Comparison of contention-based protocols for secondary access in TV whitespaces

Keith Briggs keith.briggs@bt.com
Richard MacKenzie richard.mackenzie@bt.com

SDR'12 — WInnComm, Brussels 2012 June 27–29

Funded by FP7 QoSMOS

Outline

- We compare performance of protocols 802.11 and ECMA-392
- Backoff behaviour of both protocols is evaluated using Markov chains
- Fast and efficient way to solve these large and complex chains
- Adjusting a single parameter means a high throughput can be maintained over a range of system sizes
- Suitable for TV whitespace use

Bianchi 2000 — the classic paper

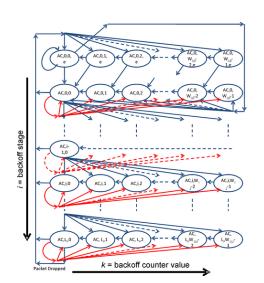
 Performance Analysis of the IEEE 802.11 Distributed Coordination Function. *IEEE Journal on selected areas in communications*, vol. 18, (March 2000), pp. 535–547.

Bianchi 2000 variables

- p Collision probability
- au Transmission probability for a single station
- n Number of terminals in the network
- S System throughput
- $P_{\rm s}$ Probability of any particular transmission being successful
- Ptr Probability of a transmission occurring in a particular timeslot
- E[P] Average payload packet size
 - $T_{\rm s}$ Time for a successful frame exchange sequence
 - T_c Time for an unsuccessful (collision) frame exchange sequence

Bianchi 2000 throughput calculation

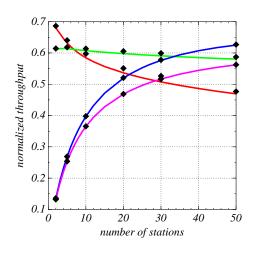
$$\begin{split} S &=& \frac{P_{\rm s}P_{tr}E[P]}{(1-P_{\rm tr})\sigma + P_{\rm tr}P_{\rm s}T_{\rm s} + P_{\rm tr}(1-P_{\rm s}T_{\rm c})} \\ p &=& 1 - (1-\tau)^{n-1} \\ P_{\rm tr} &=& 1 - (1-\tau)^{n} \\ P_{\rm s} &=& \frac{n\tau(1-\tau)^{n-1}}{1 - (1-\tau)^{n}} \end{split}$$


Bianchi 2000 Markov Chain

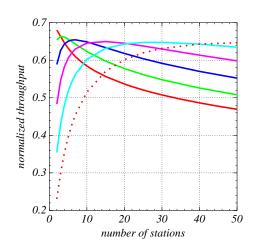
```
ProbabilityMatrix Bianchi(int w0, int m, double p) { // Bianchi eqn 1
    int i ,k, w=w0;
    double a=(1.0-p)/w0,b;
    ProbabilityMatrix P;
    for (i=0; i<=m; i++) {
        b=p/w;
        for (k=0; k<w; k++) {
            if (k<w-1) P. add.element(Tuple(i,k+1), Tuple(i,k), 1.0);
            if (k<w0) P. add.element(Tuple(i,0), Tuple(0,k),a);
            if (i) P. add.element(Tuple(i-1.0), Tuple(i,k),b);
            if (i=m) P. add.element(Tuple(i,0), Tuple(i,k),b);
        }
        w*=2;
    }
    return P;
}</pre>
```

Mathematical solution methods

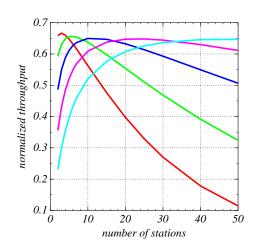
- transition matrix P: P_{ij} is the probability of moving to state j given that we are in state i
- Solve $z^{\mathsf{T}}(I-P) = 0$ for equilibrium vector z with ||z|| = 1
- This is a numerical solution of a very large sparse linear system
- Nonlinear equation solver to find τ (hence P_{tr}) iteratively
- Thus tells us the fraction of time the system spends in each state
- Final output: throughput performance as a function of design parameters and system load


ECMA-392 PCA protocol

Markov chain to compare the backoff behaviour of the 802.11 EDCA and ECMA-392 PCA (red and blue) protocols. In ECMA, CW is only reset after a successful transmission when the queue is empty, in an attempt to avoid congestion

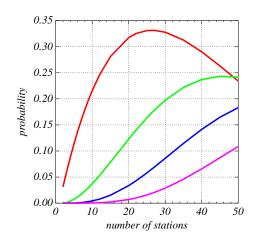

ECMA Markov chain defined

Results — system capacity


802.11 EDCA-type system (basic, RTS). ECMA-392 PCA-type system (basic, RTS). Black=simulation.

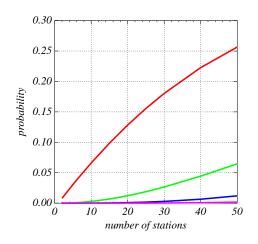
Adjusting 802.11

Adjusting 802.11 EDCA-type system CW_{\min} to maintain high throughput. $CW_{\min} = 15$, 31, 63, 127, 255, 511.


Adjusting ECMA-392

Adjusting ECMA-392 system CW_{\min} to maintain high throughput.

 $CW_{\text{min}} = 31, 63,$ 127, 255, 511.


Collision behaviour of ECMA-392

Collision behaviour of ECMA-392 for $CW_{\min} = 7$ and $CW_{\max} = 31$. Pr[NTX=2], Pr[NTX=3], Pr[NTX=4],

Pr[NTX=5].

Collision behaviour of ECMA-392

Collision behaviour of ECMA-392 for $CW_{\min} = 7$ and $CW_{\max} = 127$. $\Pr[NTX=2]$, $\Pr[NTX=3]$, $\Pr[NTX=4]$,

Pr[NTX=5].

Summary

- Using the same parameters, 802.11-type systems achieve higher throughput for small networks
- ECMA-392 type systems offer better coexistence with other secondary systems using the same channel and better throughput performance for networks with many terminals
- ullet By adjusting one parameter CW_{\min} , a high thoughput can be maintained over a wide range of network sizes
- When using parameters which maintain a high throughput, the collision probability is kept low; when there is a collision it is unlikely to involve more than two simultaneous transmissions
- This limits aggregate interference where the secondary systems might interfere with the channels primary users
- More details on QoSMOS project: http://www.ict-qosmos.eu