

Strategies for Deploying RFSoC Technology for SIGINT, DRFM and Radar Applications

> Rodger Hosking Pentek, Inc.

WInnForum Webinar November 8, 2018

Xilinx RFSoC Overview

- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

February 2017: Xilinx Announced RFSoC

RF Data Converters in an All Programmable MPSoC

NITEK

Xilinx has integrated multi-giga-sample RF data converters into its 16nm MPSoCs devices for the industry's first All Programmable RFSoC. This eliminates the need for discrete ADCs and DACs and enables next-generation radio and RF communication systems to scale for power, footprint, and channel density requirements.

Xilinx UltraScale+ FPGA Resources

- 16 nm FPGA Fabric Logic Cells, DSP Engines, Block RAM, etc.
- Advanced Real-Time Digital Signal Processing Engines
- Extensive General Purpose I/O for Peripherals

- Fast Internal Memory and Controller for External DDR4
- PCIe Gen4 System Interface
- Enhanced 28 gb GTY Serial I/O and MAC for 100 GbE

Integrated Data Converters in the FPGA

- A/Ds and D/As are connected directly to FPGA fabric
- Lowest latency parallel interfaces

- 8 A/Ds: 12-bit, 4 GHz with integrated Digital Downconverters
- 8 D/As: 14-bit, 6.4 GHz with integrated Digital Upconverters

ARM Processor Resources

INTEK

ARM Based Processor System

- Application Processor: Four 64-bit ARM Cortex-A53 cores
- Real-Time Processor: Two ARM Cortex-R5 real time cores

Processing System

ENTEK

- DDR4 Memory Controller and System Controller
- Security Manager and Platform Management Unit
- High-Speed Connectivity and Processor I/O

RFSoC – Complete RF System on Chip

Complete sub-system on a single monolithic chip!

NTEK

Xilinx RFSoC Overview

- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

What Is Latency?

- Time delay through the system from input to output
- Includes delays within each element

NTEK

- Includes delays in the links between each element
- Data converter links are becoming a critical limiting factor!

Parallel vs. Serial Converter Interfaces

Parallel connection (LVDS)

Pro

NITEK

Simple

Low latency

Con

Limited speed

Many lines to route on PCB

Serial connection (JESD204B) Pro Can handle high speed A/Ds

Fewer lines to route on PCB

Con

Serial protocol introduces latency Complex to implement

The latest and fastest discrete data converters use JESD204B

RFSoC – The Best of Both

Parallel connection (LVDS)

Pro

NITEK

Simple Low latency

Con

Limited speed
Many lines to route on PCB

Serial connection (JESD204B) Pro

Can handle high speed A/Ds Fewer lines to route on PCB

Con

Complex to implement Serial protocol introduces latency

- RFSoc Uses Internal Parallel Data Converter Interfaces
 - Simplest Interface and Low Latency
 - Internal connections handle high data rates
 - Internal connections reduce PCB trace count
- Eliminates All the Cons!

Applications and Data Transfer Latency

NITEK

RFSoC Covers Applications for ALL Latency Requirements!

Xilinx RFSoC Overview

- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

RFSoC Market Opportunities

Radar

NTEK

- Multi-function Phased Array Radar (MPAR) initiative combines U.S. weather and radar networks
- Common Module beamformer for DARPA Arrays Commercial Time Scales (ACT) program
- EW and Countermeasures
 - Low latency DRFM applications
- Communications
 - SATCOM and Military / Airborne Radios
- SIGINT
 - Monitoring, Interception, and Analysis
- 5G Wireless & Cable Remote PHY
 - Remote radio head for Massive-MIMO, wireless backhaul, and fixed wireless access
 - Implements DOCSIS 3.x PHY Spectral Efficiency requirements for distributed broadband digital networks

How Does RFSoC Change the Market?

- Reduced size and footprint
 - About 50% less compared with discrete data converters, FPGA & processor
- Reduced power

- About 30-40% total power savings
- Reduced cost
 - About 40-60% total cost savings
- Reduced latency
 - About 80-90% less delay than JESD204 data converters

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

RFSoC: Board Level Design Issues

RF Signal Integrity

- 16 Analog RF Signals with GHz Bandwidths
- Spurious digital signal pickup
- Crosstalk between analog channels
- Signal path integrity and impedance
- Gigabit Serial Links 28 Gbit GTY
 - Signal path integrity and impedance
 - Bit error rate considerations
- Clock Management
 - Data Converter Sample Clocks
 - FPGA Fabric and Gigabit Serial Links
- Power Supply Requirements
 - RFSoC chip requires 13 different power supplies
 - Analog supplies must be extremely clean
- Thermal Management
 - Air- or conduction-cooling provisions

Design Strategies for RFSoC

- What the shortest path from RFSoC chip to Deployed Product?
 - Hardware Strategies

- FPGA Design Strategies
- ARM Processor Software Development
- How can I get a running start?

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

Traditional Modular Designs

Cobalt/Onyx/Jade I/O modules A/Ds & D/As **FPGA** Main Board Memory **Power Supplies** Clocking

NTEK

XMC Products

FMC Products

QuartzXM: RFSoC eXpress Module

NTEK

Benefits of the QuartzXM eXpress Module

- Mezzanine module simplifies and speeds RFSoC product designs
- Connectorizes & preserves integrity of RF and gigabit serial signals
- Generates all 13 RFSoC power supplies from a single +12V input
- Includes FLASH and DDR4 memories for FPGA & ARM processor
- Maintains PCB constraints for bypassing, filtering, & geometries
- Includes clock management and health monitoring facilities
- Excellent path for addressing SWaP requirements

SITEK

- Some technical details:
 - 28 layer PCB
 - Over 4000 drilled holes
 - Uses advanced PCB fabrication techniques including: sequential lamination, backdrilling, blind and buried vias, etc.
 - Supports 28Gbps GTY serial interfaces

Model 6001 – QuartzXM eXpress Module

 Contains all the infrastructure circuitry to support the RFSoC

INTEK

- Power supplies and power management
- Clock management
- DDR4 SDRAM for both the FPGA fabric and processors
- Configuration FLASH
- Connectors for bringing ALL RFSoC signals to a carrier board

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

VPX Standards for Embedded Systems

VITA 66.x Optical Backplane I/O

 Several full- and half- width blindmate optical connector types

NITEK

 Provides high bandwidth data paths between boards and chassis

Photo: Elma

- VITA 67.x Coax Backplane I/O
 - Several multi-position connector types – up to 12 coax signals
 - RF signal bandwidths to 40 GHz
 - Eliminates front panel signal cables

Photo: SV Microwave

- VITA 65.0 & 65.1 OpenVPX 2017
 - Most popular MIL-AERO standard for deployed systems
 - Major enhancements reflect widespread use and adoption of OpenVPX
 - New Card, Slot and Backplane Profiles
 - Radial Backplane Clock distribution ensures precision timing and synchronization across boards
 - Provision for a 100 MHz reference clock
 - New definitions of combinations of VITA 66.x optical and VITA 67.x coaxial backplane I/O

Photo: TE Connectivity

QuartzXM on 3U VPX – Front Analog I/O

- Model 5950 3U VPX Carrier for QuartzXM
- Open Architecture Form Factor Supporting Industry Standards
 - VITA 65.1 OpenVPX

- VITA 66.4 Optical Serial Backplane I/O
- Complete functional sub-system on one 3U VPX module
- Scales easily to support high-channel count systems
- Synchronization across multiple modules

Model 5950 Quartz 3U VPX

- 3U VPX Carrier provides Coaxial RF Front Panel I/O
- Rear Transition Module provides ARM processor I/O
- Air- and Conduction-cooled Versions

INTEK

3U VPX Single Slot Development Chassis

- Low-cost chassis includes backplane, power supply, & cooling
- Model 5950 3U VPX RFSoC installed & tested
- Model 5901 Rear-Transition Module installed & tested
- Optional MTP Optical connector for dual 100GbE

NITEK

Model 5950 3U **VPX** Front Panel (RF I/O, clocks, timing, etc.)

Model 5901 Rear Transition Module (ARM Processor I/O, FPGA LVDS I/O)

MTP Optical I/O (Dual 100 GbE)

29

Single Slot Development Chassis Strategies

NITEK

Rear

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

QuartzXM for 3U VPX – Backplane RF I/O

- Similar to Model 5950 except analog RF I/O connects through backplane
- VITA 67 defines several possible RF backplane connector formats
- Simplifies system integration and maintenance tasks
- Improves reliability by eliminating cables

QuartzXM on PCIe Carrier for PC Platform

- Allows RFSoC development tasks in a low cost PC platform
- Perfect for software and FGPA development seats
- Perfect for continuation engineering and support

NITEK

Supports deployed applications for benign environments

Migrating QuartzXM to Custom Platforms

Development Strategy

NITEK

- Start with standard open-architecture product like 5950
- Develop software and IP for custom form factor application
- Custom Carrier
 - Use Pentek Quartz Carrier Design Package
 - Pin definition, design rules, layout guidance and design review
 - Attach QuartzXM Module
 - Keep 5950 as a development platform

 $\bigcirc \bigcirc \bigcirc$

 $\bigcirc \bigcirc \bigcirc$

Custom RFSoC SoM Solutions

NTEK

Custom RFSoC SoM Solutions

ENTEK

Small Form Factor Remote Box

Create or adapt a carrier for the QuartzXM module

NTEK

- For example, start with the Model 5950 3U VPX board
- Modify the board to remove VPX connectors & hardware

Small Form Factor Remote Box

Add connectors appropriate for the application

Small Form Factor Remote Box

- Install it within a suitable SFF sealed enclosure
- Mount the unit on a mast near the antenna

NITEK

Complete 8-channel RF transceiver sub-system

- Documentation needed for a customer to design his own carrier
 - Pin definitions and electrical specifications of all signals on the QuartzXM
 - 3D mechanical models

- Thermal profiles of the module and components
- Carrier reference design schematics
- PCB stack-up recommendations
- PCB design guidelines and routing rules
- Operating system and bootstrap guidelines
- Additional electrical and mechanical engineering guidance
- Carrier Design Package purchase requires an NDA

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

FPGA Design Strategies for RFSoC

E XILINX AL PROGRAMMABLEW VIVADO

Xilinx Vivado Tool Suite

STEK

- Vivado IP Integrator
 - Graphical Design Entry Tool
- Vivado AXI-4 IP Library Modules
 - Standardized for compatibility
- Vivado High-Level Synthesis
 - Generates RTL from C & C++
- Vivado Simulator
 - Design Verification
- TCL Tool Command Language
 - Scripting language

- Pentek Navigator FDK for RFSoC
 - Complete Vivado Project Folder
 - All files included ready for development
 - Full AXI-4 Compliant IP Library
 - Full IP Source code included
 - Pentek FPGA Resource Modules
 - DMA controllers, triggering & gating
 - Timing & synchronization
 - 100 GbE engines
 - Factory Installed RFSoC Applications
 - Radar & Data Acquisition
 - Waveform Generation

Included RFSoC Starter Applications

Digital RF Memory with Programmable Delay

NITEK

A/D Acquisition Engine to 100 GbE Optical Streaming

Included RFSoC Starter Applications

Waveform Generator from Memory, PCIe, or 100 GbE

NITEK

Multi-mode Acquisition to Delay Memory, PCIe, or 100 GbE

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

FPGA Design Strategies for RFSoC

E XILINX AL PROGRAMMABLES VIVADO

- Xilinx Vivado Tools for RFSoC
 - Xilinx RFSoC ARM SDK
 - Complete Integrated Design Environment (IDE) interfaces to Vivado FPGA tools
 - Multi-processor hardware/software co-debug capabilities
 - Editor, compilers, build tools, flash memory management
 - Libraries and device drivers
 - Xilinx Software Command Line Tool (XSCT) for scripting
 - Xilinx PetaLinux
 - Linux OS for ARM Processor
 - Linux Tools and Utilities

- Pentek Navigator BSP for RFSoC
 - Navigator command processor
 - RFSoC ARM command processor application executes high-level API commands from PCIe or Ethernet
 - Powerful Tool Suite
 - Initialization and control of all FPGA IP
 - Delivery of all operational parameters
 - High-Level C-Language Libraries
 - Full C Source Code Provided
 - Numerous Program Code Examples
 - Device Drivers for Windows & Linux
 - Signal Viewer Utility
 - Displays acquired signals on virtual spectrum analyzer and oscilloscope

Flexible API Command Processing

Multiboard 3U VPX System Architectures

NITEK

- Xilinx RFSoC Overview
- Impact of Latency on Applications
- RFSoC Market Opportunities
- RFSoC Design Challenges
- RFSoC Module Concept: QuartzXM
- Development Platforms for QuartzXM
- QuartzXM Migrates to Other Form Factors
- FPGA IP Development Strategies
- ARM Software Development Strategies
- Summary

RFSoC Deployment Strategies

- Xilinx RFSoC Offers Extreme Integration
 - A/D, D/A, FPGA, ARM Processor, Flexible I/O
 - Low Latency for wideband RF signals
- Pentek QuartzXM Simplifies System Design
 - Small footprint for high density applications
 - Complete RFSoC infrastructure with DDR4, clock management, & power supplies
 - High performance RF and digital connectors
- Xilinx Vivado Tools

- FPGA development tools
- ARM processor OS and development tools
- Pentek Navigator FDK and BSP Tools
 - API command processor for ARM
 - Factory installed FPGA IP modules for timing, DMA controllers, PCIe, memory controllers
 - FPGA IP AXI-4 library functions
 - Four starter application examples installed
- Speeds development cycles, saves costs

Thank you! For More Information.....

- Visit <u>www.pentek.com/RFSoC</u>
- Data Sheets

- Model 5950 3U VPX RFSoC Board
- Model 6001 RFSoM Module
- Whitepaper
 - Xilinx's Zynq UltraScale+ RFSoC
- Pentek Pipeline Summer 2018
 - Strategies for Deploying RFSoC
- Live Signal Acquisition Video
 - Shows A/D acquisition using ARMbased API Command Processor

Live Signal Acquisition: Quartz Model 5950 and Model 6001 RFSoC boards

