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ABSTRACT 

 

Software defined physical layer modems represent one of 

the main trends in communications and computing emerged 

in recent years. This is due on one hand to the need of 

supporting the requirements of modern communications 

systems in terms of seamless integration between different 

wireless technologies and multimedia convergence. On the 

other hand, programmable platforms are also beneficial as 

they allow consolidating methodologies, shortening 

development time and costs, extending products life-time. 

The drawback is that the complexity and power overhead of 

a pure computing fabric compared to a dedicated hardware 

can still represent a cost product developers are not willing 

to pay. This is particularly true for mobile terminals or in 

general for battery-powered devices. To become a concrete 

opportunity, baseband platforms should provide almost the 

same performance of custom designs while maintaining a 

certain degree of programmability. A good trade-off is 

represented by specific architectures integrating a proper 

mix of fine-grain general-purpose instructions and dedicated 

coarse-grain instructions wrapping custom hardware 

modules.  

 This paper presents a software implementation of a 

dual-mode IEEE 802.11a/p receiver on the Block Processing 

Engine (BPE), a proprietary template platform specifically 

designed for baseband processing. The combination of a 

novel extended instruction set with multi-thread processing 

support allows satisfying the most demanding requirements 

of the 802.11a and 802.11p standards.  

 

1. INTRODUCTION 

 

The automotive segment is now entering into the wireless 

arena with applications requiring reliable high data rate 

communications and including among the others vehicles 

safety, traffic control, remote tolling. To address vehicular 

environments, the IEEE recently introduced a new 

amendment to the 802.11 set of standards for wireless local 

area networks (WLAN) [1], namely IEEE 802.11p [2] for 

Wireless Access in Vehicular Environment (WAVE). Like 

several other standards developed for wideband digital 

communication, standards [1] are based on Orthogonal 

Frequency-Division Multiplexing (OFDM) modulation: 

among the others, a significant advantage of OFDM over 

single-carrier schemes is its ability to cope with severe 

channel multi-path conditions without the need for complex 

equalization filters. 

 The physical (PHY) layer [2] is mostly derived from the 

popular standard for indoor WLAN, IEEE 802.11a [3], with 

slight modifications required by the vehicular environment. 

The differences are designed to sustain robust vehicle-to-

vehicle (V2V) communications as well as between vehicles 

and infrastructures located roadside (V2I). With respect to 

the indoor scenario, V2V and V2I require faster access time 

(<50 ms), increased range, robustness, reliability, security 

and indeed mobility. Being used also for critical safety 

applications, it will operate on the Dedicated Short Range 

Communications (DSRC) licensed spectrum at 5.9 GHz, 

exclusively reserved free-of-charge by the US FCC to 

vehicular communications. 

 These modifications come at the cost of a different and 

more complex digital baseband processing. Even with the 

recent proliferation of top performing programmable 

platforms, the traditional approach of implementing the 

PHY layer in hardware is still considered by many the best 

approach to fully satisfy the crescent needs of modern 

communications: area footprint and power consumption are 

a growing concern especially when targeting embedded 

portable devices. On the other hand, the process of 

developing an Application Specific Integrated Circuit 

(ASIC) is recognized as being long and costly, and can 

seriously compromise the ability to track a continuously 

evolving market, as typical of modern telecommunication 

systems. From this perspective, Software Defined Radio 

(SDR) represents a good opportunity strongly supported by 

research community: in its widest meaning, it aims to 

entirely replace the operations previously performed in 

hardware by purely software programmable resources.  

 Several advanced techniques have been introduced in 

the last years in order to fill the gap between the software 

and the hardware approach: the former has the undoubted 

advantage of reducing the development time, but it comes at 

cost of lower data rate, higher power consumption and area 
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requirement. One of the most widely used technique to 

effectively increase the throughput is the parallel processing 

enabled by Single Instruction Multiple Data (SIMD), which 

takes advantage of the high degree of data parallelism 

usually found in most telecommunication algorithms. To be 

effective, SIMD machines adopt parallel data paths of 128 

bit or more. Another family is the Very Long Instruction 

Words (VLIW), wherein different types of functional units 

work in parallel. To further increase the performance, recent 

vector processors typically combine both of them [4][5]. 

Another recently emerged technique is the Single-Instruction 

Multiple-Task (SIMT), introduced by Coresonic to solve 

some of the major SIMD/VLIW drawbacks, like control 

overhead and improved memory utilization [6].  

 By today, various articles can be found about software 

implementation of the PHY of most common OFDM based 

standards, like [7][8][9], just to mention some of them.  All 

these share the common approach of proposing a solution 

having some parts in software and some others in hardware. 

Typically software is used where there is some need for 

flexibility as can be the case of multi-standard support or 

real-time PHY reconfiguration; another case is represented 

by scalability requirements, like variable FFT sizes. 

Intensive data processing (as FIR filtering, FFT computation 

and Viterbi decoding) is usually left in hardware. Despite 

the commonalities with the 11a, indeed few works have been 

published about the 11p PHY: it can be recalled that [10] 

and [11] both developed a prototyping board reporting some 

implementation results, but these are still entirely hardware 

based. 

 This paper deals with a software implementation of a 

dual mode 802.11a/p receiver over the BPE, a mixed-grain 

template architecture designed for telecommunications and 

specifically customized for OFDM systems.  We will show 

that a well balanced set of fine and coarse grain instructions 

allows to efficiently map the entire digital baseband receiver 

on a reconfigurable core. The distinctive flexibility of 

vectors processing of the BPE allows dealing with very 

different algorithms, ranging from filtering and 

synchronization down to the bit processing of de-puncturing 

and de-interleaving. To reduce the computational load while 

introducing no significant penalty in the programmability, 

Viterbi decoder has been implemented in hardware. Further, 

a new introduced multi-thread support allows executing 

several functions in parallel, thus effectively reducing the 

processing time compared to the single-thread version: the 

outcome is a software PHY that satisfies the most 

demanding data rate of 54 Mbit/s and 27 Mbit/s required 

by [3] and [2], respectively.  

 The paper is organized as follows: Sec. 2 recaps the 

typical algorithms involved in receivers complying 

with [2][3]; Sec. 3 gives an overview of the BPE processor; 

Sec. 4 details the algorithms mapping and profiling over the 

BPE; lastly, Sec. 5 concludes this paper. 

 

2. THE IEEE 802.11A/P RECEIVER 

 

2.1. Overview 

 

Fig. 1a shows the structure of the WLAN frame [2][3], while 

the block diagram of the dual-mode receiver is shown in 

Fig. 1b. Referring to the frame structure depicted in Fig. 1a, 

the Short and Long Training Sequence (STS and LTS 

respectively) are known preambles used to perform time 

synchronization and channel estimation (CE). Details on 

both processes are provided later in this section.  

 The frame payload is composed by a first OFDM 

symbol (SIGNAL) holding, among the others, modulation 

parameters needed to demodulate the subsequent symbols 

(DATA): being crucial for the correct reception of the 

frame, the SIGNAL field is BPSK modulated and coded 

with maximum protection. Each symbol includes a guard 

interval (GI) of 16 samples to eliminate inter-symbol 

interference (ISI). Every OFDM symbol consists of 64 

subcarriers composed by 48 data carriers (NSD), 4 pilot tones 

(NSP) and 12 null carriers (switched off to comply with 

spectrum emission mask). The OFDM symbol duration is 

4 µs in case of 20 MHz bandwidth and 8 µs for 10 MHz. 

 TABLE I lists the main features of the two standards. 

Receivers able to demodulate both waveforms can share 

most of the processing, the main differences being filtering 

and CE functions. First of all, the larger delay spread makes 

the length of the 11a GI inadequate to prevent inter-symbol 

TABLE I 

THE 802 11A AND 11P STANDARDS 

(MANDATORY VERSION) 

 802.11a [3] 802.11p [2] 

data rate 6–54Mbps 3–27Mbps 

OFDM symbol duration 4µs 8µs 

nb. of subcarriers 64 (48 data, 4 pilots, 12 virtual) 

bandwidth 20 MHz 5, 10 MHz 

modulations orders BPSK, QPSK, 16-QAM, 64-QAM 

STS GI2 LTS LTS GI SIGNAL GI DATA
 

(a) 

equalizationFFT
data carriers

extraction

de-interleaving
Viterbi

decoding
de-puncturing

channel 

estimation

de-mapping

synchronizer

de-scrambling

FIR

 

(b) 

Fig. 1. (a) IEEE WLAN 802.11a/p frame structure and (b) receiver block 

diagram  
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interference (ISI). To face this problem while maintaining 

the same OFDM symbol structure (and hence same PHY 

processing), GI duration has been doubled by simply halving 

the channel bandwidth from 20 to 10 MHz. Another effect 

of the vehicular channel is the Doppler shift which must be 

compensated at receiver side with a more sophisticated 

estimate of the channel.  
 For both systems the processing performed at the 

receiver side can be divided in four phases: 1) coarse 
synchronization, i.e. packet detection and coarse carrier 

frequency offset (CFO) estimation based on the STS; 2) fine 
synchronization, i.e. frame synchronization and fine CFO 

estimation based on LTS; LTS is also used for the CE; 3) 

afterwards, processing of the signal field allows to identify 

the Modulation and Coding Scheme (MCS) chosen at the 

transmission side, i.e. the modulation order and the code rate 

associated to the next incoming data and other parameters, 

like the packet length; 4) lastly, the data field is demodulated 

to generate the bit stream to be propagated to upper layers. 

 

2.2. Receiver Blocks 

 

 In this paragraph we shortly recap the typical algorithms 

performed at the receiver to enable the demodulation of the 

OFDM symbols, i.e. synchronization and CE. 

 

2.2.1. The Short and Long Training Sequence 
 

The STS is used to detect the presence of a frame, i.e. to 

perform the coarse timing synchronization. The algorithm 

takes advantage of the STS autocorrelation properties [12]. 

 The coarse time synchronization can be performed by 

computing the Mn timing metric of the n-th sample: 

22
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 Given the periodic structure of the STS, the timing 

metric takes a plateau form that begins with the first STS 

symbol and gradually decreases with the subsequent 

symbols: the frame is detected if Mn is between a (chosen) 

lower and an upper threshold for a given number of 

consecutive samples. 

 Then, CFO compensation takes place, using the 

following phase error coarse estimation: 

 SPn NP∠=φ , (4) 

where the phase of the autocorrelation function is computed 

over a variable number of samples (NSP) depending on the 

estimated noise variance value. 
 After frame detection and CFO estimation and 

compensation, frame synchronization takes place in order to 

find the frame start. It is based on the cross-correlation 

between the incoming signal and a local replica of the LTS. 

At this time, coarse CFO estimation is refined using the 

autocorrelation properties of the LTS, carried (as for the 

STS processing) over a variable number of samples (NLP). 

After CFO compensation, the GI of each OFDM symbol is 

removed and the 64 samples are transformed from the time 

domain to the frequency domain by 64-points FFT.  

 The next samples belonging to the LTS are used to 

compute the CE required during the processing of the 

OFDM symbols for equalization and soft-output de-mapping 

of the received bits. Afterwards, the GI2 (32 samples) is 

removed and the frequency domain per-tone CE Hm (for the 

m-th OFDM subcarrier) is computed. The basic CE 

corresponds to compute the mean of the two equalized 

received LTS YLTS1,m, YLTS2,m: 

m

,mLTS,mLTS
m

L

YY
H 21
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1 +
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where the known LTS is denoted as Lm. 

 

2.2.2. Signal and Data Field Processing 
The signal and data fields are processed by the same 

algorithms, wherein the signal samples are BPSK modulated 

and define the MCS of the subsequent data samples. For 

every incoming OFDM symbol, the GI is removed and a 

group of 64 samples are Fourier transformed and equalized: 

using the previously computed CE, the symbols are (soft) 

de-mapped, de-interleaved and de-punctured and finally de-

coded by a Viterbi decoder to produce the bit stream to be 

sent to the upper layers.  

 

3. THE BLOCK PROCESSING ENGINE 

 

In this section, we will recall only the main features of the 

BPE; a throughout description of the BPE can be found 

in [13][14]. Compared to the previous versions, the 

Instruction Set Architecture (ISA) has been extended 

withtrigonometric functions, coarse-grain FIR filtering, code 

generation and bit-level manipulation. From the core 

architecture perspective, in order to fully exploit data 

pipelining, it has been added the support for multi-thread 

function calls. 

 

3.1. Vector Processing 

 

The template architecture of the BPE is given in Fig. 2. The 

ISA implements two types of instruction: 1) basic scalar 

instructions (b-instructions) mainly devoted to flow control 
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and data access configuration; 2) dedicated vector 

instructions (d-instructions) performing intensive data 

processing. While b-instructions are locally executed, 

d-instructions are executed on the customizable dedicated 

unit (d-unit) bank. Depending on data dependencies and 

resources availability, units can be scheduled by the 

controller to run in parallel. Vectors are allocated on the 

dedicated memory (d-memory) bank, a set of static 

embedded memories allowing fast and parallel access to 

data. 

 The interconnection between d-memory bank and d-unit 

bank is guaranteed by the routing mesh, which is run-time 

configured by the controller on an instruction-by-instruction 

basis. To further optimize the data exchange between units, 

the routing mesh supports instruction pipelining through 

direct connection between units, thus avoiding the typical 

register pressure drawback of VLIW architectures: a group 

of pipelined d-instructions is called macro (instruction). 

Pipelined processing is the key enabler for high 

computational efficiency, since it allows propagating data 

from unit to unit without needing to store intermediate 

results for subsequent processing. 

 The controller fetches and schedules instructions one 

after another until one of them requires resources that have 

been already allocated, as can be the case for a memory or 

another unit. It then waits until the execution of the 

instructions using those resources has been completed. A 

side benefit of such policy is that b-instructions executed 

right after the scheduling of d-instructions do not cause 

additional delay. The latter consideration inherently suggests 

that maximum efficiency can be reached only using vectors 

long enough to absorb b-instruction execution. 

 

3.2.  The d-Instruction Set 

 

The type of processing required by a generic PHY might be 

quite heterogeneous when moving down the receiver chain. 

The level of granularity changes according to the processing 

stage: whereas some blocks perform processing on a carrier 

by carrier basis, some others are characterized by bit-level 

granularity, which can cause a processing time penalty in a 

purely SIMD based processor. Furthermore, the type of 

operations performed changes significantly, ranging from 

typical signal processing, as can be the case of filtering, 

cross-correlation, equalization, to pure memory addresses 

computation as required for instance by the de-interleaver. 

Another interesting example might be the scrambler, which 

performs fast and with small complexity overhead only if 

supported by a dedicated unit (and related instruction) 

implementing a generic programmable linear feedback shift 

register (LFSR). 

 For the above reasons, the ISA has been extended with 

new instructions, like scrambling, Finite Impulse Response 

(FIR) filtering as well as more advanced operators like 

division, square root, hyperbolic and trigonometric functions 

all based on a low-latency fully pipelined CORDIC 

operator [15].  

 

3.3. Multi-Thread Support 

 

In [14] the technique of macro instructions pipelining has 

been introduced, wherein the macros themselves are defined 

as a group of pipelined d-instructions. Once the data 

dependencies of a given algorithm have been identified, 

macros can be connected to form a pipelined processing, 

where the pipeline stages are decoupled by memories 

implementing a ping-pong mechanism.  

 The macro-pipeline technique performs well within the 

processing of a given algorithm: the combinatorial path from 

the data source to the data output can be chopped into 

smaller pipelines until the required throughput is reached. 

Instead, a complete digital receiver involves several 

algorithms whose processing time can be effectively reduced 

by executing several functions in parallel. It will be shown 

that this enhancement is a key enabler for high data rate 

software based implementation.  

 

4. MAPPING OF THE 802.11A/P PHY ON THE BPE 

 

4.1. Short and Long Preamble Processing 

 

The most computationally intensive kernels during the STS 

and LTS processing are the synchronization and the CE 

algorithms. 

 

4.1.1. Synchronization and CFO computation 
Provided that synchronization happens quite before data 

demodulation, a function implementing the synchronization 

algorithm is allowed to use all the available resources. 
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Fig. 2. The BPE template architecture 
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 For an efficient mapping, eq. (2) and (3) can be 

rewritten in an iterative way: for example, the 

autocorrelation function Pn can be rewritten in vector form, 

like  

LnnLnLnnn rrrrPP +

∗

+

∗

++ ⋅−⋅+= 21
. (6) 

 The phase error (eq. (4)) is computed using CORDIC 

dedicated instructions. Once the CFO estimate is available, 

blocks of incoming samples are rotated executing a vector 

instruction from the d-instruction set.  

 TABLE II lists the clock cycles required for the 

synchronization function: the value has to be interpreted as 

latency, since the synchronization algorithm is not 

deterministic in nature. When clocking the BPE at 

250 MHz, this latency translates into the need of buffering 2 

OFDM symbols. 

 

4.1.2. TD-LS channel estimation 
The channel is first estimated using LTS (see eq. (5)) and 

further improved through reduced rank Time Domain Least 

Square (TD-LS) CE [17]: the incoming data are converted to 

the time domain (via inverse FFT), smoothed by a pre-

computed matrix (related to the LTS itself) and converted 

back to the frequency domain. The main computational load 

is due to the IFFT and FFT operations: these are discussed 

in the subsequent section.  

 

4.2. DATA Field Processing 

 

4.2.1. The Fast Fourier Transform 
The Fourier Transform is computed based on the Fast 

Fourier Transform (FFT) which is an efficient reformulation 

of the original algorithm that considerably reduces the 

computational load. In order to achieve fast FFT 

computation, the BPE embeds radix-2 and radix-4 butterflies 

as well as address calculation functions allowing data re-

ordering among stages (e.g. bit-reverse). TABLE II lists the 

processing time required by the FFT software 

implementation.  

 

4.2.2. Soft de-mapping 
The simplified soft-out demapper algorithm [16] has been 

adopted: it avoids using costly (in terms of cycles) 

conditional constructs, without noticeable performance 

degradation compared to the optimal. 

 

4.2.3. Intra-vector permutations: data carriers extraction, 
de-interleaving, de-puncturing and de-scrambling 

Down the receiver chain, after de-mapping and prior to 

decoding, some specific intra-vector permutations need to be 

carried out: such operations do not perform any 

computation, but rather concern a change of position of the 

data within the vector.  

 When performing this type of processing, SIMD based 

architectures turn to be heavily underutilized thus incurring 

in a waste of resources and a considerable increase in the 

required processing time. Power overhead is another side 

effect of underutilizing the vector. In turn, the BPE has a 

flexible vector management support, as described in 

Sec. 3.1: a fast execution time is achieved as it can be seen 

from TABLE II. 

 

4.2.4. The Time Varying Channel Tracking 
For a reliable communications in a mobility scenario, the 

time-varying channel has to be tracked, i.e. the initial CE 

based on LTS (Sec 4.1.2) must be updated for every OFDM 

symbol. This is especially true when the relative speed 

between two moving objects (as for two vehicles) becomes 

large and the Doppler effect has an impact on the system 

performance.  In this work, the algorithm described in [18] 

has been implemented, specifically the TD-LS Hard 

Decision Directed (HDD) Data Aided (DA) CE, briefly 

referred to as TD-LS HDD CE. 

 During data processing, the CE is performed in a two 

steps process, as shown in Fig. 3: 1) data detection of the 

k-th received OFDM symbol using the CE corresponding to 

the (k–1)-th OFDM symbol; 2) the channel corresponding to 

the k-th OFDM symbol is estimated by using the newly 

detected symbol information based on HDD and followed 

by the TD-LS refinement. 

 The HDD CE is computed as follows: 1) frequency 

domain equalization of the m-th subcarrier of the k-th 

OFDM received symbol Yk,m with the available channel 

TABLE II 

PHY ALGORITHMS PROFILING 

standard algorithm cycles 
time [µµµµs] 

@ 250 MHz 

802.11a/p synchronization a 1536 6.14 

@DATA FIELD (MCS-7) 

802.11a/p 

filtering (FIR) 162 0.65 

FFT (radix-4) 200 0.80 

equalization 64 0.26 

carriers re-ordering 56 0.22 

de-mapping 348 1.39 

de-interleaving b 408 1.63 

802.11p 
HDD DA CE 96 0.38 

TD-LS CE c 759 3.04 

Total 802.11ad 1432 5.7 

Total 802.11pd 2150 8.6 

a it includes frame detection, CFO estimation and compensation 
b it includes de-puncturing and de-scrambling 
c based on the radix-4 FFT 
d including software overhead 
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frequency response Hk-1,m as Xk,m = Yk,m/Hk-1,m; 2) hard 

detection of estimated data symbols Ak,m to obtain the 

symbol sequence Ãk; the hard detection implies hard 

de-mapping of the received symbol by associating the 

closest QAM symbol Ak,m to the received equalized symbol 

Xk,m (in terms of Euclidean distance); 3) estimation of Hk 

performed using as input the received symbol Yk and the 

reconstructed Ãk, used as an a-priori known sequence. 

 The CE is a computationally intensive task: a significant 

portion of time is spent on the FFTs and the filtering 

operation; refer to TABLE II for the overall processing time. 

 

4.3. Single-Thread vs Multi-Thread Parallelism 

 

As discussed in Sec. 3.3, the BPE versions [13][14] were 

based on a single-thread processor which implies that the 

overall processing time of the DATA field is given by the 

sum of the execution time of the single functions.  

 The first two rows of TABLE III list the clock cycles 

and the processing time required by a single thread to 

demodulate one DATA field, that is 5.7 µs for the 11a and 

8.6 µs for the 11p PHY (including the overhead due to the 

software implementation, i.e. instructions scheduling and 

execution): both exceed their respectively OFDM symbol 

duration of 4 µs and 8 µs. The only way to increase the 

throughput is by taking advantage of the multi-thread 

support of the BPE.  

 Focusing first on [3], the idea is to pipeline the 

functions implementing the different stages of the 

processing, so as to demodulate different OFDM symbols in 

parallel: the parallelism degree is a combination of target 

data rate, single-stage pipe duration and availability of 

resources (memories and units). The multi-thread processing 

for the DATA payload is shown in Fig. 4a, wherein the 

algorithms are split among three parallel threads (�,� and 

�) according to the diagram block of Fig. 3 (light-gray 

area): within each pipeline stage, the functions are processed 

serially, while the stages itself are executed in parallel. Once 

the overall pipeline has been filled, three OFDM symbols 

are elaborated concurrently, resulting in an overall 

elaboration time of 2.4 µs. 

 Regarding [2], the (TD-LS HDD) CE is the main 

bottleneck: the channel tracking is a recursive algorithm, 

thus the DATA processing cannot be pipelined as for [3]. 

Still, as explained in Sec. 4.2.4, the CE works independently 

from the demodulation thread and thus it can be run in 

parallel along the detection path, as shown in Fig. 3 (dark 

grey area): the previous three demodulation threads (�,� 

and �) are executed one after each other, but in parallel 

with the CE thread (�). The corresponding (2-stage) 

multi-thread processing is shown in Fig. 4b: the overall 

demodulation time is 5.9 µs, which is well below than the 

target 8 µs symbol duration complying with [2] (see 

TABLE III).  

 

5. CONCLUSIONS 

 

In this paper we investigated the feasibility of a software 

implementation of the IEEE 802.11a/p [2][3] PHY on the 

BPE processor. The two standards share most of the receiver 

processing, but target two different scenarios: [3] targets 

indoor wireless communications, whereas [2] deals with 

outdoor vehicle to vehicle communications. 

 By properly exploiting the instruction set and the 

features of the BPE (instructions pipelining combined with 

parallel execution and multi-thread support), software 

real-time implementation has been developed. 

 We have shown that a balanced mixture of fine- and 

coarse-grain instructions allows to cover efficiently all the 

algorithms of the receiver chain. All the most 

computationally intensive kernels, including synchronization 

and FFT are performed in software; the only block left in 

hardware is the Viterbi channel decoder. 

 The data rate required by [3] can be achieved by 

adopting a three stage multi-thread processing, due to the 

absence of data dependencies (i.e. feed-back) between the 

computational blocks. 

filtering

FFT

equalization

DC extraction

de-interleaving 

de-puncturing

de-scrambling

de-mapping

�

�

� TD-LS CE

�

Viterbi decoder Hk,m

HLTS,m

HDD DA CE

Hk-1,m

11a 11p

 

Fig. 3. DATA field processing (circled numbers refer to threads): � 

filtering, FFT, equalization and data carriers extraction; � de-mapping; � 

de-interleaving and de-puncturing; � channel estimation update 

TABLE III 

DATA FIELD PROCESSING (MCS-7) 

parallel  

threads 
standard 

clock  

cycles 

time [µµµµs] 

@ 250 MHz 

1 802.11a 1432 5.7 

1 802.11p 2150 8.6 

3 802.11a 596 2.4 

2 802.11p 1490 5.9 
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 The requirements of [2] are satisfied by 2-stage 

multi-thread processing, but leaves little margin for 

optimization due to the need of recursively updating the 

channel tracking: the optional 20 MHz bandwidth mode, 

more challenging in terms of timing requirements, currently 

cannot be supported. It should be finally noted that a more 

advanced channel tracking algorithm, like Soft Decision 

Directed DA (based on Viterbi decoding) [19], would 

introduce an even higher latency, thus reducing the 

throughput.  

 In order to tackle these aspects, several further 

architectural enhancements are in place, like extension of the 

SIMD instruction width or the more future looking and 

challenging concept of cluster of processors.  
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Fig. 4. Data field timing diagrams (MCS-7) based on multi-thread 

processing (timing not in scale): (a) 802.11a (b) 802.11p. The figure is 

labeled according to Fig. 3. Viterbi decoding is performed by a dedicated 

hardware design. 
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