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Introduction

 Land Mobile Radio (LMR) systems are critical for many public safety
and emergency response operations

« Typically, channels are assigned to LMR users based on predefined
models/estimates of the traffic load and propagation loss

« Have to rely on conservative assumptions and wider protection
margins to avoid interference

 Detailed information on how, when, and where spectrum is being used
can help regulatory tasks such as planning, assignment, and interference
resolution



Introduction

« The Communications Research Centre Canada (CRC) is the Canadian
spectrum regulator’s R&D organization

« One key research area focuses on spectrum analytics to enable more
effective management

« Developed a proof-of-concept Spectrum Environment Awareness system (*)
deployed in Ottawa since February 2016

e continuous monitoring of spectrum usage below 6 GHz

« measurements of LMR bands have average band sweep time = 0.3 s,
resolution bandwidth = 1.98 kHz

() L. Li etal., “A Cloud-based Spectrum Environment Awareness System”, IEEE PIMRC 2017
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LMR Sensor Deployment
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Spectrum Measurements: Measured Rx. Power (866-869 MHz)
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Spectrum Measurements: LMR Channel Activity Patterns

Trunked public safety voice
channels typically exhibit
heavy-tailed distributions
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techniques (e.g., deep
generative neural networks)

(*) H. Rutagemwa et al., “Spectrum Sharing Opportunities in Land Mobile Radio Bands: A Data-Driven Approach”, IEEE PIMRC 2017
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Spectrum Measurements: Measured LMR Occupancy (800
MHz band)

Aggregate hourly usage
statistics produced
continuously via an Apache
Spark cluster

More convenient for longer-
term analysis of usage
patterns

Reveals seasonality of
spectrum usage across
many channels
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Usage Pattern Modelling and Prediction
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Daily and weekly periodicities
observed in many LMR channels

Temporal patterns can be learned
and leveraged to predict a given
channel’s spectrum occupancy

Predictive models enable a more
proactive approach to spectrum
assignment

Auto-correlation
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LMR Spectrum Usage: External Factors (Events)
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LMR Spectrum Usage: External Factors (Weather)
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Correlation with External Factors

12

Major events and severe weather
correlate with the aggregate hourly
usage statistics

Distributions of high-resolution
measurement data better reveal the
impact of external factors

Right tail of busy-state duration
histogram indicates an increased
number of longer bursts
(conversations)
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Correlation with External Factors
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Correlation between major
events and LMR usage

Snowstorm
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power histogram (*) -

Alternatively, for many 6k
cases, a major event
increases the intensity of
one or more modes of the

histogram instead
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Applying machine learning
techniques would require
domain knowledge and
suitable feature selection
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(*) A. Abdallah et al., “Detecting the Impact of Human Mega-Events on Spectrum Usage”, [IEEE CCNC 2016



Conclusions

« Continuous spectrum monitoring enables new
data-driven approaches to facilitate spectrum
management

« Temporal usage patterns can be learned and
leveraged to predict future spectrum occupancy

* Fusion with external (non-spectrum) data, such as
weather and events, can help identify fundamental
factors driving the spectrum demand and improve
predictive analytics

14



Further Work

o Spatial spectrum usage characterization

 Exploration of data-driven spectrum sharing
opportunities in LMR and other bands

 Application of machine learning techniques to big
spectrum data
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Additional Material

« Machine learning applied to reveal spectrum usage-behaviour similarities
across hundreds of LMR channels

t-SNE Embedding of LMR channels in 138-144, 450-470, and 860-869 MHz
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