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• Effective modulation classification is required for spectrum sensing in 
cognitive radio (CR) systems.

• Deep learning-based classification is an effective method for Automated 
modulation classification (AMC).

• Proposed method employs CNN-based classifier on spectrum 
correlation function (SCF) patterns of sensed signals.

• The main challenges of implementing the deep learning methods is the 
high computation complexity. 

• High computation complexity results in a high power and area 
requirements in a possible ASIC implementation.

• To overcome above, we propose a binarized - CNN to apply for SCF 
pattern classification.
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Figure 1: System Architecture of our proposed deep learning-based AMC method.
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• The modulated signals are treated as cyclostationary processes that refer to the 
processes with periodic first-order statistics, such as mean and autocorrelation 
[1].

• Cyclic autocorrelation function (CAF) indicates the amount of correlation 
between different frequency shifted versions of a given signal and represents the 
fundamental parameters of their second order periodicity.

• CAF can be calculated as follows:

* 2

Where [.] denotes the modulated signal that is considered 
as cyclostationary process and  is the cyclic frequency
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• Spectral correlation function (SCF) can be obtain by calculating the Fast Fourier
Transform of

• Modulated signal received from a receiver is used as the input for our proposed
SCF pattern generation mechanism which generates SCF patterns characterizing
unique features of the associated modulation techniques.
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• Modulated signals contain 2nd order periodic statistical features associated with
the corresponding modulation scheme.

• 2nd order features unique to each modulation scheme can be extracted from the
SCF of the modulated signal [1].

• In this work, we use SCF pattern to classify modulation schemes such as FSK,
BPSK, QPSK, and OFDM. However, to identify higher order modulations, such as
16QAM and 64QAM, higher order methods need to be used [2].

• Another advantage of using the SCF patterns is the resilience to stationary
impairments such as additive white Gaussian noise (AWGN) because the SCF
suppresses stationary features [1].
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• CNN designed in our work consists of 3 convolution layers, 2 pooling layers, a
fully connected layer with rectifier linear units (ReLU), and a softmax-based
output layer.

Figure 2: The Structure of CNN.
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• If the weights of the convolution layers and fully connected layers remain as 
floating-point numbers, the total number of floating point multiplication 
operations required to perform in a single iteration of testing is shown in the 
table below:

Layer Floating point Multiplications

Convolution layer 1 24 × 24 × 5 × 5 × 32 = 460800

Convolution layer 2 12 × 12 × 5 × 5 × 32 = 115200

Convolution layer 3 6 × 6 × 2 × 2 × 32 = 4608

Fully connected ReLU 1152 × 32 = 36864

Fully connected softmax 32 × 5 = 160

The Number of
Required Multiplications

617632
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• Floating point multiplication is computationally expensive in digital logic and the 
number of the total multiplications required for the CNN is very high, the 
deployments of the above CNN becomes a hardware-expensive task. 

• By modifying training algorithm the floating-point weights of the CNN are 
replaced by five possible values −2p,−1, 0, 1, 2p, where p is a positive integer.

• Digital logic mapping of multiplications with low-complexity weights are shown 
in the table below:

Weight Value Mapping

0 No connection

1 Connection

-1 Negation

2p Right shift by p bits

2p Right shift by p bits and negation
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Figure 3: Modified Training Algorithm for Low-Complexity CNN.
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• Proposed method is evaluated for identifying signals from BPSK, QPSK,     
2-FSK, 4-FSK, and OFDM modulation schemes.

• Modulation schemes are simulated using MATLAB/Simulink software.
• For all simulated signals, the carrier frequency is selected as 1 kHz and the 

symbol rate is chosen to be 100 Hz.
• The amplitudes of the signals are normalized to the range [0, 1].
• For BPSK and 2-FSK, a data stream of 256 symbols with binary symbols in 

random order is used.  In 2-FSK, the two frequencies used are 100 Hz and 
160 Hz. 

• For simulation of QPSK and 4-FSK, a data stream of 256 symbols with 4 
symbols in random order is used. In 4-FSK, the four frequencies used are 
100 Hz, 120 Hz, 140 Hz, and 160 Hz. 

• For the simulation of OFDM, 256 data random data stream is used with 4 
symbols. OFDM system simulated contains 128 QPSK modulated sub-
carriers.
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Figure 4: 3D-SCF patterns of (a) BPSK, (b) QPSK,  (c) 2-FSK, (d) 4-FSK, and (e) OFDM modulation techniques.
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Figure 5: 2D-SCF patterns (XY view of 3D SCF pattern) of (a) BPSK, (b) QPSK,  (c) 2-FSK, (d) 4-FSK, and (e) 
OFDM modulation techniques.
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• The gray-scale images of the SCF patterns are resized to be 48×48
images.

• Considering the symmetry of the patterns, a quarter of the pixels from the
resized images is used as the input for the low-complexity CNN classifier.
Therefore, the input size of the low-complexity CNN is 24×24.

• The low-complexity CNN is trained using data that includes 400 of 2000
patterns corresponding to each modulation scheme which contained SCF
patterns generated for signals with different SNR levels.

• Another data set containing 250 patterns from each SNR for each
modulation scheme is used to evaluate the performances.

• The classifiers based on low-complexity and conventional CNNs are
implemented using TensorFlowAPIs [3].

• In the simulation, we set the number of iterations as 2000 and the batch
size to be 20.
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• We evaluate the effectiveness of our proposed method on a fading
channel by considering SCF patterns of simulated modulated signals in
additive white Gaussian noise (AWGN) environments with SNR varying
from 0 dB to 5 dB.

Figure 6: Accuracy of classification of modulation schemes when using low-complexity CNN as the SNR of 
modulated signal varies from 0 to 5 dB.
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• The performance of low-complexity CNN and regular CNN are compared.

Figure 6: Accuracy when using low-complexity CNN.

Figure 7: Accuracy when using regular CNN.
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• For conventional CNN, classification accuracy is above 98% for all
modulation schemes except BPSK. For BPSK modulation scheme,
classification accuracy observed from conventional CNN is 92%.

• For our low-complexity CNN, the classification accuracy is above 97% for
all modulation schemes except BPSK. For BPSK modulation scheme, the
classification accuracy observed for low-complexity CNN is 91.2%.

• Therefore, the low-complexity CNN achieves comparable accuracy in
classification of modulation schemes compared with that achieved by
conventional CNN.

• Furthermore, proposed CNN outperforms the conventional CNN in low
computational complexity.

• Overall, our proposed CNN achieves a good tradeoff between the
performance and the computational complexity.
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• In this paper, we introduce an AMC method for cognitive radio.
• Our proposed framework consists of one SCF-based feature 

characterization mechanism and low-complexity CNN-based identification 
scheme. 

• With the noise-resilient SCF patterns, our method is able to achieve high 
accuracy of classification even in the presence of environment noise. 

• CNN technique enables us to characterize the distinguishable features of 
the modulation techniques having similar associated SCF patterns. 

• Our proposed low-complexity CNN has the advantage of containing no 
multipliers while a conventional CNN with the same structure requires 
performing 617632 floating-point multiplication operations.

• Simulation results show that our propose methods can achieve accuracy 
above 90% in classifying the modulation techniques when SNR is > 0 dB.
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