that can typically be standard compliant (e.g., MHAL Communication Service, MOCB, CORBA), or be a proprietary solution.

A native C++ façade is conformant with the native C++ PSM specification of a functional support capability if it provides an implementation of the Facade class and its related service interfaces.

A native C++ application component is conformant with the native C++ PSM specification if it can use native C++ façades conformant with the native C++ PSM specification, without using any non-standard service interface for the functional support capability.

Figure 2 Positioning of native C++ functional interfaces
The Facade class is specified as a class providing native C++ application components with access to native C++ façades.

For functional support capabilities featuring the CONFIGURED state, the Facade class owns activeServicesInitialized() and activeServicesReleased() methods.

The Facade class also owns at least one of the following interfaces for services access:
- ExplicitServicesAccess (see section 2.6.4) or
- GenericServiceAccess (see section 2.6.5).

Figure 3 Class diagram of a native C++ façade
Naticc C++ - Explicit or generic services access

Figure 4 Class diagram of explicit services access

Figure 5 Class diagram of generic services access
The SCA access paradigm is defined as an access paradigm based on SCA connections between application components and façades. It is based on two SCA versions: SCA 2.2.2 (see [Ref7]) and SCA 4.1 (see [Ref8]).

An SCA PSM specification is defined as a standard specifying, according to the SCA access paradigm, interfaces between instances of radio applications and instances of the addressed functional support capability.

An SCA façade is conformant with the SCA PSM specification of a functional support capability if it provides an SCA implementation of service interfaces.

An SCA application component is conformant with the SCA PSM specification of a functional support capability if it can use SCA façades conformant with the SCA PSM specification, without using any non-standard service interface for the functional support capability.

Figure 6 Architecture concepts for SCA PSMs
SCA 2.2.2 Management Interfaces

Figure 7 SCA 2.2.2 PSM management interfaces
Figure 8 SCA 4.1 PSM management interfaces
FPGA functional interfaces are defined as the FPGA interfaces derived from the service interfaces of a PIM specification.

An FPGA PSM specification is defined as a specification that standardizes FPGA functional interfaces between instances of radio applications and functional support capabilities.

An FPGA node is defined as an FPGA of a radio platform providing radio applications with FPGA functional interfaces related to one or several functional support capabilities.

An FPGA façade is defined as a façade of a functional support capability instance that executes within an FPGA node.

An FPGA applicative module is defined as a module of a radio application implemented in an FPGA node that employs at least one FPGA façade.

The FPGA applicative module can:

- Be a component of the radio application running in the same FPGA node,
- A proxy of a component of the radio application running in a remote processing node.

In the proxy case, the remote component conforms with a PSM specification that may be:

- The FPGA PSM specification, if the remote processing node is another FPGA node,
- Another PSM specification, if the remote processing node is not an FPGA node.

The proxy uses a connectivity mechanism between the FPGA node and the remote processing node that can typically be a standard (e.g., MHAL Communication Service, MOCB), an FPGA extension of CORBA, or a proprietary solution.

Figure 9 Positioning of FPGA functional interfaces
End of the presentation
Thank you for your attention

Any questions?

Contact:
eric.nicollet@thalesgroup.com
WInnForum Time Service Facility

David Hagood (Cynosure)
Chuck Linn (L3Harris Corporation)

Presentation to SOSA Mission Operation Subcommittee
8 November 2022
Introduction

The PIM (Platform Independent Model) Specification

The PSM (Platform Specific Model) Specifications

Integration into SOSA
Portability, re-usability and interoperability are the goals

- Time is a simple concept that is complicated in actuality
- Waveforms and applications need to deal with that complexity in a standardized way, across a broad range of environments

Range of platform topologies

- Broad range of processing topologies
- Broad range of processing element types
- Broad range of language and communications environments

Software-defined radios use time differently, have special needs

- Since radios have cross-node communication, their collective understanding of time can differ from a single platform’s concept of time.
- We need a monotonic time source, but we also need an up-to-date time source
 - Time sources can change, TFOMS can change, updates needed
 - But hardware and software need a continuous time concept as well
WInnForum Time Service Facility v1.0

WInnForum TSF v1.0 is a WInnForum Facility (SDR standard)

• One PIM Spec: fully implementation agnostic API and Properties
 • Released: December 2020
• Several PSM Specs: PIM Spec mapping to programming paradigms: Native C++, FPGA and SCA
 • Released 18 January 2022
• Uses JTNC Timing Service as reference standard

A successful and international harmonization

• 9 contributors from 5 countries: Kereval, FKIE, L3Harris Corporation, Hitachi Kokusai Electric, JTNC, Leonardo, Thales, Viavi Solutions, Cynosure
• Reflecting SDR background from worldwide manufacturers
• Reflecting lessons learnt from
 • US programs and manufacturers developments
 • EUR military programs: ESSOR (ESP, FIN, FRA, ITA, POL, SWE) and SVFuA (GER)
Platform Independent Model defines the concepts supported.

- No specifics about language or implementation.
- Interfaces, semantics / behavior and flows are discussed
- The PIM forms the interoperable heart of the standard

Platform Specific Models define real implementations

- Native language implementations in C and C++
- Framework w. middleware (SCA / CORBA, DDS, etc. possible)
- FPGA implementations in VHDL

Slide 5
The PIM Specification
The Time Service Facility standardizes:
- The service-oriented Time Service Application Programming Interface (Time Service API)
- Standard associated Time Service Properties

A time service provides radio applications with
- Timing capabilities: providing radio applications with time
- Timer capabilities: triggering radio applications according to time-based conditions

Figure 2 Possible time service usages
A *time service* is typically available on several processing elements of a system.

Facades are individual access points of a *time service*, typically implemented on a per-processing element basis.

A *time service* coordinates 1+ *facades* with coordinated concepts of time.

Coordination is under responsibility of the *time service* implementation.
System time (ST) represents the radios best known estimation of the UTC (Coordinated Universal Time)

- Ideally, ST of all radios/nodes would correspond to the UTC
- In practice, each radio has a specific ST estimate of the UTC

The timing service may adjust ST at any moment

- Discontinuities in ST can happen in either direction
- Example: the inaccurate ST at radio boot will, once GNSS has synchronized, “jump” to a more accurate value, timing source handoffs, GPS denial, etc.

Radio application design is typically based on ST

- Example: TDMA slots of many waveforms are specified relative to the UTC, implying usage of the ST
Terminal time (TT) provides the amount of time that has passed in the radio since an unspecified reference point.

TT is maintained using hardware oscillators of the radio.

TT is synchronized across the façades of a given time service.

- Not assumed to be synchronized across time services or radios.

TT start time, epoch, or standard offset from ST is unspecified.

- TT is not equivalent of “looking at a clock” (that would be ST).
- TT it is more about the platform hardware’s concept of time.
- Example: at radio boot, TT could be equal to 0 second.

TT is monotonically increasing.

- TT is never subject to changes, adjustments or rollover.
- TT increment period may be tweaked for oscillator disciplining.
ST and TT are designed to work in tandem to enable a radio application to precisely place or tag platform events.

Say a waveform radio application, having to begin a transmission at a given ST start time denoted ST_{start}

- E.g. $ST_{\text{start}} = 0300.50$ UTC

The platform start transmissions according to commands expressed in TT

- TT_{start} is time to be used to command transmission start

The waveform would therefore

- Use `getSystemTime()` to get an updated pair $(ST_{\text{ref}}; TT_{\text{ref}})$
- Compute $TT_{\text{start}} = TT_{\text{ref}} + (ST_{\text{start}} - ST_{\text{ref}}) = ST_{\text{start}} - (ST_{\text{ref}} - TT_{\text{ref}})$
- Call the command primitive of the transceiver with TT_{start}
PIM services

<table>
<thead>
<tr>
<th>Services groups (same as Modules)</th>
<th>Services (same as Interfaces)</th>
<th>Primitives</th>
<th>Optionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>TerminalTime</td>
<td>TerminalTime::TerminalTimeAccess</td>
<td>getTerminalTime()</td>
<td>MAN</td>
</tr>
<tr>
<td>SystemTime</td>
<td>SystemTime::SystemTimeAccess</td>
<td>getSystemTime() getSystemTimeTfom()</td>
<td>MAN</td>
</tr>
<tr>
<td></td>
<td>SystemTime::SystemTimeSetting</td>
<td>setSystemTime()</td>
<td>OPT</td>
</tr>
<tr>
<td>AppTime</td>
<td>AppTime::AppTimeHandling</td>
<td>pushAppTime() getAppTime() clearAppTime()</td>
<td>OPT</td>
</tr>
<tr>
<td>Timers</td>
<td>Timers:: [TBD]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Services groups (same as Modules)</th>
<th>Services (same as Interfaces)</th>
<th>Primitives</th>
<th>Optionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExternalTimeRef</td>
<td>ExternalTimeRef::EtrEvent</td>
<td>pushEtrEvent()</td>
<td>OPT</td>
</tr>
</tbody>
</table>
TerminalTime: 1 provide service
• TerminalTimeAccess fetches current Terminal Time value

SystemTime: 2 provided services
• SystemTimeAccess fetches the current system time estimate with a terminal time
 time Stamp and corresponding estimation error (mandatory)
• SystemTimeSetting to set the system time (optional)

AppTime: 3 provided services (optional)
• AppTimeHandling supports application time refs

ExternalTimeRef: 1 optional uses service (time serv \rightarrow App)
• EtrEvent Pushes raw time data to app
The PSM Specifications
Planned PSM Specs

- Native C++
- FPGA
- SCA / CORBA

Possible other PSM Specs

- Native C
- Other IDL-based component frameworks, e.g. Redhawk
- SOSA / DDS, etc.?

User-specific PSMs will be possible, although discouraged from portability standpoint
Integration into SOSA
Our understanding of time in SOSA is as follows:

- Time is provided to a card cage from a PNT card, using a stable clock (with radial distribution) and a 1 pps synchronization pulse.
- The PNT card (if present) is responsible for selecting and transitioning between a stable oscillatory and external time sources. The PNT card implements 6.7 module functions.
 - The PNT card could take external inputs or be replaced by an external clock and pps.
- Chassis PICs use backplane time + SDMs (?) to access time.
- Equipment external to the chassis is provided with time using:
 - Reference clock + 1 pps, with NTP or MDM 1pps messages to provide “at the one pps, time will be” level information.
 - Or- NTP + PTP alone (classic victory style).
- The 6.7 function will have APIs beyond backplane signals – but we don’t know the status of this work.
Proposed SCA/SOSA interoperability approach for an SCA-based SDR PIC:

- SCA waveforms currently use either a JTNC time service or the WInnForum Time service facility (CORBA-based APIs) in conjunction with an underlying Terminal time distributed in hardware, synchronized.
- An SDR PIC would employ a Time Service with an implementation or shim to adapt the WInnForum APIs to the underlying SOSA standard time services will be needed inside the container.
 - Depending on the native SOSA time support, this shim could range from trivial to complex.
- NOTE that in the case of the timing facility being included only in a comms PIC, that it would not be involved in selection or blending of the best time source, and would only affect elements within the comms PIC container.
Discussion questions

- **Character of SOSA “backplane” time:**
 - Is the backplane clock monotonically increasing, with no discontinuities?
 - When the Time/Freq PIC learns (say by acquiring GPS or connection of an external time source) of a “better” time which different from current time, what does it do in generating the system clock?
 - First, is the PIC the generator of the system clock?
 - Simply change the announcement at the next 1 pps mark (time discontinuity)
 - Slowly discipline the rate of the backplane clock until it converges with the new time concept. If so, is there a maximum rate delta?

- **Are there any usecases where a waveform would be used to serve as a time source into the SOSA system?**

- **Areas where the WInnForum Timing facility could help:**
 - Inside of Comms modality PICs
 - SOSA service as part of 6.7? Has API there yet been defined?
 - Reuse could be via a new PSM, or by cherry-picking concepts
End of the presentation
Thank you for your attention

Any questions?

Contacts:
• Chuck.Linn@L3Harris.com
• David.Hagood@cynoinc.com