

Proceedings of

WInnComm 2019

Wireless Innovation Summit on Wireless Communications Technologies

15-16 May 2019 * Berlin, Germany
Hosted by Fraunhofer

Editors:

Lee Pucker, Wireless Innovation Forum

Stephanie Hamill, Wireless Innovation Forum

Program Committee:

Marc Adrat, Fraunhofer

Kayla Chandler, Wireless Innovation Forum

Ken Dingman, Harris

David Hagood, Viavi

Eric Nicollet, Thales

Sponsors:

http://www.gdc4s.com/radios

Table of Contents
CERTIF: Conformance tests on software defined radio platforms

Olivier Kirsch (KEREVAL, France) pp. 1-9

An Approach for solving Real-time and Synchronization Issues in heterogeneous Multi-Processor Software

Defined Systems

Peter Troll (Rohde-Schwarz, Germany) pp. 10-14

A Comparative Study of Eight Transfer Mechanisms with FM3TR

Jin Lian (Hunan University, P.R. China); Qi Tang (NUDT, P.R. China); Li Zhou (National University of

Defense Technology, P.R. China); Shan Wang (National University of Defense Technology &

University of Montreal, P.R. China); Jun Xiong (National University of Defense Technology,

P.R. China); Lin Wang (Hunan University, P.R. China); Jibo Wei (National University of Defense

Technology, P.R. China) pp. 15-21

Experimental Evaluation of LSPR Routing Protocol

Khalid Hussain Mohammadani (Beijing University of Posts and Telecommunications, P.R. China);

Safiullah Faizullah (Islamic University of Madinah, KSA); Kamran Ali Memon (Beijing University of

Posts and Telecommunications, P.R. China); Ali Alzahrani (Islamic University of Madinah, KSA);

Turki Alghamdi (Islamic University of Madinah, KSA); Arshad M. Shaikh (Isra University, Pakistan) pp. 22-27

WInnComm Europe 2019 is a presentation only; paper optional event. Papers submitted for the Summit are

included in this document. Presentations are available here: https://Europe.WirelessInnovation.Org

Copyright Information

Copyright © 2019 The Software Defined Radio Forum, Inc. All Rights Reserved. All material, files, logos and

trademarks are properties of their respective organizations.

Requests to use copyrighted material should be submitted through:

http://www.wirelessinnovation.org/index.php?option=com_mc&view=mc&mcid=form_79765.

https://edas.info/showPerson.php?p=1648567&c=25671
https://edas.info/showPerson.php?p=1279213&c=25671
https://edas.info/showPerson.php?p=1634509&c=25671
https://edas.info/showPerson.php?p=1411519&c=25671
https://edas.info/showPerson.php?p=865875&c=25671
https://edas.info/showPerson.php?p=157969&c=25671
https://edas.info/showPerson.php?p=783945&c=25671
https://edas.info/showPerson.php?p=1649477&c=25671
https://edas.info/showPerson.php?p=172978&c=25671
https://europe.wirelessinnovation.org/
http://www.wirelessinnovation.org/index.php?option=com_mc&view=mc&mcid=form_79765

CERTIF: CONFORMITY TESTS ON SOFTWARE DEFINED RADIO

PLATFORMS

Olivier Kirsch1, Jean-Philippe Delahaye2 and Alain Ribault1

1KEREVAL, Thorigné Fouillard, France
2Direction Général de l’Armement Maîtrise de l’Information, Bruz France

ABSTRACT

To ensure interoperability and portability of software

defined radio components, the conformity to SDR

(Software Defined Radio) standards (including APIs and

behavior specifications) is mandatory. Either for the

government agency or for the radio platform

manufacturers and the waveforms developers, the

conformity checking is a great challenge. Due to the

huge number of requirements and to ensure

reproducibility of the compliance assessment, we have

designed a testing methodology and implemented it into

the bench CERTIF (Conformance to ESSOR software

defined Radio TestIng Framework). Firstly we

summarize in this paper the test methodology applied to

verify the conformity of a software radio platforms and

applications to the SDR standards. Then we list all kind

of non-conformity issues that can be detected by the

bench CERTIF and we provide examples based on

concrete use cases and coming from experience

feedbacks on the bench. We will also highlight the

importance of test results reproducibility.

1. INTRODUCTION

Since the introduction of the SCA [REF 2] (Software

Communication Architecture) standard in the 2000s the rise

in power of the Software Defined Radio in the field of

military communications has brought to light needs for

testing. In the early 2010s, the ESSOR Program Phase 1 has

established the ESSOR Architecture that extends the SCA

v2.2.2 OE particularly on DSP and FPGA resources and the

associated JTRS APIs to fulfill the need of the European

tactical radio systems. The paradigm of the ESSOR

Architecture [REF 1], which has been recently released by

OCCAR (Organisation Conjointe de Coopération en matière

d'Armement / Organization for Joint Armament Co-

operation), relies on several of the following concepts:

o a component-based architecture, a PIM/PSM

approach for specification

o a Waveform/Platform separation of concerns,

o and on the use of the CORBA ORB for

interactions between components running on GPP

(as it is based on SCA 2.2.2).

It answers to a main goal to reach portability of the

waveform onto SDR platform. This goal is common at least

between the SDR standards publicly available and produced

by JTNC, ESSOR and WinnF [Ref 3]. Last but not least

statement is that since 2 decades of SDR standardization,

standard evolution becomes an important dimension to take

into account especially for stakeholders involved in SDR

procurement program.

Consequently, requirements for a SDR conformance testing

capability are among the following:

o Be able to address of SDR standard evolution.

o To take advantage from the PIM/PSM Standard

approach by separating conformance analysis from

the testing implementation.

o Define conformance testing on portability

assessment meaning defining conformance

checking in regards of the standard requirements

specifying WF/PF interactions.

The test methodology presented in this paper answer to

these high-level requirements. Especially the test design

process is independent to any test tool implementation. It is

based on the use of database and compliance test repository

agnostic from any language. It is a valuable approach

standard eco system with multiple actors as the test process

is also based on standard like UML or OCL.

The rest of the paper is organized as follow. The next part

details the test methodology and how is answer to the design

requirement introduced before. The part 3 considers test the

different test strategies to address the non-conformity

detection.

The figure below lists the contributions of SCA concepts

and shows the needs to assess the compliance to SCA

concepts in order to take advantages of these contributions:

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

1

 Figure 1 Concepts to assess

2. TESTING METHODOLOGY

The first step to design the testing methodology has been to

define the nature of the system under test.

Firstly, we assumed that ESSOR software radio platform is

a physical equipment with GPP, DSP and FPGA processing

resources running a compliant ESSOR operating

environment with a set of implemented Radio Device and

Radio Service. Therefore, we chose to perform dynamic

tests calling platform interfaces as compliance analysis

method.

Secondly we assumed that a compliant application (or

waveform) is a set of source code files that compile

including IDL, C/C++VHDL and XML files in accordance

to waveform design methodology defined by ESSOR [REF

1].

As the potential porting stage of this set of source code

could change the content of the system under test, we chose

to perform static analysis tests as compliance analysis

method. This analysis is performed on the “golden source”

which is the portable part of the application source code.

2.1. Test design process overview

The test design process follows the good practices promoted

by ISTQB (International Software Testing Qualifications

Board) [REF 4] particularly regarding the MBT (Model

Based Testing) [REF 5] and automation design.

This process consists in four phases depicted in the

following illustration:

Figure 2 Test design process overview

The first phase is the extraction of the requirements from the

specifications. Basically, each extracted requirement

specifies either the nominal behavior or the processing error

of one function of an interface. All of the extracted

requirements are

grouped by ESSOR

device/service APIs

and interfaces. It also

includes JTRS APIs.

Figure 3 Compliance checkpoint sample

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

2

The second phase is to define compliance checkpoints for

each requirement. This step allows to define the

conformance criteria independently from the test definition

itself. This step is also a key point to ensure an optimum test

coverage. The compliance checkpoints have to describe the

test objectives to fulfill for each requirement and they have

to cover each possible behavior.

Here is an example on the Figure 3 above based on the

“createTone()” function member of the interface

“AudibleAlertsandAlarms” from the JTRS and ESSOR

Audio device.

In this example, two requirements are extracted from the

specification. One specifies the nominal behavior and the

other specifies the processing error behavior. For each of

these requirements two compliance checkpoints are defined

to cover the two kinds of tone specified (simple and

complex).

Since the compliance checkpoints define the test objectives,

the tests designed to check the conformity of the device or

service has to match these checkpoints.

This is the goal of the third phase: the design of the tests.

We will focus in this paper on the description of the design

of the dynamic tests on radio platforms. Our approach to

produce the test suite applied to SDR platform conformance

testing is based on a MBT approach.

At last, the fourth phase is the generation and the

publication of the tests, the compliance checkpoints and the

requirements into a SDR Standard compliance test

repository. This repository is a database linked to test

manager software used to perform the test campaigns.

The following sections will detailed each of these steps.

2.2. Requirements extraction phase

The extraction of the requirements from the software

defined radio standards follows the good practices promoted

by IREB (International Requirements Engineering Board)

[REF 6]. Following these recommendations a requirement

shall be, among other things, exact, verifiable, unique and

non-ambiguous.

The ESSOR RD and RS APIs define interfaces and

associated behaviors of each device or service on a

Software-Defined Radio platform. Applying IREB

recommendations to these specifications, we have extracted

requirements describing each nominal behavior of a

function of an interface and each error management case of

this function. In addition to the description, the attributes of

a requirement are defined by the following elements:

o Nature: functional, non-functional (performance).

o Type: Mandatory or Optional (API Extensions).

o Applicability: platform, application or both

o Coverage of the requirement by another

requirement.

All these requirements are grouped by device or service and

by interface following the structure of the ESSOR

specification [REF 1]. They form the basis of the test

database. As the portability assessment is one of the goal of

the conformity testing, most important requirement

extraction is oriented on features that implies interaction

between Platform and Waveform. It results that most part of

the requirements extracted from the specification are split

into two requirements. One of the two is applicable to

platform and the other to the application.

2.3. Requirements analysis phase

After the extraction of all the requirements from the

specification, the analysis phase consists in the definition of

compliance checkpoints.

A compliance checkpoint describes a test objective in a

precise and unambiguous manner with the following

elements:

o The nature of the test objective: is this a success (or

nominal) case, an error case or a case of exception

rising?

o The description of the verification(s) to do for this

test objective.

o The description of the considered conditions or

alternatives for this test objective (if applicable).

Figure below describes the methodology for a compliance

checkpoint definition

Figure 4 Methodology of a compliance checkpoint definition

If the requirement is already covered by other

requirements, then there is no declination in

compliance checkpoint for this targeted requirement.

According to its requirements type:

A requirement carries the testability information. A

functional requirement will then be declined into

compliance checkpoints based on the semantic analysis

A functional requirement is processed according to

three identified general cases:

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

3

o Nominal case (success case): According to the

considered alternative covering the success case

one or more test objectives will be defined

o Case of errors: An operation can return several

error codes (that is not an exception case). Each

error case is a test objective, thus a compliance

checkpoint by error case will be defined

o Case of exceptions: A requirement is about an

exception type for a given operation. The exception

can contain several cases. A compliance

checkpoint will be created for each exception.

The test objectives described by the compliance checkpoints

are specific to the application or to the platform and form

the conformity criteria.

2.4. Behavior modeling phase

The MBT methodology adopted for this project is based on

the domain artifacts illustrated in the specifications (the

artifact concept is explained in the Model-Based Tester

Extension Syllabus [REF 5]). The models represent a test

view of the specification and the domain elements described

in the specification.

The CERTIF approach relies on the use of a test model.

This test model is written using a subset of the UML and

OCL language, called UML4MBT and OCL4MBT. The

design of the model with these languages ensures the

independence of the model with the programming language

used to implement the tests (e.g. C++, JAVA, etc.). More

precisely, class diagrams describe the points of control

(operation calls), the observations (checks) and the objects

that constitute the system under test (SUT). The dynamic

behavior of the system is expressed within OCL constraints,

applied as pre and post conditions on the operations of the

class diagram.

Figure 5 Class diagram and OCL constraints

The figure 5 summarizes the different artefacts to be

developed for the model. The test models are simply based

on the Software Radio domain knowledge, using the

specifications terminology, (e.g. ESSOR Architecture,

JTNC SCA, WInnF, APIs, etc.).

A specific document format including the requirements and

the compliance checkpoints can be imported into MBT

software and result to the automatic creation of a class for

each interface. Then, based on the domain knowledge the

additional objects used for the test generation are conceived

by the Test Designer to obtain the structural view of the

system. Bear in mind that a test model is not a system

model, although it could be inspired from it, as done in this

example. Based on best practices in MBT, the test model

should simply include a minimal set of objects sufficient to

cover the tested perimeter and abstract enough to capture the

equivalence classes of the test data.

2.5. Tests generation phase

The MBT software generates the tests pool thanks to the

model designed on one side and to the tests objectives

derived from the compliance checkpoints which are inserted

into the model in the form of tags on the other side. It

checks also that all the tests objectives are attainable in the

model.

As the model describes the whole behavior of the device or

service APIs the MBT software is able to generate tests

fully independent from one to another. The self-sufficiency

of the tests between each other is an important point for

running the test campaign. Below is the example of a test

for the “startTone” function of the Audio Device API.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

4

As it is shown in the Figure 6 below, you can see the test

generated consists in three parts.

o The set-up part in which the device is put in the

appropriate state.

o The test body in which the test procedure is

conducted.

o The Tear Down part in which the device is put to

the initial state

Figure 6 Test generation sample

The generation tool ensures that each compliance

checkpoint integrated into the model is covered by at least

one test and the completeness of the model is also verified

during this process.

2.6. Tests publication phase

After the testing generation process phase, a pool of abstract

tests is available to cover all the compliance checkpoints

defined in the second phase. These tests can be published

into several languages and an adaptation layer shall be

developed to realize the different actions of the tests; they

could be SUT calls, check function, measurement tool calls

or specific actions on the bench. The example below is the

publication in C++ language of one of the test of the

“startTone” function of the Audio Device.

Figure 7 C++ test publication sample

The MBT software tool includes also a module to publish

the test cases, the compliance checkpoints and the

requirements into the database of a test management

software. This feature allows to update automatically the

test repository if a model evolves in case of fixing or

specification update.

 2.7. Test design process results phase

The figure below summarizes the design process cycle:

Figure 8 Design process cycle

The main advantages of this methodology are:

o Independence of the model from the target.

o Coverage of the requirements and completeness of

the approach.

o Maintenance of the test repository is easier

o Definition of conformance criteria independently

from the test definition itself.

The main drawbacks are:

o The initial cost of the modeling step.

o A Model Based testing expertise is required.

3. NON CONFORMITY DETECTION

The defects detected by the bench can take different forms.

Indeed, even if the IDL interface of a device defined in the

SDR related standards is strictly implemented on the radio

platform under test, the behavior of the device when this

interface is called can be non-compliant with the

specification.

For example if the call to the “startTone” function of the

API Audio Port Device defined by ESSOR Architecture RD

API or JTRS API is successful (no exception returned) but

the platform under test emits no sound, we consider that is a

non-conformity although the signature of the function is

properly implemented. An another example, on the IP

Service API defined by ESSOR [REF 1], if the call to the

“addRoute” function is successful, the route table returned

by the “readRouteTable” function well contains the route

added previously but the call to the “pushpacket” function

with the new IP address added is not received by the

recipient, this behavior is also a non conformity.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

5

The advantage of the testing method implemented in the

bench is to detect also these non-conformities. To illustrate

the nature of the different non-conformities to be detected,

we will take as example the API Audio Port Device defined

by the JTRS standard. The role of this Device is to provide

the ability to control alert and alarm tones and to notify the

device user (e.g. the application) of a Push-To-Talk signal.

The following sections detail some of the non-conformity

cases taken into account in the bench.

3.1. Not implemented Interface

The concept of “not implemented Interface” covers two

cases.

The first case is the lack of the interface. This case is easily

detected by the bench at the connection step of the ports

with the System under Test and the user will see a message

like the following:

Figure 9 Error Message in case of lack of the port

and the test result is blocked.

Figure 10 Test result in case of lack of the port

The second case is an empty implementation of the

interface. This means that the port exists; it is derived from

the valid IDL interface but there is no implementation of the

expected processing inside the functions defined by the

interface. In other word, the implementation of the interface

is an empty shell. To check the capabilities of the bench to

detect this defect we have created a “mutant” of an Audio

Device that implements an empty version of the interface

“AudibleAlertsAndAlarms”.

When we launch the conformity test on this mutated Audio

device, here are the results we obtain:

Figure 11 C++ Not Implemented interface results

All the tests on this interface report a result KO. By

studying the test logs we can see that the tests on the

exception management failed because no exception was

raised by the empty implementation which is easy to check.

However, the non-conformity of the nominal behavior of

these functions is detected thanks to the test strategy chosen.

For example, the test of the “createTone” failed because it

calls also the startTone function and it captures and checks

the audio signal. In the same way, the test of the

“destroyTone” failed because it calls the “startTone” after

and it checks that an exception “invalidToneId” raised.

Indeed if we had made the choice to call the “destroyTone”

function and simply check that no exception raised, the test

result would be passed whereas the implementation of the

interface was empty.

The lesson that we can learn from these results is that the

bench is able to detect empty interface implementation.

3.2. Wrong interface cases

By “Wrong interface” cases, we talk about wrong APIs

signatures. This means that the manufacturer does not

comply with the interfaces defined by the specifications.

To check the capabilities of the bench to detect this king of

non-conformity we have created another “mutant” of an

Audio Device which implements a wrong version of the

interface “AudibleAlertsAndAlarms“. As you can see below

we have added members to the “InvalidToneProfile”

exception structure and to the “ComplexToneProfile”

structure.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

6

We have also changed the signature of the function

StartTone below

by adding a parameter as following:

and deleted the function destroyTone.

Therefore, the IDL interface defined here is not compliant

with either ESSOR Architecture RD API or JTRS API

specifications.

When we launch the conformity test on this mutated Audio

device here are the results we obtain:

Figure 12 C++ Wrong interface results

All of the tests on this interface report a result KO or

“Inconclusive” (inconclusive means that the Setup or the

Teardown step has failed). By studying the test logs we can

observe; as we can expect; that the tests of “StartTone” and

“DestroyTone” functions failed because a CORBA

exception is raised on the call. We detect also the wrong

signature of the “InvalidToneProfile” exception by

receiving a CORBA exception. However we can observe

also that the tests on the “CreateTone” function failed

because of the call of the “StartTone” function to check the

behavior of CreateTone. In the same way the tests of

“StopTone” and “StopAllTone” raised an inconclusive

status because of the call of the “StartTone” during the

Setup sequence.

This sample of wrong interface highlights the capacity of

the bench to detect bad implementation of the interfaces

defined in the standard.

3.3. Non conform behavior detection cases

To ensure conformity with the API specification we want to

determine that the behavior of the radio platform under test

respects the standard. To validate our test strategy and

verify that the bench detects a potential improper behavior

of the device we have created another mutated Audio

Device. This mutant implements the right interfaces but it

has two behavioral issues. It does not raised exception on

the call of the “startTone” function if the Tone ID is

unknown and it does not perform the deletion of the Tones

on the call of the “destroyTone” function. The diagram

below summarizes the behavior of the “startTone” function:

Figure 13 C++ Non conform behavior of startTone.

These two defects are interesting because the first one could

hide the second one.

To check the capabilities of the bench we launch the tests

covering the requirements of the

“AudibleAlertsAndAlarms” interface and we obtain the

following results:

void startTone(in unsigned short toneId)
raises (InvalidToneId);

void startTone(in unsigned short toneId, in unsigned long
MutantCharValue)

raises (InvalidToneProfile);

// void destroyTone(in unsigned short toneId)
// raises (InvalidToneId);

interface AudibleAlertsAndAlarms

 {

 exception InvalidToneProfile

 {

boolean complexTone;

boolean simpleTone;

short MutantShortValue;

boolean multiTone;

string msg;

 };

 struct ComplexToneProfile

 {

boolean MutantBoolValue;

JTRS::ShortSequence toneSamples;

 Unsigned short numberOfRepeats;

 };

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

7

Figure 14 C++ Non conform behavior detection results

Only three tests over eleven failed. By studying the test logs

we see that the two behavioral defects are correctly

detected. Indeed, we detect easily that the “StartTone”

function does not return an exception when the tone ID is

invalid but also that the “DestroyTone” function does not

really delete the asked Tone ID. We capture this defect

thanks to the strategy of test generation that adds a check

after the call of the “DestroyTone” function. This check is a

call to the “StartTone” function with the ID of the tone that

should be deleted. As this call does not return the

"InvalidToneID” exception the test failed.

This example shows the advantage of the behavior modeling

applied to the tests to detect more tricky defects than failure

or wrong interface implementation

3.4. Non conform data processing detection cases

Another scope of the behavior analysis is the data

processing. In the previous example, we have checked that

the tests are able to detect improper logic behavior. Now we

want to verify that the data processing features of the API

are compliant with the specifications.

To simulate this kind of defect we have created another

mutated Audio Device with the following defect. On the call

of the “CreateTone” function for a complex tone, this defect

device adds the value 5 to each element of the tone samples

sequence sent. The effect of this behavior will be the

emission of an audio signal that does not match with the

audio sequence configured.

One more time we launch the tests covering the

requirements of the “AudibleAlertsAndAlarms” interface

and we obtain the following results:

Figure 15 C++ Non conform data processing detection results

The two failed tests are related to the “StartTone” and

“CreateTone” functions. The tests of these functions capture

the audio signal emitted by the radio platform and compare

it with the tone samples sequence configured. We can see in

this example that one of the two tests of the “createTone” is

failed. That is the one which checks the creation of a

complex tone and the signal comparison failed because it is

outside the tolerance range. The other one checks the

creation of a simple tone and in that case the comparison

succeeds because no offset is applied to the audio structure

configured.

This kind of non-conformity is more difficult to detect and

could be interpreted as a performance test instead of

functional test if the measuring tolerance is too low.

However the use of measurement tools and the check of

data processing is clearly a good way for detecting

functional defects.

3.5. Tests of boundaries values cases

The last case we explore is the check of the boundaries

values. Indeed several parameters are defined in the SDR

standards such as ESSOR and JTRS and they are often

associated to a valid range. The check of these ranges shall

be part of the conformity verification. To validate the

detection of non-compliant range with the specification we

have created a mutated Audio Device which do not respect

the range values of the parameters “MaxPayloadSize” and

“MinPayloadSize”. These parameters belong to the Audio

Sample Stream Extension of the Audio Device and they

define the minimum and maximum size of a packet received

or transmitted through the “pushpacket” function.

In the JTRS specification the range of these parameters is

defined respectively from 0 to 512 for the

“MinPayloadSize” and from 1 to 16383 for the

“MaxPayloadSize”“. The mutated Audio device we created

is configured to accept respectively a range from 50 to 512

for the “MinPayloadSize” and from 1 to 12500 for the

“MaxPayloadSize”. We launch the tests covering the

requirements of the Audio Sample Stream Extension and we

obtain the following results:

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

8

Figure 16 C++ Boundaries values tests results

As shown in figure 16, such test cases are duplicated and

suffixed by “Min”, “Median” or “Max”. These test cases are

generated by the test bench for each parameterized test in

order to check the lower bound, the upper bound and a

median value. This feature allows us to verify the range

supported by the device and also to test the return of

exception for values out of bound. In our example, the two

failed tests allow to point out to the tester that the lower

bound of the “MinPayloadSize” and the upper bound of the

“MaxPayloadSize” are not compliant with the ESSOR

Architecture specification.

The boundaries values tests ensure us both the conformity to

the SDR standard and the validity of the values provided by

the manufacturer.

4. EFFICIENCY OF THE TEST BENCH

By applying the test strategy designed for the test bench, we

are able to cover directly 86 % of the requirements extracted

from the ESSOR Architecture. The remaining 14 % relates

to internal behaviors, to hardware exceptions that could be

tested only by too invasive methods or that have no impact

on waveform portability.

Thanks to the test bench architecture, 96 % of the tests are

fully automated and the results as well as the logs for the

analysis are available in a centralized database.

5. CONCLUSION AND PERSPECTIVES

Using the test strategy and design described here, we are

able to cover a wide range of non-conformities. Indeed, we

detect interface implementation defects; device or service

behavior defects and we check also conformity of the

technical bounds declared by the manufacturer. Moreover,

the software architecture of the test bench and the modeling

of the APIs facilitate the evolution of the tests with the SDR

standard evolution. The maintenance and/or the rework of

the test database are also simplified.

The definition and design of a testing methodology and the

development of corresponding tools set based on testing

practices well recognized by the test industry, by using

standard technologies like MBT, UML, OCL languages, this

work represents a significant step in the emergence of

solutions in conformity assessment in the standardized SDR

domain. In particular, by addressing the compliancy testing

of radio devices APIs and Radio Services APIs on SDR

Platform, it fills a gap for portability evaluation. This work

will help to evaluate standard conformity of the Radio

product for example in the French National Military SDR

program CONTACT and leverage the French investment in

the ESSOR technologies.

The main subject not covered at this time by the test bench

is related to the performance measurements. Indeed the SDR

standards such as ESSOR or JTRS define performance

criteria (e.g. “Worst Case Command Execution Time” for

each Audio Device features). There are no limits defined in

the specifications for these criteria but the measurement of

these one can be important to evaluate the conformity of the

radio platform under test. Therefore, we are carrying studies

on this subject.

6. ACKNOWLEDGMENT

This work was performed under DGA contract with the

participation of the SMARTESTING (Besançon, France)

company on the MBT part, the DIGIDIA (La Chapelle des

Fougeretz, France) company on the test device

implementation part and the support of Frédéric Leroy

(ENSTA Bretagne, Brest, France) for his SCA Expertise.

The author would like to acknowledge these contributions

and the support of DGA-Mi.

7. REFERENCES

[1] ESSOR Architecture Specification:

http://www.occar.int/programmes/essor#expert-area

[2] JTNC SCA and APIs standards:

https://www.public.navy.mil/jtnc/

[3] Wireless Innovation Forum, SDS Committee Public

Files, Reports and Specifications:

https://sds.wirelessinnovation.org/specifications-and-

recommendations

[4] ISTQB homepage:

https://www.istqb.org/

[5] ISTQB Model Based Testing extension:

https://www.istqb.org/certification-path-root/model-based-

tester-extension/model-tester-extension-contents.html

[6] IREB Homepage: https://www.ireb.org/en

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

9

http://www.occar.int/programmes/essor#expert-area
https://www.public.navy.mil/jtnc/
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://www.istqb.org/
https://www.istqb.org/certification-path-root/model-based-tester-extension/model-tester-extension-contents.html
https://www.istqb.org/certification-path-root/model-based-tester-extension/model-tester-extension-contents.html

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

An Approach for solving Real-time and Synchronization Issues in heterogeneous

Multi-Processor Software Defined Systems
Peter Troll, Dr. Boyd Buchin, Dr. Khaled Fazel, Rohde & Schwarz, and Dr. Marc Adrat, Fraunhofer FKIE

ABSTRACT

Real-time and synchronization issues have been subject to

deliberation – and a source of potential confusion – since the

invention of computers and their application in technical

systems. They also are core issues of Software Defined

Systems (SDS) and Software Defined Radio (SDR) as they

are distributed real-time systems requiring a precise

measurement of time and time-exact execution of commands.

Taking into consideration that waveform portability is one

of the primary objectives of SDR, the use of universal, simple

and easy-to-use concepts is paramount which allow the

provision of waveform agnostic Application Programming

Interfaces (APIs) by the host environment. Waveform specific

solutions can then be designed employing the APIs and the

universal concepts they encapsulate.

Due to further objectives like scalability and broad

applicability in various fields, numerous standards have

evolved over the years, that address real-time and

synchronization issues in the SDR-ecosystem, e.g.

IEEE/OMG POSIX, SCA, the JTRS/JTNC standards and the

WINNF specifications. They allow for diverse approaches to

synchronization and in some cases orthogonal solutions, e.g.

“Absolute Time” vs. “Relative Time” within the WINNF

Transceiver Facility PIM specification.

In this contribution, we will sketch how through the

systematic combination of well-established concepts from

these standards a comprehensive – but nevertheless simple –

strategy to support real-time and synchronization issues in

SDS is possible. The strategy is applicable both to SCA as

well as to non-SCA host environments.

To give an example that relates to practice, we will

exemplify the application of the strategy to a common

hardware architecture that includes an FPGA and a DSP or

GPP as computational elements (CE) and we will look into

the specific real-time aspects of the different types of CEs.

The central ideas the strategy is based on are:

 Consequent application of the concept of a “system-wide

monotonic clock”.

 Utilisation of the real-time capabilities of FPGAs in

combination with APIs that allow real-time capable

implementations, like the JTRS Modem Hardware

Abstraction Layer (MHAL) on Chip Bus (MOCB) API.

 Fostering waveform portability by provision of a “lean

platform” that features a clear separation between universal

functionality of the host environment and waveform

specific functionality in the applications.

This paper is about synchronization in SDS in general, with

focus on SDR system’s core challenge of how the host

environment can enable an application to synchronize on the

air interface.

1. INTRODUCTION

The challenges arising with distributed real-time SDR

systems have been addressed by the various specifications and

standards from their respective point of view.

The Software Communications Architecture (SCA)

[1a, 1b] provides an architecture framework for SDR

technology distributed-computing communication systems.

The SCA integrates real-time support by including POSIX

[3a, 3b], particularly its clock and timer interfaces. The

Application Environment Profiles (AEP) [2a, 2b] specify the

respective subset of the POSIX specification that also

includes the real-time operating system functionality.

The SCA specifies what a logical device or service shall

look like, but it does not specify their concrete functionalities.

The latter is in the scope of a variety of JTRS APIs.

A standard that is key for addressing aspects required for

time synchronization is the JTRS Timing Service API [4].

The base API introduces the so-called Terminal Time concept

that – on the one hand – adopts the POSIX monotonic clock

approach and that – on the other hand – extends its scope to

distributed systems synchronization: “The Timing Service

synchronizes the Terminal Time between distributed

components within the terminal”. For completion, the

standard introduces a quality indicator on time accuracy, i.e.

Time Figure of Merit (TFOM), known from and commonly

used with Global Navigation Satellite Systems (GNSS) like

NAVSTAR GPS. The Terminal Time TFOM describes the

estimated time error (ETE) of a particular Terminal Time

clock instance within the distributed system.

The JTRS Timing Service base API also defines System

Time as the terminal’s estimate of UTC.

As stated above, the Timing Service API heavily relies on

the existing, well-established POSIX concepts. Statements

such as “Terminal Time is … monotonic increasing” and “A

waveform retrieves Terminal Time via the POSIX time

interfaces” are a clear expression of this dependency.

The scope of the JTRS Timing Service API is

synchronization in a distributed system in general. The

standard does not specifically address a waveform’s air-

interface synchronization. Nevertheless, the JTRS Timing

Service provides some basic premises for this with its

Waveform Time Extension. The extension allows maintaining,

store and recovering Waveform Time. The standard does not

restrict Waveform Time to air-interface synchronization, nor

does it explicitly give an answer to the question on how a

waveform application can achieve synchronization.

The Transceiver Facility PIM Specification (TFSv2) of

the Wireless Innovation Forum (WInnF) [6a] intended to

address the issue of a waveforms air-interface

synchronization.

Claiming to address a wide range of transceiver types,

grades and variations, the TFSv2 allows for different air-

interface synchronization strategies. In particular, the TFSv2

WInnComm Europe 2019 1570520949

1

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

10

does not presuppose the POSIX or JTRS Timing Service

synchronization concepts.

That notwithstanding, there is a subset of services and

interfaces of the TFSv2 that allow to build the bridge to the

well-established POSIX and JTRS Timing Service concepts.

A more detailed view on that subset of the TFSv2 is available

within an addendum [6b] that comes with the TFSv2 and

specifies a TFSv2 compliant model for Monotonic Clock

Absolute Time Controlled Transceivers.

This paper outlines how the concepts already included in

the SDR standards today, can be applied to solve the issue of

waveform air-interface synchronization.

2. ARCHITECTURAL AND CONCEPTUAL CONSIDERATIONS

The considerations presented hereafter are based upon a

sample SDR system. Figure 1 illustrates its blueprint.

Platform Architecture

The platform part of the system assumes a hardware

architecture with computational elements (CE) as shown. An

FPGA for the real-time signal processing, e.g. of the physical

layer of the waveform, and a processor (GPP or DSP) for the

procedural-oriented processing of the higher layers.

We are going to focus on a simple system with two CEs

only. It is obvious that the strategy also works in hardware

architectures that are more complex.

Thus, the FPGA – at least if the system is designed for

computationally challenging waveforms – will host most of

the interfaces to the Transceiver Subsystem. The GPP and/or

DSP will host the more decision-oriented interfaces. We

further assume the capability of obtaining UTC time

information from GNSS.

Hence, the operating environment of this system with its

logical devices und services 1 is considered to provide the

following capabilities:

 A Transceiver Subsystem (shaded in green) providing a

TFSv2 compliant abstraction with its Transceiver Time

(absolute time) synchronized with Terminal Time.

 A JTRS-compliant Timing Service (shaded in blue), which

among other things administrates the synchronization

functionality.

 A Transceiver Time, respectively Terminal Time access

available on the FPGA. Most probably, the baseband signal

interface is also deployed on the FPGA, but this neither is

shown in Figure 1 nor is it a precondition.

 A JTRS MOCB API [5b] compliant interconnect (shaded

in brown) between FPGA and DSP/GPP.

Waveform Application Architecture

An application architecture is supposed with components

(shaded in yellow) deployed on both CEs. We again focus on

a simple representation, being aware that both CEs usually

host further components performing other duties.

Any application implementing a waveform that depends

on a precise air-interface synchronization will exhibit a

component that provides the capability to manage and control

its specific waveform time representation. Let us call that

component Waveform Time Controller (WFTC). The WFTC

1 We use the terms device and service as understood with the SCA.

will at least comprise the capability to initialize, set and adjust

the current waveform time. For duties like sending a wake-up

call to another application component at a required point in

time with regard to waveform time, the WFTC component will

be the right place to implement.

The functionality needed will finally be provided to the

adjacent component (exemplarily deployed on GPP/DSP CE

#2) by means of operations of a waveform internal API.

Figure 1 identifies that specific WFTC application

component, showing the likely case that the component is

distributed across the FPGA and the processor, i.e. it has sub-

components on both of the CEs. These sub-components will

use the JTRS MHAL on Chip Bus (MOCB) for

communication.

Air-interface Synchronization Principles

The crucial point of the approach from waveform application

point of view is that the platform provides a mechanism that

allows getting Transceiver/Terminal Time awareness into the

WFTC. No issue at all since a TFSv2 compliant transceiver

provides us with the respective TimeAccess Interface. An

FPGA is predestined for implementing the component that

keeps synchronicity to Terminal Time as that CE’s technology

provides hard real-time capabilities.

The task of initially establishing and then maintaining the

relationship between Terminal Time and the specific

waveform time is up to the application and will be performed

at a proper location within the WFTC.

By now, we did not make any assumptions on the

waveform time format. Commonly different representations

are in use within an application depending on the particular

scope. In order to store and retrieve waveform time using the

JTRS-compliant Timing Service there is a need of a

representation in seconds and nanoseconds. For humans it is

often more comfortable to use a calendar time representation.

In this case, commonly UTC is chosen to be the waveform

time. Retrieving UTC is done by using the Timing Service’s

SystemTimeAccess interface operations that provide us with

the relationship between UTC and Terminal Time, and an

accuracy indicator (TFOM) for UTC.

UTC calendar time can be translated then to sec/nsec

waveform time format considering the epoch (e.g. 1970-01-01

with POSIX). Beyond that, there might be further structure

alternatives. For popular TDMA systems, for instance, it is

likely that waveform time also has an equivalent

representation that allows identifying individual TDMA

frames specified within that particular waveform.

An application implementing such a waveform

consequently will also translate the Transceiver API real-time

operations to the convenient waveform time format.

More commonly expressed it is about establishing and

maintaining the relationship between waveform time and the

monotonically increasing Terminal/Transceiver Time and

about mutually mapping one to the other. Finally controlling

the Transceiver is done based on its absolute monotonic time

base.

2

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

11

 CE #1 FPGA

 CE #2 .
(DSP|GPP)

Legend

WFTC (FPGA)

WInnF
Transceiver
Subsystem

Transceiver
Time

Time
Access

JTRS Timing Service

Terminal
Time

JTRS
MOCB

Event
Interface

AbsoluteCreation

Addr/Data | MemoryAccess

Bus | Consumer

GNSS

WFTC
Waveform

Time
Control

TTWFT

JTRS
MOCB

JTRS MHAL

on Chip Bus

WFA
Application

Components

JTRS
Timing
Service

JTRS Timing

 Service

WInnF
Transceiver

WInnF Transceiver

 Facility

WF
API

TT

synchronizes

Abbreviations

TT Transceiver/
 Terminal Time

WFT Waveform
 Time

Figure 1: Exemplary model of an SDR system

This is indicated in figure 1 by identifying the mutual

Terminal Time (TT) to Waveform Time (WFT) translation as

the WFTC’s main task. While the mechanisms in principle

(e.g. setting and adjusting waveform time) will be similar with

any waveform, the waveform time format will often be

specific. That will express in the particular signatures of the

waveform internal API provided by the WFTC.

At that point, it is worth noting that mapping any event

that occurs in the transceiver to the monotonic time scale

makes it easier to check for validity of a respective sequence

of operation calls than in systems, where the time may make

jumps. This would cause ambiguity in certain constellations

on whether an operation call applies to time before or after

adjustment.

Now we are close to the final question: how to synchronize

application components hosted on CEs different from the

FPGA. One of the questions usually arising is about receiving

a trigger at the right point in time with respect to waveform

time. It is obvious that the proper component to control and

generate theses triggers is the WFTC.

As already mentioned above, these capabilities will be

provided by a waveform internal API. Comprising operations

that allow for requests like the following: “Give me a wakeup

call at that particular waveform time”. With the JTRS MHAL

on Chip Bus, particularly with its GPP|DSPEvent interfaces,

we have everything at hand in order to implement the

waveform specific functionalities required, while properly

handling the real-time constraints.

3. SCA VS. NON-SCA ENVIRONMENTS

Let us come back to a statement made previously in this paper

that the approach can be applied to both SCA as well as non-

SCA environments.

In the first place, the approach does not require any of the

functionality an SCA Core Framework would provide. In the

second place, – and this is the decisive aspect of the design –

the approach does not require the availability of POSIX real-

time support. Thus, it is independent of both. In the third

place, – and this is an important benefit – the approach can

also be applied to environments, that provide POSIX real-

time support and where potentially no FPGA CE is available.

Figure 2 illustrates the solution.

Implementing the Waveform Time Controller component

in such a case might be assembled out of the POSIX

respectively SCA AEP toolbox. This is smoothly feasible

since the approach presented is based upon a set of generic

concepts (like monotonic clock) common with, respectively

adopted from POSIX Real-time support.

Note that motivation is not about just doing things

differently. It is a tribute to different CE technology and the

objective to take maximum advantage of its real-time

capabilities.

3

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

12

DSP FPGA GPPOperating System

JTRS MOCB

Non-SCA SCA Environment

Wave
form

Plat
form

WF API

 Waveform
Time Controller
(Non-SCA/POSIX)

 Waveform
Time Controller
 (SCA/POSIX)

WInnF Transceiver Subsystem

System-wide MONOTONIC CLOCK

W
F

A
P

I

W
F

A
P

I

JTRS Timing Service

SCA
AEP

Figure 2: SCA vs. non-SCA Environments

4. WAVEFORM APPLICATION PORTABILITY

In the SDS/SDR context, application portability is an issue

independent of the synchronization approach chosen. Thus, a

general objective for application architecture and design will

be that major portions of an application may port at little

expense to different host environments. What is directly

associated to finding proper waveform internal API,

separating components where adaptation effort is expected.

Respective considerations will include concepts and API

available. In the first place, of course the concepts and API of

the host environment for which the application initially is

designed.

Particularly in the context of transceiver subsystem

abstraction and air-interface synchronization a single,

commonly accepted and widely spread standard has not been

established yet. Over the last years, several contributions have

been provided addressing particular parts of RF fronted

synchronization. Exemplarily, and without any claim to

completeness, they are MHAL RF Chain Coordinator [5a],

Transceiver Facility Specification V1 [7] and V2 [6a, 6b], and

the Open Baseband Interface Specification for SDR (OBISS)

[8]. Certainly composite or even further proprietary solutions

may come up with application porting tasks.

How far different approaches may be transformed into

each other by proper adaptation is hard to estimate. For the

synchronization approach presented in this paper, we

demonstrated that it works at least with heterogeneous

systems, i.e. when finding different CE technology (FPGA,

DSP, or GPP). Additionally monotonic clock represents a

generic concept that allows adaptation of other approaches.

For instance, mapping an approach where events are

scheduled relative to previous ones to an absolute time base is

easy to realize. The other way round is more complicated,

particularly if there is a need an initial event to happen at a

particular time.

So from host environment point of view we consider the

approach appropriate for efficient porting of applications

initially designed against synchronization concepts different

from the one presented with this paper.

5. SUMMARY AND CONCLUSIONS

The approach presented within this paper is a result of

comprehensive considerations on SDR real-time and

synchronization capabilities. Taking into account the various

aspects from high-level overall system strategy and general

objectives down to detailed application architecture and

design. Key spots are on granting responsibilities between

host environment and application in front of waveform

portability, as well as on how to accommodate heterogeneity

with regard to computational element technology.

The answers found in the respective area and reflecting

with the approach are summarized hereafter. The fundamental

ideas from general strategic point of view are:

 Design a platform as lean as possible. Avoid redundancy

(do one thing and do it well).

 Provide waveform agnostic abstraction of functionalities

rather than making assumptions on what a waveform will

4

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

13

need, and particularly how an application is going to

implement.

 Rely on existing and established concepts and standards

rather than reinventing the wheel.

 Apply concepts and standards best suitable for real-time

capable implementation on the respective CE technology.

Technological solutions to achieve these strategic goals were

presented:

 A system wide monotonic clock represents a simple but

effective concept. Particularly comprising the transceiver

subsystem is an essential step.

 With FPGA and inter processor communication JTRS

Standard MHAL on Chip Bus has been identified as

ultimately simple but effective solution.

All of the previously said lead to appropriate objectives with

regard to applications architecture, design and

implementation:

 Exploit hard real-time capabilities of FPGA technology if

available.

 Look for solutions that allow minimizing porting effort to

dedicated application components. In other words,

maximize the percentage of an application that is likely to

be ported with little or no expense, what is finally a

question of defining proper waveform internal API.

The achievements described by this paper are of course a

result of a couple of lessons learned over the last years. From

experience and many discussions, the authors believe that

technical solutions need to be simple, universal, but complete

in order to see wide acceptance. Commonly finding them

takes its time even though it seems apparent.

6. REFERENCES

[1a] Software Communications Architecture Specification

Version 2.2.2, FINAL / 15 May 2006

[1b] Software Communications Architecture Specification

Version: 4.1, 20 August 2015

[2a] Software Communications Architecture Specification

Appendix B, SCA Application Environment Profile

Version: 2.2.2, FINAL / 15 May 2006

[2b] Software Communications Architecture Specification

Appendix B, SCA Application Environment Profiles

Version: 4.1, 20 August 2015

[3a] IEEE Standard for Information Technology

Portable Operating System Interface (POSIX)

Base Specifications, Issue 7, IEEE Std 1003.1TM-2017

[3b] IEEE Standard for Information Technology

Standardized Application Environment Profile (AEP)

POSIX Realtime and Embedded Application Support

IEEE Std 1003.13TM-20003

[4] Joint Tactical Radio System Standard Timing Service API

Version: 1.4.4, 26 June 2013

[5a] Joint Tactical Networking Center Standard

Modem Hardware Abstraction Layer API

Version: 3.0, 02 Oct 2013

[5b] Joint Tactical Radio System Standard MHAL on Chip Bus

API, Version: 1.1.5, 26 June 2013

[6a] Transceiver Facility PIM Specification

WINNF-08-S-0008, Version V2.0.0, 7 June 2017

[6b] Transceiver Facility Use Case

Monotonic Clock Absolute Time Controlled Transceivers

WINNF-TS-0008, Version V2.0.0-A1.0.0, 9 November 2017

[7] Transceiver Facility Specification (deprecated)

SDRF-08-S-0008-V1.0.0, Approved 28 January 2009

[8] Open Baseband Interface Specification for SDR (OBISS)

WINNF-15-I-0094, 20 November 2015

5

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

14

A COMPARATIVE STUDY OF EIGHT TRANSFER MECHANISMS WITH FM3TR

Jin Lian (lianjin.me@qq.com)2,1,3, Qi Tang∗ (q.tang.andy@qq.com)1,3, Lihua Zhu (zlh@hnu.edu.com)2,1,3, Li
Zhou (zhouli2035@nudt.edu.cn)1,3, Shan Wang (chinafir@nudt.edu.cn)1,3, Jun Xiong

(xj8765@nudt.edu.cn)1,3, Haitao Zhao (haitaozhao@nudt.edu.cn)1,3, Shengchun Huang
(huangsc@nudt.edu.cn)1,3, and Jibo Wei (wjbhw@sina.com)1,3

1National University of Defense Technology, Changsha, Hunan, P. R. China
2Hunan University, Changsha, Hunan, P. R. China

3Hunan Engineering Research Center of Software Radio, Changsha, P. R. China

ABSTRACT

The transfer mechanism is an indispensable constituent of the
SCA-compliant SDR system. It leverages standardized client-
server innovating mechanism to the SDR system that is com-
posed of a set of different kinds of components. With the trans-
fer mechanism, the client and server may be located in the same
or different address spaces, making them apparent to each other.
Many different transfer mechanisms can be used in implement-
ing the SCA-based SDR system, including CORBA, RPC, RPC
over DDS, IPC, etc. However, different techniques render var-
ious overheads to the system. Though some literature stud-
ies the performance of different techniques, these works either
only focus on one or two transfer mechanisms or lack of con-
sidering a realistic waveform. For this reason, this paper con-
ducts an in-depth analysis of the performance of eight different
transfer mechanisms, i.e., ACE TAO, omniORB, RPCexpress,
e*ORB, ORBit2, ICE, RPC over DDS and TCP/IP, by inte-
grating them with the Future Multiband Multiwaveform Mod-
ular Tactical Radio (FM3TR). Various performance metrics, in-
cluding latency, predictability, static and dynamic memory con-
sumption are taken into account, thus providing a full profile for
each transfer mechanism. In order to perform these measure-
ments and result in fair results, the FM3TR is ported to different
transfer mechanisms with the same function. The experimental
result shows the overall performance of different transfer mecha-
nisms, thus paving the way for selecting the transfer mechanism
for the SDR system.

1. INTRODUCTION

Software Defined Radio (SDR) features of decomposing of soft-
ware and hardware, modularization of communication modules,
covering multiple frequency bands and supporting a large num-
ber of waveform applications, thus providing advantages of scal-
ability, rapid iteration and wide bandwidth. In the military and
civil fields, there are two typical software radio architectures.

∗The corresponding author.

The first one is Software Communications Architecture (SCA)
which is planned by the Joint Tactical Radio System (JTRS) of
the United States. The other one is composed of GNU Radio and
general hardware platforms, such as USRP, which is proposed by
the open source organizations.

The software radio architecture composed of GNU Radio and
general hardware platform realizes the function of up and down-
conversion, A/D and D/A conversion by its general hardware
platform; And then it transfers the baseband I/Q data to GPP; Fi-
nally, GPP processes the received data using GNU Radio. How-
ever, the main goal of GNU Radio is to quick verify waveforms
and algorithms on GPP, the standardization, stability, real-time
and other vital issues of the SDR architecture are not considered.

SCA is an implementation-independent real-time software
architecture, proposing a set of standards for hardware, soft-
ware, security architecture and application programming in-
terface (API). SCA reduces the system development time and
cost by adopting commercial standards (POSIX) and technology
frameworks (XML, CORBA, UML, etc.). The reuse of software
is vital for shortening the development cycle of waveform appli-
cations and supporting the portability of waveform components
between different SCA implementations. Compared with GNU
Radio, SCA proposes a complete set of specifications to restrict
waveform design. At the same time, the Operating Environ-
ment (OE) and middleware are used to shield the differences of
the communication protocol among external hardware devices.
This makes SCA-compliant SDR more suitable for engineering
practice, and also makes it a de-facto SDR industry standard [1].

Middleware is one kind of system software, which is above
the operating system and under the application software, pro-
viding the service that the operating system can’t provide for the
software application, shielding the heterogeneous differences,
and realizing the communication between different platforms. It
enables the software developer to focus on developing his own
application without concerning the platform-related communi-
cation and input/output details. It also supports the distributed
application. The middleware includes Enterprise Service Bus
(ESB), Transaction Processing (TP), Distributed Computing En-
vironment (DCE), Message-Oriented Middleware (MOM), etc.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

15

The communication middleware can support SCA-compliant
waveform running on heterogeneous multi-processor system to
achieve better performance. When it comes to upgrading SCA-
compliant SDR hardware system, middleware is able to realize
communication between old and new systems, which reduces
the iteration cost of SDR platform. Although the middleware
brings additional resource overhead to the system, this sacrifice
barters for more convenience, such as reusability of waveform
and components, cross-platform communication, convenience
of waveform transplantation [2] and development, etc.

Traditional SCA-compliant SDR uses the CORBA middle-
ware. The implement of CORBA includes ACE TAO, om-
niORB, e*ORB, etc. SCA 4.0 improves the architecture and
defines an independent transfer mechanism API. As long as the
data transmitted conforms to the standard API, it can flexibly
choose the transfer mechanism to implement SCA, which en-
ables to select the appropriate transfer mechanism according to
the specific needs.

At present, CORBA, ICE, gRPC, COM+, RMI, DDS, SOAP
are widely used in software development. These middlewares
are mainly divided into two groups, i.e., RPC and MOM. In en-
gineering practice, RPC is more in line with the requirement
of SCA-compliant SDR for real-time, resource-constrained em-
bedded environment. DDS can be used as a communication en-
gine to provide RPC functions, i.e. RPC over DDS. Beyond that,
RPCexpress, TCP sockets are alternatives.

The actual development environment of SCA-compliant SDR
is complex. For example, [3]points out that the number of com-
ponents and the size of data packets in waveform will affect the
performance of SDR. Therefore, the transfer mechanism tech-
nology is one of the key factors for transplantation, development
cycle and system overhead. However, the performance test re-
sults provided by middleware vendors are usually based on very
simple models, without considering the actual waveform devel-
opment environment. While the literature about the analysis of
transfer mechanisms combining a waveform lacks or just takes
one or two transfer mechanisms into account [4].

Therefore, this paper makes a comparative study of eight
transfer mechanisms that can be applied to SCA-compliant SDR
with FM3TR. The advantages and disadvantages of different
transfer mechanisms in scalability, usability and performance
are discussed. In order to evaluate these eight transmission
mechanisms from the perspective of Engineering development,
we combine them with FM3TR waveform. The results are used
as a reference for the selection criteria of transmission mecha-
nism.

2. INTRODUCTION OF EIGHT MECHANISMS

The purpose of this paper is to evaluate the performance of dif-
ferent transfer mechanisms in SCA-compliant SDR. This section
will clarify the reasons for choosing these transfer mechanisms
and the performance test model combining transfer mechanism
with waveform.

From the point of view of practical engineering application
environment and existing literature, this paper considers both the
commonly used Commercial Off-The-Shelf (COTS) software
and the transfer mechanism which is less used but can be po-
tentially applied to develop SDR systems. Here come the eight
choices.

Before SCA 2.2.2, SCA specification clearly stipulated that
the CORBA middleware technology must be used as soft bus.
Although SCA 4.0 version no longer stipulated this, the CORBA
technology still has certain advantages in modeling architecture
and maturity in the application of SCA-compliant SDR. So the
following four kinds of typical CORBA middleware are selected
as the transfer mechanism tested in this paper.

2.1. TAO

The Adaptive Communication Environment (ACE) is a C++
communication framework for cross-platform concurrent com-
munication. It provides many framework components and
reusable C++ wrappers. TAO is an open source CORBA imple-
mentation under the ACE framework. It supports multiple plat-
forms, including Windows, Linux, Unix, Mac, VxWorks, and
many other platforms. It has been applied in a lot of software
such as Software Communications Architecture Reference Im-
plementation (SCARI).

2.2. omniORB

The omniORB is an ORB product developed by AT&T Cam-
bridge Laboratory. It is mainly applicable to C++ and python.
Open-Source SCA Implementation::Embedded (OSSIE) using
omniORB as communication middleware.

2.3. e*ORB

The e*ORB is a middleware developed by Distributed Soft-
ware Architecture Provider PrismTech. It complies with JTRS
SCA standard and OMG minimum CORBA standard, and sup-
ports interoperability among GPP, DSP and FPGA platforms. In
2006, Virginia Tech transplanted OSSIE to TI TMS320C6416
platform and used e*ORB to adapt to resource-constrained DSP
platform.

2.4. ORBit2

The ORBit2 is CORBA-compliant ORB. ORBit2 was origi-
nally designed for GNU Network Object Model Environment
(GNOME) projects. It is mainly applicable to C, C++, python.
It also supports Perl, Lisp, Pascal, Ruby, and TCL. Its ORB core
is written in C and can run on Linux, UNIX and Windows plat-
forms.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

16

2.5. ICE

In addition to the traditional CORBA, Internet Communications
Engine (ICE) will also be tested. ICE is an object-oriented RPC
framework for supporting distributed applications. ICE aims to
free developers from the trivialities of underlying network pro-
gramming, such as network connection, serialization and deseri-
alization. It allows developers to focus on business logic. There
are a lot of discussions about CORBA and ICE. ICE supporters
have the following points of view [5]:

1.CORBA standard is too much and complex, but has no manufac-
turers truly implement all features of CORBA. The standard of CORBA
is meaningless in the situation that CORBA implementation by different
manufacturers is incompatible with each other. Beyond that, the huge
and complex characteristics make CORBA itself difficult to use.

2.CORBA C++ mapping has many shortcomings and pitfalls in
memory management and exception safety. In contrast, ICE C++ map-
ping is simple and intuitive and it will not leak memory due to errors.
ICE C++ mapping is based on the Standard Template Library (STL)
of industrial standards, and the C++ mapping rules need to be remem-
bered are much less than CORBA.

3.CORBA’s inefficient alignment rules lead to redundant data copies.
Data encoding is complex but does not lead to corresponding perfor-
mance improvements. IIOP’s complexity leads to interoperability and
performance problems. ICE’s protocol is simple and more efficient,
providing some features that IIOP does not provide, such as data com-
pression and batch request batching.

Although a part of the view is improved by the experimental
results, lots of transfer performance advantages of ICE have not
been confirmed in previous studies. Therefore, further experi-
ments are needed to evaluate whether ICE can perform well as
SCA transmission mechanism.

2.6. RPC over DDS

The Data Distribution Service (DDS) is a network middleware
used to simplify complex network programming. It is also a
standard proposed by OMG to provide scalable, real-time, reli-
able, high-performance and interoperable data distribution ser-
vices. It implements a "publish-subscribe" mode for sending
and receiving data, events, and commands across languages and
platforms between nodes.

The main advantage of DDS is that it need not to pay atten-
tion to the information receiver, the location of the recipient and
whether the message is sent or not. It configures DDS communi-
cation behavior through the QoS parameters. This advantage is
more obvious when there are more data providers and receivers.

However, DDS only provides a way for message publishers to
communicate with message subscribers in real time. It does not
provide the operation of remote object request proxy, so the DDS
alone can’t match the SCA-compliant Radio platform. RPC over
DDS of eProsima company implements remote process calls us-
ing DDS as the underlying transfer engine. Therefore, it may be
used as a transfer mechanism under SCA 4.0 standard.

2.7. RPCexpress

The RPCexpress is designed to support object-oriented com-
ponent development and provide remote procedure call func-
tions. The key function of RPCexpress is to provide standard-
ized method call semantics between client and server in the same
or different address spaces. RPCexpress was originally designed
for embedded software definition system, implemented by C++,
and currently supports Linux and Windows platforms. It holds
most IDL semantics including basic data types, struct, sequence,
array and any. It occupies less resources and displays high trans-
fer performance.

2.8. TCP sockets

The last transfer mechanism considered in this paper is TCP
sockets, which is a naive inter-process communication mech-
anism. TCP sockets encapsulate TCP/IP. Compared with other
transfer mechanisms, the socket lacks many kinds of services
that are often provided the available middlewares, such as nam-
ing service, event service, query service, concurrency control
service, etc. Besides, to use it in the software, the developer
also needs to encode and decode the transmitted data, making it
more difficult to be applied in developing softwares. However,
the advantages of TCP sockets are remarkable, e.g., fewer layers
of encapsulation, lower transfer latency, convenient for real-time
data interaction.

3. FM3TR WAVEFORM

This paper uses FM3TR to reveal the performance of differ-
ent transfer mechanisms. The FM3TR waveform defines voice
mode and data mode, implementing frequency hopping over
both VHF and UHF military bands. The FM3TR voice mode
is based on 16kHz PCM coding. CVSD component compresses
the PCM stream and support semi-duplex communication be-
tween different PTT terminals. The data mode is different from
voice mode, whose data source is processed through the RS
component. Channel coding is adopted to improve the reliabil-
ity of transmission. Fig.1 shows the structure of the FM3TR
waveform.

The conduct the experiment, the communication interface be-
tween components of FM3TR is unified. The communication
interface are implemented by eight communication mechanisms
mentioned above. Data interaction is carried out by the push-
Packet function. The following is part of the definition of inter-
face:

module Packe t
{

i n t e r f a c e Oc t e tS t r e am : P a y l o a d S t a t u s
{

void pushPacke t (
i n S t r eamCon t ro lType c o n t r o l , i n JTRS : : Oc t e tSequence pay load) ;

r a i s e s (UnableToComplete) ;
} ;

} ;

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

17

EthernetDevice

DLC

CVSD

RS DataMac

VoiceMac

ModemDevice

Packet::

OctetStream

Eth_Dlc_Out Eth_Dlc_In

Dlc_Eth_In Dlc_Eth_Out

Dlc_Rs_Out

Rs_Dlc_In

Dlc_Rs_In

Rs_Dlc_Out

Rs_Dmac_Out Rs_Dmac_In

Dmac_Rs_OutDmac_Rs_In

Dmac_Mhal_Out
Dmac_Mhal_In

Mhal_Dmac_In

Mhal_Dmac_Out

Eth_Cvsd_Out Eth_Cvsd_In

Cvsd_Eth_OutCvsd_Eth_In

Cvsd_Vmac_Out
Cvsd_Vmac_In

Vmac_Cvsd_In

Vmac_Cvsd_Out

Vmac_Mhal_Out

Vmac_Mhal_In

Mhal_Vmac_In

Mhal_Vmac_Out

MHAL

Comm

MHAL

Comm

Data

Conditioning

S-code

Correlator

(Data/Voice)

Add S-code

(Data/Voice)

Add S-code

(Data/Voice)

CPFSK

Modulation

CPFSK

Demodulation

MHAL

Comm

MHAL

Comm

Data

Conditioning

S-code

Correlator

(Data/Voice)

Add S-code

(Data/Voice)

Add S-code

(Data/Voice)

CPFSK

Modulation

CPFSK

Demodulation

Interpolating

Filter

Interpolating

Filter

AD9361

EthernetDevice

DLC

CVSD

RS DataMac

VoiceMac

ModemDevice

Packet::

OctetStream

Eth_Dlc_Out EthEtEt _Dlc_In

Dlc_Eth_In DlcDlDl _Eth_Out

Dlc_Rs_Outt

Rs_Dlc_In

DlcDl _Rs_In

RsRs_Dlc_Out

Rs_Dmac_OuttOut RsRs_Dmac_In

DmacDm _Rs_OutDmac_Rs_InInIn

Dmac_Mhal_OutOuOuOuOutOuOutOut
Dmac_Mhal_In

Mhal_Dmac_In

Mhal_Dmac_Out

Eth_Cvsd_Out EthEtEt _Cvsd_In

CvsdCv _Eth_OutCvsd_Eth_In

Cvsd_Vmac_OutOutOuOuOutOut
CvsdCv _Vmac_In

Vmac_Cvsd_In

VmacVm _Cvsd_Out

Vmac_Mhal_Out

Vmac_Mhal_In

Mhal_Vmac_In

Mhal_Vmac_Out

GPP

DSP FPGA

Decimation

Filter

100KHz

I&Q 1MHz

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Packet::

OctetStream

Data

Voice

Figure 1: FM3TR waveform

Devices & Components:

• The EthernetDevice communicates with the host computer
through TCP sockets, on the other hand, it interacts with
other components through the selected transmission mech-
anism.

• The ModemDevice is essentially a Modem Hardware Ab-
stract Layer (MHAL), which interacts with subsequent
components after adding data type (voice/data) information
to the original data.

• The Data Link Control (DLC) component replaces the
header of the data packet for the data packet from the Eth-
ernetDevice, automatically fills in less than 111 bytes of
payload and sends it to the RS component, and provides a
simple automatic repeat-reQuest (ARQ) mechanism. For
the data packet from the RS component, the way to process
the message is decided according to the header information:
if the destination address is 0 (broadcast), it will be sent di-
rectly to EthernetDevice. If the destination address is local,
detecting data and sending response ACK, then send it to
EthernetDevice. In other cases, the packet is discarded.

• The Reed-Solomon (RS) adopts RS code to achieve the
channel coding and decoding,since it can improve the re-
liability of the data transmission.

• The Data Media Access Control (MAC) component mainly
completes the function of data packet framing. For RS
component’s data packet, it is sent to ModemDevice af-
ter framing operation. Each frame includes four data hops
and one synchronous hop. If the received data is ACK
reply packet, no processing is done and sent directly to
ModemDevice.

• The Continuous Variable Slope Delta (CVSD) is a voice
compression coding method. CVSD component mainly re-
alize the function of voice data compression coding and de-
coding.

• The voice Mac component has the same function as data
Mac component. But voiceMac only processes one frame
at a time, and processes data directly from ModemDevcie.

4. PERFORMANCE MEASURING

This section describes methods used for conducting the experi-
ment and metrics for performance evaluation of different trans-
fer mechanisms. Further, performance results of eight transfer
mechanisms are analyzed. The FM3TR combined with each
transfer mechanism is developed on a virtual machine running
Ubuntu 14.04 LTS using VMware that is deployed on a host
computer with an Intel Core i5-3470 processor (3.20GHz and
4.00 GB RAM). In the experiment, the function code of each
FM3TR component is exactly the same, thus avoiding differ-
ences in time and space performance caused by different imple-
mentation methods, which ensures the correctness and fairness
of the result.

4.1. Performance Metrics

We select some key indicators to measure the performance of
the transfer mechanism from different perspectives [6].

It should be noted that although we try to ensure the per-
manent hardware and software environment, it is impossible to
guarantee that no other process occupies the CPU or other com-
puting resources except for the test waveform due to the com-
plexity of the operating environment. This will inevitably lead to
jitters in the executing environment of the experiment, and then
affect the experiment results. The easiest way to solve this prob-
lem is to enlarge the number of conducted tests and then use the
average value to eliminate the impact of abnormal data caused by
the jitter of the test environment. However, in the actual exper-
imental process, this method cannot achieve the expected goal.
Even if the sample size is expanded, the abnormal result will ap-
pear randomly. This indicates that the interference that occurs in
the experiment is the background interference that appears ran-
domly throughout the whole experiment. To deal with this inter-
ference, a very simple "denoising" method is used to preprocess
the raw data [7]. That is, firstly, the mean µ and standard devi-
ation σ of the experimental results are calculated, then the data
whose value is greater than µ+3σ is discarded. Statistics show
that the amount of abandoned data is less than 2% of the original
data, but most of the interference is effectively eliminated. Com-
pared with the original test results, the processed test results can
better reflect the general performance of the transfer mechanism
tested, so it has more reference value.

A. Latency

In SCA-compliant SDR, system latency is an important in-
dicator to evaluate the transfer mechanism [8]. Besides,
low latency is also a necessity of real-time systems. As
Fig.2 shows, the system latency is divided into four parts,
i.e., propagation latency, transmission latency, queuing la-
tency and processing latency. The transmission latency
refers to the time cost of data transmission from PC to
waveform application. The propagation latency refers to
the time of data transmission between components. The

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

18

queuing latency refers to the time interval between the time
when the data packet arrives the packet queue of the com-
ponent and the time when the component starts processing
this packet. The processing latency refers to the time costed
by the component for processing a data packet.

EthernetDevice CVSDnetAssist

Transmission

latency

Propagation

Latency

Queue

latency

Processing

latency

Figure 2: Latency profiling

Because the implementation code of each component in the
waveform are identical, the processing latency are identical
when measuring different transfer mechanisms. In order to
carry out the loop test, we developed a small program called
netAssist which simulates the sending and receiving of data
packets in specified format from the host computer. After
the FM3TR waveform runs, netAssist sends the data packet
to the EthernetDevice component, and then the data packet
returns to the original path after each waveform component
in turn. Finally, the data packet is sent to netAssist by the
EthernetDevice component. NetAssist records the amount
of data it sends and receives to detect whether data packets
are lost during testing.
To measure the propagation latency accurately, the timin-
gLog [9] tool is used to record the time when the Ether-
netDevice receives the data packet and the time when the
EthernetDevice starts sending the processed data to the PC,
so as to eliminate the effect of transmission latency. The la-
tency of a single loop is tloop = (tend − tstart)/N .

B. Throughput
The above single round-trip time is an important indicator
of latency when using different transfer mechanisms. How-
ever, the overall performance is also related to the through-
put. Throughput not only reflects the ability of process-
ing queries per unit time, but also reflects the performance
of transmission mechanism considering the influence of
waveform. The calculation of throughput is obtained by the
latency between nodes and the corresponding packet size.

C. Predictability
Due to the complexity of the entire operating environment
and the volatility of the network environment, jitter of prop-
agation latency is inevitable. Predictability depends on jit-
ter of latency. The jitter of latency can lead to a series of
problems. For example, when voice data does not arrive at
the receiver end evenly, the receiver end must make up and
try to correct, otherwise it will cause the user’s voice dis-
tortion problem. In addition, the jitter of latency will also

lead to network congestion. Therefore, delay jitter is one of
the important performance indicators of the transfer mech-
anism. We use the standard deviation of the latency indi-
cates the degree of the jitter of latency for different transfer
mechanisms.

D. Static Footprint Size
SDR systems often need to run on the resource-constrained
platforms, such as the popular embedded mobile platform.
On these platforms, the battery life of the device is an im-
portant factor affecting the user’s actual experience. And
memory size is one of the factors affecting device power
consumption. On the other hand, if you want to use
the same transfer mechanism on a heterogeneous proces-
sor, you also need to consider the memory requirements.
Static memory is mainly composed of library files, IDL
compiler-generated or handwritten frameworks and pile
files, and functional implementation code. Common shell
commands, such as ps, top, etc., can be used to measure
memory size. In addition, the size of static memory can
only partly explain the memory occupancy of the trans-
fer mechanism, which needs to be combined with dynamic
memory in order to conduct a comprehensive analysis.

E. Dynamic Memory Size
The overhead of dynamic memory is not necessarily re-
lated to the size of its static memory. The dynamic memory
is composed of a stack opened by the process, data seg-
ment memory, and various service logs. Using only the
aforementioned shell commands, we cannot examine the
dynamic memory usage. Therefore, we use the open source
tool Valgrind to analyze the memory usage of the process
in real time through time slicing.

4.2. Experiment Results

The reasons for choosing these indicators to measure the per-
formance of the transfer mechanism have been explained in the
previous paper. This section will analyze the experimental re-
sults using above methods.

A. Latency
Fig.3 shows the round-trip latency when eight transfer
mechanisms combine the same waveform. Among them,
TCP sockets, RPCexpress, omniORB and TAO have signif-
icant advantages in round-trip latency. It is noteworthy that
we find the time cost for TAO to establish connections be-
tween components is significantly longer than that of other
transfer mechanisms in experiment, but we do not consider
this factor in this experiment.

B. Throughput
Fig.4 shows the average Queries per second of the eight
transfer mechanisms to describe the throughput of them in

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

19

Figure 3: latency per loop

this experiment. The QPS of TCP socket is significantly
higher than that of all other transfer mechanisms, while
RPCexpress, omniORB and TAO are significantly higher
than the remaining four transfer mechanisms. Although
TCP socket has a faster transmission rate due to fewer en-
capsulating, but in multi-component waveform, it adds to
difficulties of waveform development.

Figure 4: queries per second

C. Predictability
The latency jitter of eight transfer mechanisms is shown
in Fig.5. We describe the degree of lantency jitter by the
standard deviation of latency. From Fig.5, we can see that
the latency jitter of ORBit2 is high. Considering Fig.3
and Fig.4, ORBit2 has higher latency and lower through-
put than others. This shows that the jitter in transmission
will have some impact on the performance.

D. Static Footprint Size
Fig.6 shows the size of static footprint memory of eight
transfer mechanisms. Static footprint memory consists of
implementation code, framework code and shared library
file. The implementation code in this experiment is basi-
cally the same, so it is not considered. From Fig.6, we can
see that the size of RPC over DDS framework code is the

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

S
t
a

n
d

a
r
d

 d
e

v
ia

t
io

n

Figure 5: stand deviation

largest, followed by TAO and ICE. Compared with frame-
work code, the size of library file is the most important fac-
tor which affects static footprint memory. Among them,
RPC over DDS and ICE have larger library files. When
choosing the transfer mechanism, we should take full ac-
count of the memory resources. Therefore, we will analyze
the dynamic memory occupancy of each transfer mecha-
nism in the next subsection.

Figure 6: static memory size

E. Dynamic Memory Size
In Fig.7, ICE occupy significantly larger dynamic memory,
while omniORB and RPCexpress occupies less dynamic
memory than others. Combining Fig.6, when waveform
runs, RPCxpress and ICE require the largest memory re-
sources. Among them, RPCexpress requires the least total
memory except TCP socket.

Acknowledgments:
We would like to thank Hao Liu and Shi-Li Zhu for their as-

sistance in this work.

REFERENCES

[1] G. Abgrall, F. Le Roy, J.-P. Delahaye, J.-P. Diguet, and G. Gogniat,
“A comparative study of two software defined radio platforms,”

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

20

0

1

2

3

4

5

6

7

8

D
y

n
a

m
ic

 m
e

m
o

ry
 s

iz
e

 (
in

 M
 b

y
p

e
s)

Figure 7: dynamic memory size

SDR ’08 Technical Conference and Product Exposition, 2008.

[2] F. Le Roy, L. Rakotondrainibe, J. P. Delahaye, and A. Mansour,
“Insights into portability issues of FM3TR waveform,” Analog In-
tegrated Circuits and Signal Processing, vol. 3456789, pp. 1–13,
2017.

[3] P. Putthapipat, “Lightweight Middleware for Software Defined
Radio (SDR) Inter-Components Communication,” 2013. [Online].
Available: http://digitalcommons.fiu.edu/etd/867

[4] A. Gokhale and D. C. Schmidt, “Measuring the performance of
communication middleware on high-speed networks,” ACM SIG-
COMM Computer Communication Review, vol. 26, no. 4, pp. 306–
317, 2004.

[5] S. Ravindra Babu, “The Rise and Fall of CORBA,” Adarsh Journal
of Management Research, vol. 2, no. 2, p. 63, 2016.

[6] I. Gomez, V. Marojevic, J. Bracke, and A. Gelonch, “Performance
and overhead analysis of the ALOE middleware for SDR,” Pro-
ceedings - IEEE Military Communications Conference MILCOM,
pp. 1134–1139, 2010.

[7] G. Abgrall, F. Le Roy, J. P. Diguet, G. Gogniat, and J. P. Delahaye,
“Predictibility of inter-component latency in a software commu-
nications architecture operating environment,” Proceedings of the
2010 IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum, IPDPSW 2010, pp. 1–8,
2010.

[8] B. Wireless and V. Tech, “Latency Profiling for SCA Software Ra-
dio,” Forum American Bar Association, pp. 2–7, 2007.

[9] Q. Tang, J. Lian, L. Zhou, S. Wang, J. Xiong, H. Zhao, S. Huang,
and J. Wei, “RPCexpress : a try to implement an efficient mid-
dleware from the ground up based on requirements of embedded
software defined systems,” Proceedings of WInnComm 2018, no.
December, pp. 1–5, 2018.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

21

EXPERIMENTAL EVALUATION OF LSPR

ROUTING PROTOCOL
Khalid Hussain Mohammadani

School of EE, Beijing University of

Posts and Telecommunications

Beijing, China

khalid.mohammadani@gmail.com

Kamran Ali Memon
School of EE, Beijing University of

Posts and Telecommunications

Beijing, China

Ali.kamran77@gmail.com

Turki Alghamdi

Dept.of computer science

Islamic Madina University

Madina, Saudi Arabia

dr.turki.iu@gmail.com

Safiullah Faizullah
Dept.of computer science

Islamic Madina University

Madina, Saudi Arabia

safi.research@gmail.com

Ali Alzahrani
Dept.of computer science

Islamic Madina University

Madina, Saudi Arabia

alnaashi@hotmail.com

Arshad Shaikh
Department of Computer Science

Isra University

Hyderabad, Pakistan

amshaikh@hotmail.com

Abstract—Mobile ad-hoc network (MANET) routing

protocols can be classified as either topology based (which uses

the inter-node connectivity information to create routes) or

position based (that uses geographical positions of the nodes

for routing and forwarding decisions). Topology-based routing

often runs into problems due to its inability of identifying week

links (links that are about to break due to mobility), resulting

in broken routes and hence cost performance

penalty. Position based routing often uses a greedy approach

that stuck in a local-maxima situation resulting in a stalled

communication. In our previous work [1] we had introduced

LSPR (Location Server based Proactive Routing) protocol that

offers a unique hybrid of both topology-based and position-

based routing strategies. LSPR constructs routes from

topology information extracted from geographical position

data of the nodes. It ignores any weak links by confirming that

each pair of communicating nodes are located at least two-

third transmission-range apart. In this study, we attempt to

provide more support and evidence that our LSPR protocol is

indeed a better choice for routing in MANETs. We hereby

compared the performance of LSPR protocol with AODV,

DSDV, LAR, and LSAR protocols under varying mobility and

network conditions.

Keywords—MANETS, GPS, Topology-based routing

protocols and Position based routing protocols.

I. INTRODUCTION

A transient network is a set of portable nodes (i.e. mobile
phones and laptops etc.) known as a mobile ad-hoc network
(MANET). MANET is established by wireless connections
without any access point, infrastructure or centralized
management[2]. In MANET, all portable nodes act as both
routers and hosts. Physical topology is affected and changed
from time to time due to joining and leaving the portable
nodes[3]. The most important consciousness of the MANET
format tradition is to understand the right and useful
direction between some nodes in order to make timely and
reliable delivery of messages possible. Route detection
would be found with minimal overload[4]. Each portable
node has topology information according to different routing
techniques in routing tables. By using a proactive manner of
routes nodes exchange of routing information
periodically[5]. Proactive routing technique requires that
each node maintains and updates routing tables, according to

changing in the network topology[5]. Paths can be made in a
reactive manner, only when they need the original node. The
position-based or location-based routing protocols are
excellent for aggregation due to ad hoc networks: that is not
necessary for accordance with preserve the routing tables
updated or in accordance with having a huge view regarding
network topology and adjustments, which translates into
reducing overhead routing. Bandwidth optimization,
dynamic topology, link failure scalability, and routing are the
main challenges of MANETs. The link failure is the biggest
issue due to nodes movement independently in any
direction[6]. Researchers developed several routing protocols
to overcome these main problems. Topology-based and
position based routings are broad categories of routing
protocols for MANET.

Topology-based routing protocols have all information
based on network structure. These are not suitable for
MANET when the network nodes do not have a constant
position and always change their position in the network.
These routing protocols are also effective and non-stable in a
high-density network with where high traffic may
generate[7].

On another side, position-based routing protocols are
suitable for the high dense network to maintain the network
topology[8]. These type of routing can easily handle the data
forwarding among the nodes. They depend on local data to
redirect the data packets instead of maintaining entire
network information. It is the plus point of position based
routing protocols.

This paper presents the experimental evaluation of our
previously developed position based routing protocol known
as LSPR[1] that is compared with other position based and
topology based routing protocols

The rest of the paper is prepared as the following section:
section II describes some review of routing protocols of
MANET and types of routing protocols. Section III presents
the methodology of this paper. Results and discussion are
explained in section IV while section V concludes the paper
followed by references.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

22

mailto:khalid.mohammadani@gmail.com
mailto:Ali.kamran77@gmail.com
mailto:dr.turki.iu@gmail.com
mailto:safi.research@gmail.com
mailto:alnaashi@hotmail.com
mailto:amshaikh@hotmail.com

II. LITERATURE REVIEW

Conventional routing protocols rely primarily on
information in the routing table that corresponds to the
movement of the paths with many possible addresses. To
ensure that the routing tables are updated and reflect the
actual network topology, it often exchanges route updates
and route descriptions. Link State Algorithms (LS) and
Distance vector algorithms (DV) are two different
conventional algorithms for network routing.

A. Link State (LS) Routing Algorithm

Each node maintains the root of the entire topology for
each individual link in this type of routing[9]. As a result, all
network nodes quickly show partnership charges for each
connection to the different nodes using flooding. These types
of flooding floods make it possible to predict costs for each
other. Each host in the system has an address table that is
used to save all the connection costs that the node gets. As a
result of receiving the surplus message, each node updates its
routing table and chooses the most specific format for each
target node. These communication costs can give erroneous
data to the communication costs in any node due to delayed
deployment, distributed systems and etc., leading to the
evolution of the direction cycle. These cycles are fleeting, as
they disappear when the lifetime of packet expires. On the
other hand, these cycles increase the overhead in the system.

B. Distance Vector (DV) Routing Algorithm

In this type of routing, each node does not indicate the
cost of its friendly links, but, unlike it sends it to all hosts, it
shows an estimate of the shortest distance for each node on
each of its neighbors [9]. Then the node that is available then
uses this information to recalculate the routing tables with
the shorter method of calculation. In contrast to LS routing
protocols, the DV routing protocols are more efficient, less
operational and have much less storage space. Then, again,
distance vectors can lead to the development of short and
large-scale routing rings. The key factor is that the nodes
determine their confidence in the home in a completely
scattered way that is centered on data that can be rigid. DV
routing protocols of MANET are divided into two categories:
Topology-based Routing and Position-based Routing. Fig.1
shows their classifications.

Fig. 1. Distance vector routing protocols of MANET

C. Topology-based Routing Protocols

Topology-based routine protocols already provide
information about network connections to perform packet

redirection. The pre-defined routing protocol was based on
the topology information that consisted of establishing the
path and maintaining the path. They use the link information
in the network to forward packets.

D. Proactive Routing Protocols:

Proactive routing protocols observe a similar approach to
wired routing protocols. By constantly comparing the
recognized routes and attempting to discover new routes,
they try to hold an up-to-date map online[10]. This allows
them to send packets efficiently because the path is
recognized while the packet reaches the node. Examples of
proactive routing protocols are Destination Sequenced
Distance Vector (DSDV) and Optimized Link State Routing
(OLSR) protocols.

E. Destination-Sequenced Distance Vector (DSDV)

DSDV is a type of proactive routing protocol. Each node
sustains routing tables. The routing table is updated
continuously. Nodes may send and receive the packets in the
network with the assist over routing information. Sequence
numbers originate primarily from the same node of the
receiver, ensuring continuity of the loop. The installation
time removes the false entries from the table. Original data is
a pointer to a table that has path validation information and is
also used to evaluate network variations[11].

F. Optimized Link State Routing (OLSR) Protocol

OLSR is an optimization of the pure hyperlink state
protocol by reducing the range of knowledge distributed in
messages and reducing the amount of retransmission to
transmit these messages in the entire community. For this
reason, the OLSR protocol uses multicast retransmission
technology to successfully and economically flood its
messages. It displays the more specific methods in the jump
number phrases, which are immediately available at will.
OLSR is better suited for dense and important mobile
networks[12], [13].

G. Reactive Routing Protocols

Unlike proactive routing protocols, reactive routing
protocols do not attempt to establish a network connection
over time. Rather, the routing development is desired on
demand by any node which has to send packets. The method
is predicated proceeding the requests which are inundated the
entire MANET[14]. Ad-hoc on-demand distance vector
(AODV) and Dynamic Source Routing (DSR) routing
protocols are two types of reactive routing protocols.

H. Ad-hoc On-demand Distance Vector (AODV)

AODV uses a procedure for detecting courses in order to
gradually build new courses based on need. AODV is a
diffuse account that uses vector-separator calculations. As
soon as the session becomes a dark destination, AODV
causes a cycle to request a packet and deliver it to its
neighbors. The preferred point of view of this agreement is
that the courses depend on the interest and the succession
numbers are used in the destinations to determine the most
recent route to the destination. In this sense, the
postponement of the composition of the Assembly shall be
less. However, since courses are only held during use, it is
generally required that the session is detected before packets

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

23

are exchanged. This prompts to postpone the main package
to be transferred[15].

I. Dynamic Source Directive (DSR)

DSR is an address convention for remote poetic systems.
It is like AODV where you set a frame of interest when the
transmission distributor requires it. In any case, use the
source address rather than relying on the address table in
each intermediate device[16].

J. Position-Based Routing Protocols

The position-based address agreement uses location data
to find the exact areas in the destination center, as well as its
adjacent location. It uses location data to provide a more
reliable and efficient address for specific applications and
this information is mostly obtained through the Global
Positioning System and regional administrations. Because of
the use of district administrations and cargo procedures, their
implementation has been much improved than the structure-
based management agreement. It shows a better diversity, a
force against continuous topological changes. These
management agreements aim to improve efficiency and
implement the system. The address is executed in a bounce
style to redirect packets of information. Its purpose is to deal
with regulators who have many centers. The preferred
position for this type of address is that the data next to the
information packet is fully displayed, instead of retaining the
entire system data. This will reduce the overload on the
address and increase packet transfer speed. Location data for
each hub is determined using location services and the use of
forwarding routines to forward information packets[17]. At
the point where the source distributor needs to move a packet
to the destination, it must obtain the area (x, y) of the
destination through the site service.

K. Location-Aided Routing (LAR) Protocol

The purpose of Location-Aided Routing (LAR) described
in [11] is to reduce overhead. LAR uses data that can limit
floods to a specific region, known as the request zone area.
As a result, several application packets is decreased in a
manner. Rather than the entire flood into the network, which
includes a routing packet, LAR sends packets to nodes with a
very high probability of finding a route. The LAR estimated
zone is defined as the area that is estimated to be the target’s
recent position point. Throughout the process of finding the
route, the flood system asks for an operating area where the
potential strap and the location of the wired node are.

L. Location Server Assisted Routing Protocol (LSAR)

LSAR is one of the reactive protocol[18]. It uses
geographical data to locate the shortest routing path among
the nodes. Instead of straight flooding, this convention sends
bundles of information through links that then culminate in
the topology-based routing protocol. The LSAR is
responsive, rooted and makes the course only when needed.
In LSAR, the root node is responsible for supporting the
route. All nodes update their tables as they get immediate
root announce message. LSAR includes complex
functionality for data forwarding process. It takes time to
route discovery because of complex functionality and routing
overhead is high. The complex functionality includes on
some set of messages that are: Send Rout request (SRREQ),
Receive Route Request (RREQ), Send Route Reply

(SRREP), Receive route reply (RRERP), Send Route set
(SRS), Receive route set (RRS). Still, it was compared with
LAR and AODV but gave better performance in sense of
PDR and throughput.

M. Location server based proactive routing (LSPR)

LSPR is one of mixed routing protocol that uses
proactive based and position based routing protocol
approaches. In our previous work[1], we proposed the LSPR
routing protocol and compared with DSDV and LSAR. In
this paper, LSPR is compared with AODV, DSDV, LSAR
and LAR routing protocols. Further, LSPR is explained in
the next section.

III. METHODOLOGY

This part explains the functionality of the LSPR. The
functionality of LSPR includes main three parts. i. Root
Announce (RA) ii. Announce to Root (AtR) iii. Data
Forwarding (DF).

A. Overview of LSPR

Initially, LSPR uses the location registrar also known as
the root node to maintain the routing information in the
network. Root node sends Root Announce (RA) message
included on the adjacency matrix to every node about their
neighbor nodes. Each node updates the root node about its
GPS coordinates, in reply to the root announce message.
Unlike LSAR, Root node does not help every node to find
the shortage path but every node runs shortage path
algorithm (i.e Dijkstra algorithm) itself on available
adjacency matrix for shortage path in the network. It will
help to reduce the routing overhead. LSPR include three
primary functions to forward the data.

At the start, Root Announce (RA) is the first step of
LSPR in which node 0 is chosen to make the Root Node or
location registrar. Root node transmits an RA message in the
network. Initially, this RA message has the empty adjacency
matrix which is filled as other nodes send their GPS
coordinates to the root node via announce to root packet. All
nodes receive and send the RA message in the network as
shown in Fig. 2.

Fig. 2. Distance Root Announce (RA)

Next, Announce to Root (AtR) is the second step as
network nodes received root announce message as they reply
the AtR message with their own locations to the root node
and root node records them and makes an adjacency matrix.
The root node executes distance formulas regarding the GPS

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

24

coordinates yet fills the adjacency matrix with binary
information. This is a procedure to store the location of all
nodes. As a result, all nodes also know that the root node and
next hop as shown in Fig.3. In this way, all nodes familiar
own neighboring nodes in the network.

At the last, Nodes can forward the data after receiving the
adjacency matrix known as Data Forwarding (DF). Assume,
Node#7 needs a route to transfer data packets to node#4 (as
Fig.4 shows), node#7 executes the Dijkstra set of rules at the
given adjacency matrix to check the shortest path of the
target node, which is among 7,6,3 up to 4 and so forward the
information.

Fig. 3. Announce to Root (AtR)

Fig. 4. Data Forwarding (DF)

B. Performance Evaluation

LSPR has been developed for Network Simulator NS-2
using C++ by our research team. NS-2 is one of the famous
open source network simulators which includes basic
MANET routing protocols like AODV, DSDV, and OLSR.
We have also run the patch of LAR and LSAR routing
protocols in NS-2. We have simulated five routing protocols
to examine the performance of LSPR as well as its
competing routing protocols AODV, DSDV, OLSR, and
LSAR. Three different quality of service parameters. In
addition, three mobility speed (e.g. 5, 10 and 20) m/s are also
simulated to compare the performance of five routing
protocols. Table I shows the simulation parameters used in
this paper.

TABLE I. SIMULATION PARAMETERS

Parameters Values

Parameters Values

Simulation Time 600 sec

Topology Size 500m x 500m

Number of Mobile Nodes 100

Mobility Model Random Waypoint

Traffic Type CBR (160 bytes packet)

Routing Protocols
LSPR, AODV, DSDV, LSAR,

and LAR

Mobility Speed 5, 10, and 20 m/s

Ns-2 Version NS-2.33

We have calculated throughput, PDR and NRL as the
quality of service parameters to analyze the performance of
LSPR routing protocols accordance with multiple node
mobility speed and compare with AODV, DSDV, LSAR,
and LAR routing protocols

Throughput is measured in bits per second (bps), kilobits
per second (kbps) and so on. Eq. (1) defines the throughput
in kbps. Where Pkts is packet, PktSize is packet size in bytes,
8 is multiply factor to calculate the bits. We can say the total
amount of data packets are received in time (τ) in seconds.

Throughput [kbps] = (∑ (Pkts×PktSize) ×8)/ (τ×1024)

(1)

Packet delivery ratio (PDR) is a ratio of the total received
data packets RDPkts over the total sent data packets SDPkts,
expressed in Eq. (2). PDR and throughput are directly
proportional to each other therefore if one increases others
also increase and one decreases other will too decrease.

 PDR [%] = (∑RDPkts)/ (∑SDPkts) ×100 (2)

Generally, all routing packets of MANET transmit tiny
size of packets known as the routing packets to collect the
routing information of all nodes in the MANET. These
routing packets do not contain any application information
like data packets. The routing packet also utilizes the same
bandwidth which is consumed by data packets due to shred
medium in MANET. Normalized routing load (NRL) is a
percentage of total data packets received to the total routing
packets by destination as shown in Eq. (3).

 NRL [%] = (∑RDPs)/ (∑RRPs) ×100 (3)

IV. RESULTS AND DISCUSSION

In this section, LSPR is compared with AODV, DSDV,
LSAR, and LAR to determine the protocol that performs
better under different mobility speed for the above
mentioned QoS metrics.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

25

A. Packet Delivery Ratio % Vs Mobility Speed (m/s)

PDR% is a ratio of the received data packet over
generated data packets as it is discussed in the previous
section. Any routing protocol gives better performance
whose PDR is high as compared to other routing protocols.
Figure 5 shows the PDR vs mobility speed of all routing
protocols. LSPR routing protocol has high PDR than other
four routing protocols. However, mobility speed is increased
in the second and third scenario but LSPR maintains its
stability and can deliver more data packets. As compared to
AODV and DSDV the LSAR and LAR routing protocols
have also good performance yet their performance is lower
than LSPR in all cases of mobility speed.

Fig. 5. PDR% Vs Mobility speed (m/s)

B. Throughput[kbps] Vs Mobility Speed (m/s)

Throughput was explained in the third section. It is the
total amount of data received in unit time. Bits per second is
the measuring unit of throughput. The throughput of DSDV
and AODV similar but lower than other routing protocols in
high-speed mobility scenario. LAR and LSAR defeat one
another and their throughout also neck to neck. The
throughput of LSPR is also similar to LSAR and LAR but
still, it is performance is better as mobility increases and
remains higher than others and figure 6shows the highest
throughput of LSPR. As we have discussed earlier that PDR
and Throughput are directly proportional to each other.
Therefore the results of throughput and PDR are like similar.

Fig. 6. DThroughput [kbps] Vs Mobility speed (m/s)

C. Normalized Routing Load Vs Mobility Speed (m/s)

As discussed in the third section about NRL. It is a
percentage of total data packets received to the total routing
packets by destination. NRL must be lowest for best
performance of routing protocols. Figure 7 shows the
comparative results of all routing protocols where the NRL
of DSDV is high due to high mobility the DSDV cannot
maintain the routing load. Even DSDV always give better
performance without mobility than the other proactive and
reactive routing protocol. The second highest NRL of AODV
is shown in the figure. LSAR and LAR initially work similar
but when mobility increase the LAR cannot maintain the
routing load and it generates more routing packets than
LSAR. The NRL of LSRP is better than others, its NRL is
almost constant and slightly increases as mobility increases.

Fig. 7. NRL % Vs Mobility speed(m/s)

V. CONCLUSION

Location Server based Proactive Routing (LSPR)
protocol provides a unique combination of both topology-
based and position-based routing strategies. The LSPR forms
paths of topology data separated the geographical location
data of the nodes. It ignores all the weak connections by
confirming that each pair of communicating nodes is at least
two-thirds transmission-range apart. In this study, we have
attempted to provide more support and evidence that our
LSPR protocol is indeed a better choice for routing in
MANETs. We hereby compared the performance of LSPR
protocol with AODV, DSDV, LAR, and LSAR routing
protocols under varying mobility. The mobility does not
affect the performance of LSPR, LSPR performances best in
all quality of service parameters. This is a helpful sign or we
are able to address so LSPR beats AODV, DSDV LAR, and
LSAR into nearly every aspect.

REFERENCES

[1] M. U. Butt, A. Shaikh, and H. Kazi, “LOCATION

SERVER BASED PROACTIVE ROUTING

PROTOCOL,” 2016.

[2] T. Wang et al., “Propagation modeling and

defending of a mobile sensor worm in wireless

sensor and actuator networks,” Sensors, vol. 17, no.

1, p. 139, 2017.

[3] R. Suraj, S. Tapaswi, S. Yousef, K. K. Pattanaik,

and M. Cole, “Mobility prediction in mobile ad hoc

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

26

networks using a lightweight genetic algorithm,”

Wirel. Networks, vol. 22, no. 6, pp. 1797–1806,

2016.

[4] L. Mejaele and E. O. Ochola, “Effect of varying

node mobility in the analysis of black hole attack on

MANET reactive routing protocols,” in 2016

Information Security for South Africa (ISSA), 2016,

pp. 62–68.

[5] W. A. Jabbar, M. Ismail, R. Nordin, and S. Arif,

“Power-efficient routing schemes for MANETs: a

survey and open issues,” Wirel. Networks, vol. 23,

no. 6, pp. 1917–1952, 2017.

[6] G. A. Walikar and R. C. Biradar, “A survey on

hybrid routing mechanisms in mobile ad hoc

networks,” J. Netw. Comput. Appl., vol. 77, pp. 48–

63, 2017.

[7] J. Shen, C. Wang, A. Wang, X. Sun, S. Moh, and P.

C. K. Hung, “Organized topology based routing

protocol in incompletely predictable ad-hoc

networks,” Comput. Commun., vol. 99, pp. 107–

118, 2017.

[8] O. S. Oubbati, A. Lakas, F. Zhou, M. Güneş, and M.

B. Yagoubi, “A survey on position-based routing

protocols for Flying Ad hoc Networks (FANETs),”

Veh. Commun., vol. 10, pp. 29–56, 2017.

[9] S. Rosati, K. Krużelecki, G. Heitz, D. Floreano, and

B. Rimoldi, “Dynamic routing for flying ad hoc

networks,” IEEE Trans. Veh. Technol., vol. 65, no.

3, pp. 1690–1700, 2016.

[10] M. Safdar, I. A. Khan, F. Ullah, F. Khan, and S. R.

Jan, “Comparative Study of Routing Protocols in

Mobile Adhoc Networks,” Int. J. Comput. Sci.

Trends Technol. ISSN, pp. 2347–8578, 2016.

[11] R. F. S. Pearlin and G. Rekha, “Performance

comparison of AODV, DSDV and DSR protocols in

mobile networks using NS-2,” Indian J. Sci.

Technol., vol. 9, no. 8, 2016.

[12] S. Sharma and M. A. Kumar, “Performance

Analysis of OLSR, AODV, DSR MANETs Routing

Protocols,” Int. J. Eng. Sci., vol. 7993, 2016.

[13] N. Harrag, A. Refoufi, and A. Harrag, “New NSGA-

II-based OLSR self-organized routing protocol for

mobile ad hoc networks,” J. Ambient Intell.

Humaniz. Comput., pp. 1–21, 2018.

[14] H. Singh, H. Kaur, A. Sharma, and R. Malhotra,

“Performance investigation of reactive AODV and

hybrid GRP routing protocols under influence of

IEEE 802.11 n MANET,” in 2015 Fifth

International Conference on Advanced Computing

& Communication Technologies (ACCT), 2015, pp.

325–328.

[15] K. H. Mohammadani, H. Kazi, A. Shaikh, I.

Channa, and S. Faizullah, “A Comparison of

Homogeneous vs Heterogeneous Choice of Routing

Protocols in Integrated Wireless Networks,” Eng.

Sci. Technol. Int. Res. J., vol. 1, no. 3, pp. 44–50,

2017.

[16] A. Shaikh, D. Vasan, and H. Mohammadani,

Khalid, “Performance Analysis of MANET Routing

Protocols – A Comparative Study,” vol. 83, no. 7,

pp. 1–29, 2013.

[17] O. Almomani, M. Al-Shugran, J. A. Alzubi, and O.

A. Alzubi, “Performance evaluation of position-

based routing protocols using different mobility

models in manet,” Int. J. Comput. Appl., vol. 119,

no. 3, 2015.

[18] A. A. Chhachhar, “Location Server Assisted

Routing Protocol,” Isra University, Hyderabad,

Pakistan, 2015.

Proceedings of WInnComm Europe 2019, Copyright ©2019 Wireless Innovation Forum All Rights Reserved

27

	TS1 Kirsch paper
	TS1 Troll paper
	TS1 Wang paper
	TS2 Faizullah paper

