
© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 1

PROGRAMMING HETEROGENEOUS
SYSTEMS USING HSA
JOHN GLOSSNER, PH.D.

PRESIDENT, HSA FOUNDATION / CEO, GPT

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 2

AGENDA
About HSA
Heterogeneous Programming
Problem
Programming HSAF Systems –
Top Down View
Applications Programming
 Tools / Libraries
 Languages
 OpenCL, C++17, Cuda, Python

Runtime
 Initiating an HSA Application

System Architecture
 Queues
 Signals

HSAIL
 Portable Heterogeneous Virtual ISA
 Hardware Requirements

Performance Results
 On HSA Hardware

Conclusions

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 3

ABOUT HSA
HETEROGENEOUS SYSTEM ARCHITECTURE FOUNDATION

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 4

HSA FOUNDATION
Founded in June 2012
Developing a new platform for heterogeneous systems
 Working groups established to define the platform

Specifications
 V1.0 Specifications March 2015
 V1.1 Specifications March 2016
 V1.2 in progress

First compatible hardware
 4Q 2015 Carrizo
 4Q 2016 Bristol Ridge
 1Q 2017 HP Pavilion laptop

www.hsafoundation.com

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 5

HSA – AN OPEN PLATFORM
Publicly Available Specifications
 HSA Programmers Reference Manual
 HSA Platform System Architecture
 HSA Runtime
 HSA Multivendor Specification

Membership Open to Everyone
Royalty Free
 IP, Specifications, and APIs

Open Source
 Tools, Compilers, etc.
 Runtime implementations
 Tests

Abstracting Heterogeneous Programming
 ISA Agnostic
 CPU, GPU, DSP, FPGA, etc.
 Virtual ISA

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 6

THE PROBLEM
HETEROGENEOUS APPLICATION DEVELOPMENT

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 7

WHAT’S THE PROBLEM?
Heterogeneous processors are
widely available
Huge compute capability
 Acceleration Units (GPU, DSP, FPGA)
 CPU Cluster-based computer

Coherency
 Established in high-end
 Migrating to mainstream mobile and

consumer

BUT…
Heterogeneous programming
models not standardized
Multi-core/device applications
difficult to optimize or scale
Non-portable application
developer ecosystems

HSAF brings compute app abstraction to heterogeneous platforms

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 8

THE VISION
Make Heterogeneous Programming Much Easier

Single source programming 1

Any programming language 2

Eliminate data copies3

Common address space 4

Standardized command submission to Agents (GPU / DSP)5

Eliminate software layers between application and hardware6

ISA agnostic for CPU, GPU, DSP, and more7

Open source software stack 8

Single tool chain
C++, Python, JavaScript, …
Performance!
A pointer is a pointer
A common dispatch language
Efficient
x86, ARM, MIPS, PowerVR, Mali, Adreno, GPT, …
Open Access!

High performance

Low power

Extensible to other accelerators on the SoC

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 9

PORTABLE APPLICATIONS PROGRAMMING
FRAMEWORKS, LANGUAGES AND TOOLS

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 10

HCC - HETEROGENEOUS COMPUTE COMPILER

Compiler Architecture
 Single-source : Host and device code in the same

source file
 Fully Open Sourced Compiler using CLANG/LLVM

Expressing Parallelism with HCC
 C++ parallel_for_each + lambda
 C++17 Parallel STL
 OpenMP™ 3.1 C & C++ Support Today for CPU
 C++AMP™ 1.2 standard compatible

HCC generates both CPU and GPU code
 Traditional CPU programs can be compiled with HCC
 Heterogeneous programs

 Compiles the host code for CPU
 Compiles the kernel/parallel region for the GPU

Programmer Optimizable
 Control, pre-fetch, discard data movement
 Run asynchronous compute kernels
 Access GPU scratchpad memories

C++ & C COMPILER

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 11

“VECTOR ADD”, HCC C++
int column = 128;
int row = 256;
// define the compute grid
bounds<2> grid { column, row };

float* a = new float[grid.size()];
float* b = new float[grid.size()];
float* c = new float[grid.size()];

// Using standard C++17 launch syntax
parallel::for_each(par, begin(grid), end(grid),
[&](index<2> idx) {
int i = idx[1] * column + idx[0];
c[i] = a[i] + b[i];

}

hcc ISO
Standard C++

Single-Heap

Single Source

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 12

CUDA PORTING WITH HCC C++
Challenge:
 Many existing GPU-accelerated apps use proprietary CUDA language and

infrastructure

Strategy:
 Make it easy to port from CUDA to a common C or C++ programming model
 Common = resulting code runs through either CUDA NVCC or HCC C++

compiler
 Can use best development tools on either Nvidia or AMD platform
 Provide customers with choice in hardware and development tools
Implementation
 HIP = “Heterogeneous-compute Interface for Portability”
 Header maps hip* calls to CUDA RT or HSA RT
 Strong subset of CUDA RT functionality, focus on most commonly used functions
 Some HCC support to make porting easier
 Can use #ifdef for tricky cases and performance tuning

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 13

PORTABLE OPENCL™ (POCL)

OpenCL™ 1.2 and 2.0 API implementation
HSA runtime architecture supported
 HSAIL code from OpenCL™ kernels to finalize through HSA Runtime
 Global/local/private memory
 Barriers

Most of the OpenCL 1.2 kernel builtins
 OpenCL™ 2.0 shared virtual memory (SVM)
 OpenCL™ 2.0 atomics

Performance similar to vendor specific implementations
 Portable HSA (phsa) is a portable HSA implementation for CPU & DSP

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 14

PYTHON ON GPU’S

Numba: NumPy aware python compiler
 Open source. Avail on Github
 Sponsored by Continuum Analytics

Direct HSA Support
Automatic Parallelization
 Any universal function
 2x-200x speedup

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 15

RUNTIME

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 16

RUNTIME FEATURES
Thin user-mode API
 Interfaces for host to launch compute

kernels
 Standard across all vendors
 Does not combine runtime from different

vendors

Error Handling
System and Agent information
Signal and Synchronization
Architected Dispatch
Memory Management

RUNTIME PIC GOES HERE

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 17

SYSTEMS ARCHITECTURE OVERVIEW

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 18

SYS ARCH SPEC OVERVIEW
Requirements Overview
 What is HSA
 Minimum vs complete product
 Programming model
 Compliant systems requirements

2.0 Details
 Shared virtual memory
 Cache coherency
 Flat addressing
 Endianess
 Signaling and synchronization
 Atomic memory operations
 System timestamp
 User mode queueing

 AQL packets
 Agent scheduling
 Kernel dispatch forward progress
 Floating point exceptions
 Kernel agent debug infrastructure
 Platform topology discovery
 Images
 Profiling

Memory Consistency Model
 Definitions
 Execution
 Program order
 Coherent order
 Global dependency order
 Scoped synchronization order
 Happens-before order
 Race-free programs
 Non-sequentially consistent execution
 Races

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 19

SYSTEM ARCHITECTURE OVERVIEW
Support Data-Parallel and Task-
Parallel Programming
 Multiple instruction sets
 Host CPU’s and Kernel agents

Two Machine Models
 Small Model: 32-bit address space
 Large Model: 64-bit address space
 optional 32-bit process to run small model

code

HSA Compliant System Meets:
 Queuing model
 Memory model
 Quality of service
 ISA for parallel processing
 Standardized interfaces, processes,

communication protocols, and
memory models

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 20

MOTIVATION (TODAY’S PICTURE)

Application OS
Transfer

buffer to GPU Copy/Map
Memory

Queue Job

Schedule Job
Start Job

Finish Job
Schedule

Application
Get Buffer

Copy/Map
Memory

Agent GPU/DSP

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 21

WITH SHARED VIRTUAL MEMORY
Application OS

Transfer
buffer to GPU Copy/Map

Memory
Queue Job

Schedule Job
Start Job

Finish Job
Schedule

Application
Get Buffer

Copy/Map
Memory

Agent GPU/DSP

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 22

WITH COHERENT CACHE MEMORY

Application OS
Transfer

buffer to GPU Copy/Map
Memory

Queue Job

Schedule Job
Start Job

Finish Job
Schedule

Application
Get Buffer

Copy/Map
Memory

Agent GPU/DSP

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 23

SIGNALS
HSA agents support signaling
 creation/destruction using runtime APIs

Any Agent can access signals
 Wake up agents waiting upon the object
 Query/Wait for current object
 Allows conditions

Hardware-assisted signaling and
synchronization primitives
 Memory semantics, equivalent to platform

atomics
 e.g. 32bit or 64bit value, content updated atomically
 wait on value by HSA agents and AQL packets

 Synchronizes execution between threads on
HSA agents and host CPU

One-to-one and one-to-many
signaling
 System Software, runtime & application SW use

infrastructure to build higher-level
synchronization
 mutexes, semaphores, …

Advantages
 Asynchronous events between agents

 Doesn’t require CPU
 Common idiom for work offload
 Low power waiting

HSA
agent

HSA
agent CPU

Signal

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 24

WITH SIGNALING

Application OS
Transfer

buffer to GPU Copy/Map
Memory

Queue Job

Schedule Job
Start Job

Finish Job
Schedule

Application
Get Buffer

Copy/Map
Memory

Agent GPU/DSP

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 25

HSA QUEUING MODEL
User mode queuing
 Low latency dispatch
 Application dispatches directly
 No OS or driver required
 “Unlimited” # of queues per process

Architected Queuing Layer (AQL)
 Single compute dispatch path for all hardware
 No driver translation, direct to hardware
 Standard across vendors!
 Guaranteed backward compatibility

Allows for dispatch to queue from any agent
 CPU or GPU or DSP or FPGA, etc.

Agent self enqueue enables
 Recursion, Tree traversal, Wavefront reforming

Benefits from shared
virtual memory, platform
atomics and coherency

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 26

WITH USER MODE QUEUING

Application CPU OS Agent GPU/DSP
Transfer

buffer to GPU Copy/Map
Memory

Queue Job

Schedule Job
Start Job

Finish Job
Schedule

Application
Get Buffer

Copy/Map
Memory

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 27

FINAL PICTURE: SVM + CACHE COHERENCY +
SIGNALS + USER MODE QUEUES

Application OS Agent GPU/DSP

Queue Job

Start Job

Finish Job

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 28

HSA COMMAND AND DISPATCH FLOW

Application
A

Application
B

Application
C

Optional Dispatch
Buffer

Agent
HARDWARE

Hardware Queue

A
A A

Hardware Queue

B

B B

Hardware Queue

C
C C

C

C

HW view:
 HW / microcode controlled
 HW scheduling
 Architected Queuing

Language (AQL)
 HW-managed protection

SW view:
 User-mode dispatches to HW
 No KMD overhead
 Low dispatch times
 CPU & GPU dispatch APIs

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 29

PROGRAMMERS REFERENCE MANUAL
HSAIL

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 30

THE PORTABILITY CHALLENGE
CPU ISAs – Backwards Compatible
 ISA innovations added incrementally (ie NEON, AVX, etc)

 ISA retains backwards-compatibility with previous generation
 HSA instruction-set architectures: ARM, MIPS, and x86

Kernel Agent ISAs – No Backwards Compatibility
 GPU, DSP, DNN, Image Signal Processor, Custom Accelerators, etc.
 Massive diversity of architectures in the market

 Each vendor has own ISA - and often several in market at same time
 Compatibility via APIs (OpenGL, DirectX, OpenCV)

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 31

HSA INTERMEDIATE LAYER — HSAIL
Virtual ISA for parallel programs
 Finalized to native ISA by a compiler
 Dynamic or Offline

 ISA independent by design

Explicitly parallel
 Designed for data parallel programming

Multiple HLL Support
 Exceptions, virtual functions, etc.
 Java, C++, OpenMP, C++, Python,

etc

Brings parallel acceleration to
mainstream programming
languagesmain() {

…

#pragma omp parallel for
for (int i=0;i<N; i++) {
}

…
}

High-Level
Compiler

BRIG Finalizer Component
ISA

Host ISA

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 32

HSAIL FEATURES
A Virtual Explicitly Parallel ISA
 ~135 Opcodes
 RISC Register-based Load/Store
 Arithmetic
 IEEE 754 Floating Point including 16-bit
 Integer (32/64-bit)
 DSP fixed point
 Packed / SIMD
 f16x2, f16x4, f16x8, f32x2, f32x4, f64x2
 signed/unsigned 8x4, 8x8, 8x16, 16x2, 16x4,

16x8, 32x2, 32x4, 64x2
 Branches & Function Calls
 Atomic Operations

Wavefronts
 1, 2, 4, 8, 16, 32, or 64 SIMD lanes
 Lanes can be active or inactive

Memory
 Shared Virtual Memory

Exceptions

ld_global_u64 $d0, [$d6 + 120] ; $d0= load($d6+120)
add_u64 $d1, $d0, 24 ; $d1= $d2+24

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 33

PERFORMANCE RESULTS

Python Geographic Locality
What is the distance from a set of
points to a target point
 How many points are within a specified

range
Numba can auto-parallelize user
universal functions for HSA
 Ufunc’s broadcast operation over

elements of a NumPy array
 ZERO HSA developer knowledge

required

1M Points
 >8X speedup

https://github.com/ContinuumIO/Numba-HSA-Webinar

https://github.com/ContinuumIO/Numba-HSA-Webinar

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 35

OPENCL: FIR & AES
FIR is a memory-intensive streaming workload
AES is a compute-intensive streaming workload
CL12 – cl_mem buffer
 Copy to/from the device

CL20 – SVM buffer – Coarse Grain Sync
 Copy to/from SVM
 Data copy cannot be avoided, since the space for SVM

is limited

HSA – Unified Memory Space – Fine Grained Sync
 Regular pointer
 No explicit copy

Results
 HSA compute abstraction
 NO performance penalty

Not all algorithms run faster
 Measured on Kaveri (A pre-HSA 1.0 device)
 Limited Coherent throughput

Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, David
Kaeli,A Comprehensive Performance Analysis of HSA and OpenCL 2.0,
Proceedings of the 2016 International Symposium on Program
Analysis and System Software, April 2016, to appear.

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 36

BLACK-SCHOLES
C++ on HSA
 Matches or outperforms OpenCL

Course Grained SVM
 Matches OpenCL buffers for bandwidth
 More predictable performance

Fine Grained SVM
 Faster kernel dispatch
 Larger allocations
 Shared data structure

Results
 HSA compute abstraction
 NO performance penalty

Source: Ralph Potter – Codeplay. Presentation made to SG14 C++ Workgroup

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 37

HSA PRODUCTS

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 38

HP PAVILION - 15Z
15.6" diagonal FHD IPS UWVA BrightView WLED-
backlit (1920 x 1080) Touch Display
 Model V1M95AV_1

AMD Quad-Core A12-9700P (Bristol Ridge)
 2.5 GHz, up to 3.4 GHz,
 2 MB cache
 AMD Radeon™ R7 Graphics

16GB DDR4-2133 SDRAM (2 x 8GB)
2TB 5400 rpm SATA
 Or 256GB SSD

HP Wide Vision HD Webcam with Dual Digital
Microphone
Intel® 802.11ac (1x1) Wi-Fi® and Bluetooth® 4.2
Combo
Full-size island-style backlit keyboard
SuperMulti DVD burner
Runs RoCm

$500 base price
$880 as configured

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 39

CONCLUSIONS

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 40

V1.2 SPECIFICATIONS IN PROGRESS

Improved
Data Interop

Fixed function
accelerators
(e.g. FPGA)

Local device
memory

Coarse
grain

memory
Architected
Debug

BRIG, new
linking formats

Architecture Fully
formalized
memory
model

HSAIL Parallel
loops

Flexible API
and access
semantics

Programming
Models

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 41

SUMMARY
2012 goal of changing chip H/W architecture achieved
 Cache coherent shared virtual memory

2014-2015 S/W architecture to support H/W
 March 2015 V1.0 specs
 Programmed in any language (C++, Python, OpenCL)

2015-2016
 May 2016 v1.1 specs (backward compatible)
 Multivendor support
 Wider range of processors

2016 Initial H/W platforms arriving
 AMD’s Carrizo (Dell, Asus, Lenovo)
 Licensable IP available

2017 Production Systems
 AMD’s Bristol Ridge / HP Pavilion Laptops

Excellent performance results
 No performance penalty for HSA abstraction

© Copyright 2012-2017 HSA Foundation. All Rights Reserved. 42

THANK YOU!
WWW.HSAFOUNDATION.COM

	Programming Heterogeneous Systems using HSA
	Agenda
	About HSA
	HSA Foundation
	hsa – AN open platform
	The problem
	What’s the problem?
	The vision
	Portable applications programming
	HCC - Heterogeneous Compute Compiler
	“Vector ADD”, hcc C++
	CUDA Porting with HCC C++
	Portable OpenCL™ (pocl)
	Python on GPU’s
	Runtime
	Runtime Features
	Systems architecture overview
	Sys arch spec overview
	System Architecture Overview
	Motivation (Today’s picture)
	With Shared Virtual memory
	With coherent cache memory
	Signals
	With signaling
	HSA Queuing Model
	With user mode queuing
	Final picture: SVM + Cache Coherency + Signals + User mode queues
	HSA COMMAND AND DISPATCH FLOW
	Programmers reference manual
	The portability challenge
	HSA Intermediate Layer — HSAIL
	HSAIL Features
	Performance results
	Python Geographic Locality
	OpenCL: FIR & AES
	Black-scholes
	HSA ProducTS
	HP Pavilion - 15z
	Conclusions
	V1.2 specifications in progress
	SUMMARY
	Thank you!

