

SOFTWARE IMPLEMENTATION OF THE IEEE 802.11A/P PHYSICAL LAYER

Teo Cupaiuolo, Daniele Lo Iacono, Massimiliano Siti and Marco Odoni

Advanced System Technology

STMicroelectronics Italy

{teo.cupaiuolo,daniele.loiacono,massimiliano.siti,marco.odoni}@st.com

ABSTRACT

Software defined physical layer modems represent one of

the main trends in communications and computing emerged

in recent years. This is due on one hand to the need of

supporting the requirements of modern communications

systems in terms of seamless integration between different

wireless technologies and multimedia convergence. On the

other hand, programmable platforms are also beneficial as

they allow consolidating methodologies, shortening

development time and costs, extending products life-time.

The drawback is that the complexity and power overhead of

a pure computing fabric compared to a dedicated hardware

can still represent a cost product developers are not willing

to pay. This is particularly true for mobile terminals or in

general for battery-powered devices. To become a concrete

opportunity, baseband platforms should provide almost the

same performance of custom designs while maintaining a

certain degree of programmability. A good trade-off is

represented by specific architectures integrating a proper

mix of fine-grain general-purpose instructions and dedicated

coarse-grain instructions wrapping custom hardware

modules.

 This paper presents a software implementation of a

dual-mode IEEE 802.11a/p receiver on the Block Processing

Engine (BPE), a proprietary template platform specifically

designed for baseband processing. The combination of a

novel extended instruction set with multi-thread processing

support allows satisfying the most demanding requirements

of the 802.11a and 802.11p standards.

1. INTRODUCTION

The automotive segment is now entering into the wireless

arena with applications requiring reliable high data rate

communications and including among the others vehicles

safety, traffic control, remote tolling. To address vehicular

environments, the IEEE recently introduced a new

amendment to the 802.11 set of standards for wireless local

area networks (WLAN) [1], namely IEEE 802.11p [2] for

Wireless Access in Vehicular Environment (WAVE). Like

several other standards developed for wideband digital

communication, standards [1] are based on Orthogonal

Frequency-Division Multiplexing (OFDM) modulation:

among the others, a significant advantage of OFDM over

single-carrier schemes is its ability to cope with severe

channel multi-path conditions without the need for complex

equalization filters.

 The physical (PHY) layer [2] is mostly derived from the

popular standard for indoor WLAN, IEEE 802.11a [3], with

slight modifications required by the vehicular environment.

The differences are designed to sustain robust vehicle-to-

vehicle (V2V) communications as well as between vehicles

and infrastructures located roadside (V2I). With respect to

the indoor scenario, V2V and V2I require faster access time

(<50 ms), increased range, robustness, reliability, security

and indeed mobility. Being used also for critical safety

applications, it will operate on the Dedicated Short Range

Communications (DSRC) licensed spectrum at 5.9 GHz,

exclusively reserved free-of-charge by the US FCC to

vehicular communications.

 These modifications come at the cost of a different and

more complex digital baseband processing. Even with the

recent proliferation of top performing programmable

platforms, the traditional approach of implementing the

PHY layer in hardware is still considered by many the best

approach to fully satisfy the crescent needs of modern

communications: area footprint and power consumption are

a growing concern especially when targeting embedded

portable devices. On the other hand, the process of

developing an Application Specific Integrated Circuit

(ASIC) is recognized as being long and costly, and can

seriously compromise the ability to track a continuously

evolving market, as typical of modern telecommunication

systems. From this perspective, Software Defined Radio

(SDR) represents a good opportunity strongly supported by

research community: in its widest meaning, it aims to

entirely replace the operations previously performed in

hardware by purely software programmable resources.

 Several advanced techniques have been introduced in

the last years in order to fill the gap between the software

and the hardware approach: the former has the undoubted

advantage of reducing the development time, but it comes at

cost of lower data rate, higher power consumption and area

Proceedings of SDR'12-WInnComm-Europe, 27-29 June 2012

©2012 The Software Defined Radio Forum, Inc.-All Rights Reserved 133

requirement. One of the most widely used technique to

effectively increase the throughput is the parallel processing

enabled by Single Instruction Multiple Data (SIMD), which

takes advantage of the high degree of data parallelism

usually found in most telecommunication algorithms. To be

effective, SIMD machines adopt parallel data paths of 128

bit or more. Another family is the Very Long Instruction

Words (VLIW), wherein different types of functional units

work in parallel. To further increase the performance, recent

vector processors typically combine both of them [4][5].

Another recently emerged technique is the Single-Instruction

Multiple-Task (SIMT), introduced by Coresonic to solve

some of the major SIMD/VLIW drawbacks, like control

overhead and improved memory utilization [6].

 By today, various articles can be found about software

implementation of the PHY of most common OFDM based

standards, like [7][8][9], just to mention some of them. All

these share the common approach of proposing a solution

having some parts in software and some others in hardware.

Typically software is used where there is some need for

flexibility as can be the case of multi-standard support or

real-time PHY reconfiguration; another case is represented

by scalability requirements, like variable FFT sizes.

Intensive data processing (as FIR filtering, FFT computation

and Viterbi decoding) is usually left in hardware. Despite

the commonalities with the 11a, indeed few works have been

published about the 11p PHY: it can be recalled that [10]

and [11] both developed a prototyping board reporting some

implementation results, but these are still entirely hardware

based.

 This paper deals with a software implementation of a

dual mode 802.11a/p receiver over the BPE, a mixed-grain

template architecture designed for telecommunications and

specifically customized for OFDM systems. We will show

that a well balanced set of fine and coarse grain instructions

allows to efficiently map the entire digital baseband receiver

on a reconfigurable core. The distinctive flexibility of

vectors processing of the BPE allows dealing with very

different algorithms, ranging from filtering and

synchronization down to the bit processing of de-puncturing

and de-interleaving. To reduce the computational load while

introducing no significant penalty in the programmability,

Viterbi decoder has been implemented in hardware. Further,

a new introduced multi-thread support allows executing

several functions in parallel, thus effectively reducing the

processing time compared to the single-thread version: the

outcome is a software PHY that satisfies the most

demanding data rate of 54 Mbit/s and 27 Mbit/s required

by [3] and [2], respectively.

 The paper is organized as follows: Sec. 2 recaps the

typical algorithms involved in receivers complying

with [2][3]; Sec. 3 gives an overview of the BPE processor;

Sec. 4 details the algorithms mapping and profiling over the

BPE; lastly, Sec. 5 concludes this paper.

2. THE IEEE 802.11A/P RECEIVER

2.1. Overview

Fig. 1a shows the structure of the WLAN frame [2][3], while

the block diagram of the dual-mode receiver is shown in

Fig. 1b. Referring to the frame structure depicted in Fig. 1a,

the Short and Long Training Sequence (STS and LTS

respectively) are known preambles used to perform time

synchronization and channel estimation (CE). Details on

both processes are provided later in this section.

 The frame payload is composed by a first OFDM

symbol (SIGNAL) holding, among the others, modulation

parameters needed to demodulate the subsequent symbols

(DATA): being crucial for the correct reception of the

frame, the SIGNAL field is BPSK modulated and coded

with maximum protection. Each symbol includes a guard

interval (GI) of 16 samples to eliminate inter-symbol

interference (ISI). Every OFDM symbol consists of 64

subcarriers composed by 48 data carriers (NSD), 4 pilot tones

(NSP) and 12 null carriers (switched off to comply with

spectrum emission mask). The OFDM symbol duration is

4 µs in case of 20 MHz bandwidth and 8 µs for 10 MHz.

 TABLE I lists the main features of the two standards.

Receivers able to demodulate both waveforms can share

most of the processing, the main differences being filtering

and CE functions. First of all, the larger delay spread makes

the length of the 11a GI inadequate to prevent inter-symbol

TABLE I

THE 802 11A AND 11P STANDARDS

(MANDATORY VERSION)

 802.11a [3] 802.11p [2]

data rate 6–54Mbps 3–27Mbps

OFDM symbol duration 4µs 8µs

nb. of subcarriers 64 (48 data, 4 pilots, 12 virtual)

bandwidth 20 MHz 5, 10 MHz

modulations orders BPSK, QPSK, 16-QAM, 64-QAM

STS GI2 LTS LTS GI SIGNAL GI DATA

(a)

equalizationFFT
data carriers

extraction

de-interleaving
Viterbi

decoding
de-puncturing

channel

estimation

de-mapping

synchronizer

de-scrambling

FIR

(b)

Fig. 1. (a) IEEE WLAN 802.11a/p frame structure and (b) receiver block

diagram

134

interference (ISI). To face this problem while maintaining

the same OFDM symbol structure (and hence same PHY

processing), GI duration has been doubled by simply halving

the channel bandwidth from 20 to 10 MHz. Another effect

of the vehicular channel is the Doppler shift which must be

compensated at receiver side with a more sophisticated

estimate of the channel.
 For both systems the processing performed at the

receiver side can be divided in four phases: 1) coarse
synchronization, i.e. packet detection and coarse carrier

frequency offset (CFO) estimation based on the STS; 2) fine
synchronization, i.e. frame synchronization and fine CFO

estimation based on LTS; LTS is also used for the CE; 3)

afterwards, processing of the signal field allows to identify

the Modulation and Coding Scheme (MCS) chosen at the

transmission side, i.e. the modulation order and the code rate

associated to the next incoming data and other parameters,

like the packet length; 4) lastly, the data field is demodulated

to generate the bit stream to be propagated to upper layers.

2.2. Receiver Blocks

 In this paragraph we shortly recap the typical algorithms

performed at the receiver to enable the demodulation of the

OFDM symbols, i.e. synchronization and CE.

2.2.1. The Short and Long Training Sequence

The STS is used to detect the presence of a frame, i.e. to

perform the coarse timing synchronization. The algorithm

takes advantage of the STS autocorrelation properties [12].

 The coarse time synchronization can be performed by

computing the Mn timing metric of the n-th sample:

22

nnn QPM = , (1)

where Pn is the autocorrelation function of L = 16 received

samples rn and Qn their energy:

∑
−

=

∗

++++ ⋅=
1

0

L

k
LknLknn rrP , (2)

∑
−

=

++=
1

0

2
L

k
Lknn rQ . (3)

 Given the periodic structure of the STS, the timing

metric takes a plateau form that begins with the first STS

symbol and gradually decreases with the subsequent

symbols: the frame is detected if Mn is between a (chosen)

lower and an upper threshold for a given number of

consecutive samples.

 Then, CFO compensation takes place, using the

following phase error coarse estimation:

 SPn NP∠=φ , (4)

where the phase of the autocorrelation function is computed

over a variable number of samples (NSP) depending on the

estimated noise variance value.
 After frame detection and CFO estimation and

compensation, frame synchronization takes place in order to

find the frame start. It is based on the cross-correlation

between the incoming signal and a local replica of the LTS.

At this time, coarse CFO estimation is refined using the

autocorrelation properties of the LTS, carried (as for the

STS processing) over a variable number of samples (NLP).

After CFO compensation, the GI of each OFDM symbol is

removed and the 64 samples are transformed from the time

domain to the frequency domain by 64-points FFT.

 The next samples belonging to the LTS are used to

compute the CE required during the processing of the

OFDM symbols for equalization and soft-output de-mapping

of the received bits. Afterwards, the GI2 (32 samples) is

removed and the frequency domain per-tone CE Hm (for the

m-th OFDM subcarrier) is computed. The basic CE

corresponds to compute the mean of the two equalized

received LTS YLTS1,m, YLTS2,m:

m

,mLTS,mLTS
m

L

YY
H 21

2

1 +
= , (5)

where the known LTS is denoted as Lm.

2.2.2. Signal and Data Field Processing
The signal and data fields are processed by the same

algorithms, wherein the signal samples are BPSK modulated

and define the MCS of the subsequent data samples. For

every incoming OFDM symbol, the GI is removed and a

group of 64 samples are Fourier transformed and equalized:

using the previously computed CE, the symbols are (soft)

de-mapped, de-interleaved and de-punctured and finally de-

coded by a Viterbi decoder to produce the bit stream to be

sent to the upper layers.

3. THE BLOCK PROCESSING ENGINE

In this section, we will recall only the main features of the

BPE; a throughout description of the BPE can be found

in [13][14]. Compared to the previous versions, the

Instruction Set Architecture (ISA) has been extended

withtrigonometric functions, coarse-grain FIR filtering, code

generation and bit-level manipulation. From the core

architecture perspective, in order to fully exploit data

pipelining, it has been added the support for multi-thread

function calls.

3.1. Vector Processing

The template architecture of the BPE is given in Fig. 2. The

ISA implements two types of instruction: 1) basic scalar

instructions (b-instructions) mainly devoted to flow control

135

and data access configuration; 2) dedicated vector

instructions (d-instructions) performing intensive data

processing. While b-instructions are locally executed,

d-instructions are executed on the customizable dedicated

unit (d-unit) bank. Depending on data dependencies and

resources availability, units can be scheduled by the

controller to run in parallel. Vectors are allocated on the

dedicated memory (d-memory) bank, a set of static

embedded memories allowing fast and parallel access to

data.

 The interconnection between d-memory bank and d-unit

bank is guaranteed by the routing mesh, which is run-time

configured by the controller on an instruction-by-instruction

basis. To further optimize the data exchange between units,

the routing mesh supports instruction pipelining through

direct connection between units, thus avoiding the typical

register pressure drawback of VLIW architectures: a group

of pipelined d-instructions is called macro (instruction).

Pipelined processing is the key enabler for high

computational efficiency, since it allows propagating data

from unit to unit without needing to store intermediate

results for subsequent processing.

 The controller fetches and schedules instructions one

after another until one of them requires resources that have

been already allocated, as can be the case for a memory or

another unit. It then waits until the execution of the

instructions using those resources has been completed. A

side benefit of such policy is that b-instructions executed

right after the scheduling of d-instructions do not cause

additional delay. The latter consideration inherently suggests

that maximum efficiency can be reached only using vectors

long enough to absorb b-instruction execution.

3.2. The d-Instruction Set

The type of processing required by a generic PHY might be

quite heterogeneous when moving down the receiver chain.

The level of granularity changes according to the processing

stage: whereas some blocks perform processing on a carrier

by carrier basis, some others are characterized by bit-level

granularity, which can cause a processing time penalty in a

purely SIMD based processor. Furthermore, the type of

operations performed changes significantly, ranging from

typical signal processing, as can be the case of filtering,

cross-correlation, equalization, to pure memory addresses

computation as required for instance by the de-interleaver.

Another interesting example might be the scrambler, which

performs fast and with small complexity overhead only if

supported by a dedicated unit (and related instruction)

implementing a generic programmable linear feedback shift

register (LFSR).

 For the above reasons, the ISA has been extended with

new instructions, like scrambling, Finite Impulse Response

(FIR) filtering as well as more advanced operators like

division, square root, hyperbolic and trigonometric functions

all based on a low-latency fully pipelined CORDIC

operator [15].

3.3. Multi-Thread Support

In [14] the technique of macro instructions pipelining has

been introduced, wherein the macros themselves are defined

as a group of pipelined d-instructions. Once the data

dependencies of a given algorithm have been identified,

macros can be connected to form a pipelined processing,

where the pipeline stages are decoupled by memories

implementing a ping-pong mechanism.

 The macro-pipeline technique performs well within the

processing of a given algorithm: the combinatorial path from

the data source to the data output can be chopped into

smaller pipelines until the required throughput is reached.

Instead, a complete digital receiver involves several

algorithms whose processing time can be effectively reduced

by executing several functions in parallel. It will be shown

that this enhancement is a key enabler for high data rate

software based implementation.

4. MAPPING OF THE 802.11A/P PHY ON THE BPE

4.1. Short and Long Preamble Processing

The most computationally intensive kernels during the STS

and LTS processing are the synchronization and the CE

algorithms.

4.1.1. Synchronization and CFO computation
Provided that synchronization happens quite before data

demodulation, a function implementing the synchronization

algorithm is allowed to use all the available resources.

d-unit

bank

ro
u

ti
n

g
 m

e
sh

d-memory

bank

d-instruction

scheduler

memory

management

fetch

&

decoding

i-memory

b-instruction

execution

system bus interface

data-port

registers space

controller

Fig. 2. The BPE template architecture

136

 For an efficient mapping, eq. (2) and (3) can be

rewritten in an iterative way: for example, the

autocorrelation function Pn can be rewritten in vector form,

like

LnnLnLnnn rrrrPP +

∗

+

∗

++ ⋅−⋅+= 21
. (6)

 The phase error (eq. (4)) is computed using CORDIC

dedicated instructions. Once the CFO estimate is available,

blocks of incoming samples are rotated executing a vector

instruction from the d-instruction set.

 TABLE II lists the clock cycles required for the

synchronization function: the value has to be interpreted as

latency, since the synchronization algorithm is not

deterministic in nature. When clocking the BPE at

250 MHz, this latency translates into the need of buffering 2

OFDM symbols.

4.1.2. TD-LS channel estimation
The channel is first estimated using LTS (see eq. (5)) and

further improved through reduced rank Time Domain Least

Square (TD-LS) CE [17]: the incoming data are converted to

the time domain (via inverse FFT), smoothed by a pre-

computed matrix (related to the LTS itself) and converted

back to the frequency domain. The main computational load

is due to the IFFT and FFT operations: these are discussed

in the subsequent section.

4.2. DATA Field Processing

4.2.1. The Fast Fourier Transform
The Fourier Transform is computed based on the Fast

Fourier Transform (FFT) which is an efficient reformulation

of the original algorithm that considerably reduces the

computational load. In order to achieve fast FFT

computation, the BPE embeds radix-2 and radix-4 butterflies

as well as address calculation functions allowing data re-

ordering among stages (e.g. bit-reverse). TABLE II lists the

processing time required by the FFT software

implementation.

4.2.2. Soft de-mapping
The simplified soft-out demapper algorithm [16] has been

adopted: it avoids using costly (in terms of cycles)

conditional constructs, without noticeable performance

degradation compared to the optimal.

4.2.3. Intra-vector permutations: data carriers extraction,
de-interleaving, de-puncturing and de-scrambling

Down the receiver chain, after de-mapping and prior to

decoding, some specific intra-vector permutations need to be

carried out: such operations do not perform any

computation, but rather concern a change of position of the

data within the vector.

 When performing this type of processing, SIMD based

architectures turn to be heavily underutilized thus incurring

in a waste of resources and a considerable increase in the

required processing time. Power overhead is another side

effect of underutilizing the vector. In turn, the BPE has a

flexible vector management support, as described in

Sec. 3.1: a fast execution time is achieved as it can be seen

from TABLE II.

4.2.4. The Time Varying Channel Tracking
For a reliable communications in a mobility scenario, the

time-varying channel has to be tracked, i.e. the initial CE

based on LTS (Sec 4.1.2) must be updated for every OFDM

symbol. This is especially true when the relative speed

between two moving objects (as for two vehicles) becomes

large and the Doppler effect has an impact on the system

performance. In this work, the algorithm described in [18]

has been implemented, specifically the TD-LS Hard

Decision Directed (HDD) Data Aided (DA) CE, briefly

referred to as TD-LS HDD CE.

 During data processing, the CE is performed in a two

steps process, as shown in Fig. 3: 1) data detection of the

k-th received OFDM symbol using the CE corresponding to

the (k–1)-th OFDM symbol; 2) the channel corresponding to

the k-th OFDM symbol is estimated by using the newly

detected symbol information based on HDD and followed

by the TD-LS refinement.

 The HDD CE is computed as follows: 1) frequency

domain equalization of the m-th subcarrier of the k-th

OFDM received symbol Yk,m with the available channel

TABLE II

PHY ALGORITHMS PROFILING

standard algorithm cycles
time [µµµµs]

@ 250 MHz

802.11a/p synchronization a 1536 6.14

@DATA FIELD (MCS-7)

802.11a/p

filtering (FIR) 162 0.65

FFT (radix-4) 200 0.80

equalization 64 0.26

carriers re-ordering 56 0.22

de-mapping 348 1.39

de-interleaving b 408 1.63

802.11p
HDD DA CE 96 0.38

TD-LS CE c 759 3.04

Total 802.11ad 1432 5.7

Total 802.11pd 2150 8.6

a it includes frame detection, CFO estimation and compensation
b it includes de-puncturing and de-scrambling
c based on the radix-4 FFT
d including software overhead

137

frequency response Hk-1,m as Xk,m = Yk,m/Hk-1,m; 2) hard

detection of estimated data symbols Ak,m to obtain the

symbol sequence Ãk; the hard detection implies hard

de-mapping of the received symbol by associating the

closest QAM symbol Ak,m to the received equalized symbol

Xk,m (in terms of Euclidean distance); 3) estimation of Hk

performed using as input the received symbol Yk and the

reconstructed Ãk, used as an a-priori known sequence.

 The CE is a computationally intensive task: a significant

portion of time is spent on the FFTs and the filtering

operation; refer to TABLE II for the overall processing time.

4.3. Single-Thread vs Multi-Thread Parallelism

As discussed in Sec. 3.3, the BPE versions [13][14] were

based on a single-thread processor which implies that the

overall processing time of the DATA field is given by the

sum of the execution time of the single functions.

 The first two rows of TABLE III list the clock cycles

and the processing time required by a single thread to

demodulate one DATA field, that is 5.7 µs for the 11a and

8.6 µs for the 11p PHY (including the overhead due to the

software implementation, i.e. instructions scheduling and

execution): both exceed their respectively OFDM symbol

duration of 4 µs and 8 µs. The only way to increase the

throughput is by taking advantage of the multi-thread

support of the BPE.

 Focusing first on [3], the idea is to pipeline the

functions implementing the different stages of the

processing, so as to demodulate different OFDM symbols in

parallel: the parallelism degree is a combination of target

data rate, single-stage pipe duration and availability of

resources (memories and units). The multi-thread processing

for the DATA payload is shown in Fig. 4a, wherein the

algorithms are split among three parallel threads (�,� and

�) according to the diagram block of Fig. 3 (light-gray

area): within each pipeline stage, the functions are processed

serially, while the stages itself are executed in parallel. Once

the overall pipeline has been filled, three OFDM symbols

are elaborated concurrently, resulting in an overall

elaboration time of 2.4 µs.

 Regarding [2], the (TD-LS HDD) CE is the main

bottleneck: the channel tracking is a recursive algorithm,

thus the DATA processing cannot be pipelined as for [3].

Still, as explained in Sec. 4.2.4, the CE works independently

from the demodulation thread and thus it can be run in

parallel along the detection path, as shown in Fig. 3 (dark

grey area): the previous three demodulation threads (�,�

and �) are executed one after each other, but in parallel

with the CE thread (�). The corresponding (2-stage)

multi-thread processing is shown in Fig. 4b: the overall

demodulation time is 5.9 µs, which is well below than the

target 8 µs symbol duration complying with [2] (see

TABLE III).

5. CONCLUSIONS

In this paper we investigated the feasibility of a software

implementation of the IEEE 802.11a/p [2][3] PHY on the

BPE processor. The two standards share most of the receiver

processing, but target two different scenarios: [3] targets

indoor wireless communications, whereas [2] deals with

outdoor vehicle to vehicle communications.

 By properly exploiting the instruction set and the

features of the BPE (instructions pipelining combined with

parallel execution and multi-thread support), software

real-time implementation has been developed.

 We have shown that a balanced mixture of fine- and

coarse-grain instructions allows to cover efficiently all the

algorithms of the receiver chain. All the most

computationally intensive kernels, including synchronization

and FFT are performed in software; the only block left in

hardware is the Viterbi channel decoder.

 The data rate required by [3] can be achieved by

adopting a three stage multi-thread processing, due to the

absence of data dependencies (i.e. feed-back) between the

computational blocks.

filtering

FFT

equalization

DC extraction

de-interleaving

de-puncturing

de-scrambling

de-mapping

�

�

� TD-LS CE

�

Viterbi decoder Hk,m

HLTS,m

HDD DA CE

Hk-1,m

11a 11p

Fig. 3. DATA field processing (circled numbers refer to threads): �

filtering, FFT, equalization and data carriers extraction; � de-mapping; �

de-interleaving and de-puncturing; � channel estimation update

TABLE III

DATA FIELD PROCESSING (MCS-7)

parallel

threads
standard

clock

cycles

time [µµµµs]

@ 250 MHz

1 802.11a 1432 5.7

1 802.11p 2150 8.6

3 802.11a 596 2.4

2 802.11p 1490 5.9

138

 The requirements of [2] are satisfied by 2-stage

multi-thread processing, but leaves little margin for

optimization due to the need of recursively updating the

channel tracking: the optional 20 MHz bandwidth mode,

more challenging in terms of timing requirements, currently

cannot be supported. It should be finally noted that a more

advanced channel tracking algorithm, like Soft Decision

Directed DA (based on Viterbi decoding) [19], would

introduce an even higher latency, thus reducing the

throughput.

 In order to tackle these aspects, several further

architectural enhancements are in place, like extension of the

SIMD instruction width or the more future looking and

challenging concept of cluster of processors.

6. REFERENCES

[1] IEEE Std 802.11 (ISO/IEC 8802-11: 1999): IEEE Standards for

Information Technology – Telecommunications and Information

Exchange between Systems – Local and Metropolitan Area Network

– Specific Requirements – Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications

[2] IEEE P802.11p-2010, “Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications”,

Amendment 6: Wireless Access in Vehicular Environments, 2010.

[3] IEEE 802.11a-1999 Standard, “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications:

High-speed Physical Layer in the 5 GHz Band”, 1999.

[4] Kees van Berkel, Frank Heinle, Patrick P. E. Meuwissen, Kees

Moerman, and Matthias Weiss, “Vector Processing as an Enabler for

Software-Defined Radio in Handheld Devices,” EURASIP Journal on

Applied Signal Processing, vol. 2005, no. 16, pp. 2613-2625, 2005.

doi:10.1155/ASP.2005.2613

[5] B. Bougard, B. De Sutter, S. Rabou, D. Novo, O. Allam, S. Dupont,

and L. Van der Perre, “A coarse-grained array based baseband

processor for 100Mbps+ software defined radio”. In Proceedings of

the conference on Design, automation and test in Europe (DATE '08).

ACM, New York, NY, USA, 716-721.

[6] D. Liu, A. Nilsson, E. Tell, D. Wu, and J. Eilert, “Bridging dream

and reality: programmable baseband processors for software-defined

radio”. Comm. Mag. 47, 9 (September 2009), 134-140.

[7] V. Ramadurai, S. Jinturkar, S. Agarwal, M. Moudgill, and J.

Glossner, “Software Implementation of 802.11a blocks on

Sandblaster DSP”, Proceedings of Software Defined Radio Technical

Forum (SDR Forum '06), Orlando Florida, November, 2006.

[8] S. Eberli, A. Burg, T. Bösch and W. Fichtner, “An IEEE 802.11a

baseband receiver implementation on an Application Specific

Processor”, Proceedings of IEEE Midwest Symposium on circuit &

Systems, Montreal, Quebec, Canada, pp. 1324-1327, Aug 2007.

[9] A. Nilsson, E. Tell, D. Liu, "An 11 mm2, 70mW Fully Programmable

Baseband Processor for Mobile WiMAX and DVB-T/H in 0.12 µm

CMOS", IEEE International Solid-State Circuits Conference

(ISSCC), San Francisco, USA, 90-97, 2009.

[10] D. Carona, A. Serrador, P. Mar, R. Abreu, N. Ferreira, T. Meireles, J.

Matos and J. Lopes, “A 802.11p prototype implementation,”

Intelligent Vehicles Symposium (IV), 2010 IEEE , vol., no., pp.1116-

1121, 21-24 June 2010.

[11] H. Harada, R. Funada, K. Sato, K. Iigusa and K. Li, “Research and

development on UHF band inter-vehicle communication systems,”

Intelligent Transport Systems Telecommunications, (ITST), 2009 9th

International Conference on , vol., no., pp.279-284, 20-22 Oct. 2009.

[12] T.M. Schmidl and D.C. Cox, “Robust frequency and timing

synchronization for OFDM”, IEEE Transactions on Communications,

vol. 45, pp. 1613-1621, Dec. 1997.

[13] D. Lo Iacono, J. Zory, E. Messina, N. Piazzese, G. Saia, and A.

Bettinelli. 2006. “ASIP architecture for multi-standard wireless

terminals”. In Proceedings of the conference on Design, automation

and test in Europe: Designers' forum (DATE '06). European Design

and Automation Association, 3001 Leuven, Belgium, Belgium, 118-

123.

[14] T. Cupaiuolo and D. Lo Iacono, “Software Implementation of

Near-ML Soft-Output MIMO Detection,” Washington, DC, USA, 30

November - 3 December, 2010, Software Defined Radio Forum 2010

(SDR'10).

[15] J. Volder, “The CORDIC Trigonometric Computing Technique”, IRE

Transactions on Electronic Computers, 1959

[16] F. Tosato, P. Bisaglia, “Simplified soft-output demapper for binary

interleaved COFDM with application to HIPERLAN/2”, in:

Proceedings of IEEE International Conference on Commun., New

York, April/May 2002, pp. 664-668.

[17] E. Dall’Anese, A. Assalini, and S. Pupolin, “On reduced rank channel

estimation and prediction for OFDM-based systems,” in Proc. Int.

Symp. on Wireless Pers. Multimedia Commun., Jaipur, India, Dec.

2007.

[18] M. Siti, A. Assalini, E. Dall'Anese and S. Pupolin, “Low Complexity

Decision-Directed Channel Estimation based on a Reliable-Symbol

Selection Strategy for OFDM Systems” (2010) IEEE International

Conference on Communications (ICC'09) - Workshop on Vehicular

Connectivity - Cape Town, South Africa, 23-27 May 20.

[19] L. Jarbot, “Combined decoding and channel estimation of OFDM

systems in mobile radio networks,” in Proc. IEEE Vehicular Tech.

Conf., vol. 3, May 1997, pp. 1601–1604.

2.4 µs

OFDM

symbol 3

OFDM

symbol 2

OFDM

symbol 1

�

�

�

time

OFDM

symbol 1

OFDM

symbol 2

OFDM

symbol 1

Thread

(a)

OFDM

symbol 1

HDD DA +

TD-LS CE

5.9 µs

�→�→�

�

time

OFDM

symbol 2

HDD DA +

TD-LS CE

Thread

(b)

Fig. 4. Data field timing diagrams (MCS-7) based on multi-thread

processing (timing not in scale): (a) 802.11a (b) 802.11p. The figure is

labeled according to Fig. 3. Viterbi decoding is performed by a dedicated

hardware design.

139

