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ABSTRACT

This paper proposes a low-cost cognitive radar system that
exploits deep learning and 2.4 GHz continues wave Doppler
radar sensing techniques for detecting and identifying micro un-
manned aerial systems (micro UASs). The proposed architec-
ture, employes the spectral correlation function (SCF), which is
a Doppler radar-based method that has high resilience to envi-
ronmental noise, to generate the unique pattern signatures for
the individual micro UASs. Furthermore, a low-complexity
binarized convolutional neural network (CNN) is designed to
detect and identify the micro UASs by recognizing the SCF-
based pattern signatures. By employing the low-complexity
CNN, the computationally costly 617632 floating point multi-
plication operations required in the conventional CNN are repre-
sented by zero computational cost no connections, simple con-
nections, negation operations, bit-shifting operations, and bit-
shifting with negation operations. The simulations evaluate the
performance of the proposed Low-complexity CNN in detect-
ing and identifying the micro UASs by comparing the accuracy
achieved by the proposed method with that is obtained by using
the conventional CNN.

1. INTRODUCTION

Micro unmanned aerial systems (micro-UASs) are remotely
controlled or autonomous small scaled aerial systems. They are
low-cost devices with small dimensions and weights and also
referred as "drones". In recent years, micro-UASs are becom-
ing increasingly popular among hobbyist and also for a variety
of applications such as performance art, aerial photography and
video, search and rescue mission, precision agriculture, map-
ping and surveying, and package delivering [1]. Despite these
useful applications, misuses of micro-UASs are also becoming a
concerning threat to the public. Micro UASs have been reported
to interfere with aircraft [2,3]. A micro-UAS was crashed at
the White House, raising concerns about security risks [4]. The
micro-UASs can also be used as spying devices which violate
the privacy of civilians and the government and private organi-
zation.

Radar sensing is one of the most effective methods adopted by
defense mechanisms for detecting aerial systems. However, be-
cause of the small size and slow moving speed, the micro UASs

are undetectable by the conventional radar systems designed to
detect larger and fast-moving aerial systems. As one type of non-
radar techniques, acoustic signal processing has been widely
used in detecting micro-UASs [5]. Acoustic signal processing-
based techniques are effective but not resilient to environmen-
tal noise. Another existing non-radar technique is to detect
the radio frequency signals that are used for the remote con-
trol of the micro-UAS [6]. This method may not be appropriate
for fully autonomous micro-UASs. Some of the other existing
non-radar strategies include video-based detection and thermal
based detection [6]. Recently some radar-based systems have
also been proposed for detecting and identifying micro-UASs.
In [7], Drozdowicz et al. discussed an experiment conducted
for the detection and tracking of micro-UASs using a radar sys-
tem. In [8], Shin et al., proposed a K-band radar system with
fiber-optic links for detecting micro-UASs. In [9], Jahangir et
al. used 2-D L-Band receiver arrays to detect micro-UASs. In
this method, decision tree machine learning technique was uti-
lized to reject other targets. In our previous work, we proposed
a low-cost 2.4 GHz continuous-wave Doppler radar sensor built
using commercially available RF components along with a sig-
nal processing mechanism that uses spectral correlation function
(SCF) to generate noise-resilient and distinguishable 2-D signa-
ture patterns and deep belief network (DBN) based classifier for
detection and identification of micro-UASs [10,11].

Deep learning methods are artificial neural network (ANN)
based machine learning techniques having multiple layer hier-
archies of ANNs. These techniques are more effective in ex-
tracting hierarchical features from raw data [12]. Deep learning
methods have been used for pattern recognition in various ap-
plication areas [13—17]. Convolutional neural networks (CNN’s)
are one of the most successful deep learning techniques inspired
by the neuron arrangement of the visual cortex of mammals [18].
CNN-based methods are widely used for image classification
tasks including radar signature analysis [19-22].

The main challenge of implementing deep learning methods
is the high computation-complexity that increases the power and
area cost of digital implementations for deep learning based
classifiers. High computation-complexity is a result of the high
number of floating-point multiplications operations. In our pre-
vious work, we proposed a multiplierless low-complexity DBN
with direct mapping to binary logic circuits. In this work, we use
a multiplierless CNN-based classifier for detecting and identify-
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ing micro-UASs SCF patterns. In [23], Lin ef al. proposed a
binarization method for backpropagation algorithm which pro-
duces binary weights {—1,0,1}. In this paper, we adopt this
method to realize the multiplierless low-complexity CNN.

In the following section, we provide an overview of the pro-
posed system. Sections 3, 4, and 5 briefly discuss the proposed
radar sensor, SCF pattern generation, and the low-complexity
CNN, respectively. The conducted experiment and the results
obtained are summarized in Section 6. In Section 7, the conclu-
sions and future work are presented.

2. OVERVIEW
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Figure 1: Overview of the proposed system.

As shown in Fig. 1, the proposed system consists of the radar
sensor and the deep learning-based detection and identifica-
tion method. The radar sensor is formed with a Doppler radar
RF front-end, low-frequency amplifiers, and an analog to dig-
ital converter (ADC) system. Relevant low-frequency Doppler
shifts are amplified with low-frequency amplifiers and ADC is
used to sample the signals for further digital signal processing.

Deep learning-based detection and identification method con-
tains a spectral correlation function (SCF)-based feature extrac-
tion method followed by the low-complexity CNN-based pattern
classifier, which classifies the generated SCF patterns to detect
and identify micro UASs presence within the radar beam.

3. RADAR SENSOR

Figure 2(a) illustrates the block diagram of the radar sensor pre-
senting the details of the radar front-end. The front-end of the
radar sensor is a Doppler radar system for capturing frequency
shifts induced on reflected electromagnetic waves. 2.4GHz
continues-wave interrogation waveform is transmitted through
the transmitter Tx and the reflected waves are captured by the
receiver Rx. The moving propellers of micro-UASs cause me-
chanically induced phase modulations on the reflected signal
that produces Doppler shifts.

A bandpass filter is used to filter out the noise in the received
signal through Rx. Low noise amplifiers (LNAs) are used to
boost the filtered received signal. The amplified signal is mixed
with in-phase (I) and quadrature (Q) components of the transmit-
ted signal. A phase-shifter (90-degree hybrid) is used to gen-
erate the I and Q components of the transmitted signal. The
I/Q based method is employed to eliminate the possible effects
of null points. In order to extract the induced Doppler shifts,
lowpass filters are applied on the mixer output signals. Low-
frequency amplifier stage with lowpass filtering of 100 Hz cut-
off frequency is used to extract and boost the useful Doppler fre-
quency shifts for micro-UAS detection and classification. ADC
is used to sample and record the boosted signals for further pro-
cessing. The practical implementation of the radar sensor is
shown in Fig. 2(b). Doppler radar front-end is implemented us-
ing commercially available RF components, low-frequency am-
plifiers are implemented with low-cost analog components. Na-
tional Instruments data acquisition unit is used as the ADCs.

4. SCF SIGNATURE PATTERNS

Cyclic Autocorrelation Function (CAF) is defined to quantize
the amount of correlation between different frequency shifted
versions of a given signal and represent the fundamental param-
eters of their second order periodicity [24]. CAF is calculated
as follows:

N . .
Z (E[TL].T* [TL _ l]e—]ZTrozn e—jTrozl

ey
Where z[] is the given signal and o = m/Tj is the cyclic fre-
quency, when Tj is the process period, and m is an integer.
Spectral correlation function (SCF) is the Fourier transform of
CAF, f the temporal frequency of the given signal SCF is cal-
culated as follows:

Bl =14 an 1
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Figure 2: (a) System architecture of our proposed deep learning-based AMC method; (b) Implementation of radar sensor.
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For signals that have different modulation schemes, it has
been shown that the SCF provides unique peak profiles because

Table 1: The floating-point multiplication operations required in CNN.

Layer Floating point Multiplications

Convolution layer 1 24 x 24 x 5 x 5 x 32 = 460800

Convolution layer 2 12 x 12 x5 x 5 x 32 =115200

Convolution layer 3 6 x6x2x2x32=4608

of their modulation types [24]. Because that the propeller mo- Fully connected ReLU 1152 x 32 = 36864
tions of micro UASs induce the Doppler effect mechanically, Fully connected softmax 32 x5 =160
which can be considered as the phase modulation characteriz- The Number of 617632

ing the unique physical properties of different types of micro
UASs, it is possible to observe a distinguishable peak profile on
SCF of the extracted Doppler radar signal for each type of micro
UASs [25].Another advantage of using the SCF patterns is since
the SCF suppresses stationary features, our method is resilient
to stationary impairments such as additive white Gaussian noise
(AWGN) [24].

5. LOW-COMPLEXITY CNN

As shown in the Fig. 3, the CNN designed in our work consists
of 3 convolution layers, 2 pooling layers, a fully connected layer
with rectifier linear units (ReLU), and a softmax-based output
layer. The inputs to the CNN are 2D images having the size of
24 x 24. The first convolution layer evaluates 32 features with
5 x b kernel size. Maximum pooling is performed after the first
convolution layer with the kernel size of 2 x 2, which reduces the
image size to 12 x 12. The second convolution layer evaluates 32
features with 5 x 5 kernel size along with 2 maximum pooling,
which reduces the size of the image to 6 x 6. The third convolu-
tion layer evaluates 32 features with 2 x 2 kernel size. The out-
puts of the 32 kernels of the third convolution layer are reshaped
and combined to form a vector of the size 6 x 6 x 32 = 1152.

Required Multiplications

A fully connected layer with 1024 ReLU units is added on top
along with a softmax layer for classification.

If the weights of the convolution layers and fully connected
layers remain as floating-point numbers, the total number of
floating point multiplication operations required to perform in
a single iteration of testing is shown in Table 1. We assume the
number of class labels as 5. Since floating point multiplication
is computationally expensive in digital logic and the number of
the total multiplications required for the CNN is very high, the
deployments of the above CNN becomes a hardware-expensive
task. By modifying the backpropagation algorithm of the CNN
as shown in Table 2, we replace the floating-point weights of
the CNN by using five possible values —27, —1,0, 1, 2P, where
p is a positive integer. By doing so, we reduce the hardware-
expensive floating-point multiplications to the operations that
are much less costly in the digital hardware as shown in Table 3.
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Figure 3: The structure of CNN.

Table 2: The training algorithm for updating our low-complexity CNN.

Operators and functions:

. >: the elementwise more than or equal comparison of
two matrices.

.x: the elementwise multiplication of two matrices.

y = sign(z): ifzx <0,y =—1,elsey = 1.

y = absolute(z): ifx < 0,y = —x, else y = x.

Y = rand(X): randomly assigns y;; € [0, 1]
and dim(Y) = dim(X).

y = cast(x): if x = true, y = 1, else y = 0.

W = backprop(W, f): applies the gradient descent based
backpropagation algorithm to fine-tune the weight matrix
‘W, where f is a batch of training data.

f = nextbatch(F, batchsize): returns the next batch of
training data according to batch size, where F is the
training data set.

W, = clipping(W, L): clips the element values of weight
matrix W to be in the range [— L, L] where L is a
predetermined scalar.

Inputs: L-clipping level, W-initial weight matrix ,
F-training data, T-labels corresponding to training data,
N-number of training iterations.

Output: Wy,-binarized weight matrix (w;; € {—1,0,1})

Steps:

For epoch < N
| = nextbatch(F, 50)

W = backprop(W, f)

If (mode(epoch, 100) = 0)
W, = dipping(W, L)
S = sign(W)
P = absolute(W.)/L
T =P. > rand(P)
Wy, = cast(T). x S

End

End

Table 3: Digital logic mapping of multiplications with low-complexity
weights.

Weight Value Mapping
0 No connection
1 Connection
-1 Negation
2p Right shift by p bits
—2p Right shift by p bits and negation

6. EXPERIMENT AND RESULTS

The proposed radar sensor is set up in the laboratory environ-
ment and the experiment is conducted using four types of micro-
UASs. First, the Doppler radar sensor is operated with the
micro-UASs whose positions are fixed in front of the radar beam.
The time series data collected from the ADC are used to gener-
ate a set of reference SCF patterns that is used as the pattern
signature for the scenario in which no micro-UASs presented.
Then micro-UASs are clamped in front of the radar beam by a
distance of 3 meters from the transmitter and receiver antennas
to a reasonable far-field approximation at the radar frequency of
2.4 GHz. The time series are collected while the propellers of
each micro-UAS are in motion. The collected time series are
used to generate a set of SCF pattern signatures for each type of
micro-UAS. Figure 4 shows the micro-UASs used in the exper-
iment and Fig. 5 shows the example SCF patterns for reference
and for each micro-UAS. Furthermore, in our experiment, SCF
patterns are generated using a MATLAB Communications Sys-
tem Toolbox functions on experimentally collected data [26].

Pre-processing and training

The gray-scale images of the SCF patterns are resized to be
48 x 48 images. Fast Fourier transform (FFT) based method
is used for image scaling. A 2-dimensional (2D) FFT operation
is implemented on the original grayscale images and a 48 x 48
pixel square is selected from the center of the FFT transformed
image. Then inverse 2D FFT is performed to achieve the scaled
down image. By doing so, high-frequency components of the
original image are filtered out, and thus high-frequency noise
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Figure 4: Micro-UASs used in the experiment; (a) Type 1; (b) Type 2;
(c) Type 3; (d) Type 4.

is removed from the scaled down image. Considering the sym-
metry of the patterns, a quarter of the pixels from the resized
images is used as the input for the low-complexity CNN clas-
sifier. Therefore, the input size of the low-complexity CNN is
24 x 24.

The low-complexity CNN is trained using 1000 SCF pattern
data that includes 200 patterns corresponding to each micro-
UAS and the reference. As a comparison, a conventional CNN,
which has the same structure but uses floating-point accurate
weights, are also trained with the same 1000 training data. An-
other 50 patterns from each category are used to evaluate the per-
formance of the CNN. The classifiers based on low-complexity
and conventional CNNs are implemented using TensorFlow
APIs [27]. In the simulation, we set the number of iterations
as 1000 and the batch size to be 20. At each 100th iteration of
backpropagation training, binarization is performed for the low-
complexity CNN. The simulation results are illustrated in the
following subsection.

Results

Tables 4 and 5 present the confusion matrices for the TensorFlow
implementations of conventional and low-complexity CNNS, re-
spectively. In Tables 4 and 5, the rows represent the actual class
that each testing SCF pattern belongs to and the columns are the
classes identified by using the conventional and low-complexity
CNNE .

The overall detection accuracy of micro-UASs by using con-
ventional CNN based classifier is 98%, and that achieved by us-
ing the low-complexity CNN based classifier is 96.5%. The rates
of false alarm for the conventional and low-complexity CNNs
are 0.5% and 2%, respectively. Figure 7 compares the perfor-
mance of the these two considered CNNs in classifying micro-
UAS:s.

Based on the simulation results shown in Figs. 6 and 7, we can

Table 4: Classification of SCF patterns for micro-UAS detection and
identification using TensorFlow implementation of conventional CNN.

Actual Classification from CNN

Pattern | Type 1 | Type2 | Type3 | Type4 | Ref.

Type 1 48 0 2 0 0

Type 2 0 48 0 1 1

Type 3 0 0 50 0 0

Type 4 0 0 0 50 0
Ref. 1 0 0 0 49

Table 5: Classification of SCF patterns for micro-UAS detection
and identification using TensorFlow implementation of low-complexity
CNN.

Actual | Classification from Low-Complexity CNN
Pattern | Type 1 | Type2 | Type3 | Type4 | Ref.
Type 1 46 0 2 0 2
Type 2 0 48 1 0 1
Type 3 0 0 50 0 0
Type 4 0 0 0 49 1
Ref. 1 1 0 0 48

observe that the low-complexity CNN achieves comparable ac-
curacy in detection and identification of micro UASs compared
with that achieved by conventional CNN. Furthermore, our pro-
posed CNN outperforms the conventional CNN in low computa-
tional complexity. Overall, our proposed CNN achieves a good
tradeoff between the performance and the computational com-
plexity.

7. CONCLUSION

In this paper, we propose a deep learning-based cognitive radar
system for detecting and identifying micro-UASs by using SCF
function and low-complexity CNN method. The proposed sys-
tem consists of a low-cost radar sensor and a digital signal pro-
cessing subsystem that exploits the noise resilient SCF to gener-
ate unique signature patterns of the individual micro-UASs and
uses the low-complexity CNN to classify the patterns. Our pro-
posed low-complexity CNN has the advantage of containing no
multipliers while a conventional CNN with the same structure
requires performing 617632 floating-point multiplication oper-
ations. As illustrated in the simulation results, although the low-
complexity CNN shows lower accuracy compared with the con-
ventional CNN the accuracy of detection and identification is are
acceptable especially considering the low computational cost.

During the experiments for the work in this paper, we kept the
micro UASs immobile and leverage the Doppler shifts induced
by propeller movements. In our future work, we plan to conduct
the experiments by using moving micro UASs and we also plan
to set up the radar system for real-time detection of micro-UASs.
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Figure 5: Example SCF patterns for (a) Reference (When there is no micro-UAS); (b) Type 1; (c) Type 2; (d) Type 3; (e) Type 4.
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Figure 6: Comparison between the accuracies in detecting each type
of micro-UAS achieved by using the conventional CNN and low-
complexity CNN.
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