Ly

SOFTWARE IMPLEMENTATION OF THE
IEEE 802.11A/P PHYSICAL LAYER

SDR 12 - WInnComm Europe
27 — 29 June, 2012 ~ Brussels, Belgium

T. Cupaiuolo, D. Lo lacono, M. Siti and M. Odoni
Advanced System Technologies
STMicroelectronics, Agrate Brianza, Italy

Daniele Lo lacono

\'i HIF U1

Outline ﬁ

The system

Wireless Access in Vehicular Environments (WAVE): IEEE 802.11p
Comparison with IEEE 802.11a/g

A Software Defined Radio (SDR) implementation approach: the BPE
baseband communication platform

Digital baseband implementation
Reference system model
802.11p: Data-aided channel estimation
Customization and code profiling
Results

\'i elr Ul

IEEE 802.11p WAVE IYI

Requirements
Fast access as a priority (latency <50 ms)
Mobility (>60Km/h) and Range (~1Km)
Robustness and reliability
Security

Applications

Vehicle safety (emergency warning systems, Intersection collision avoidance,
forward collision warning)

Tolling

Infotainment

Traffic management

Cooperative Adaptive Cruise Control

Comparison with 802.11a/g

10 MHz OFDM bandwidth (vs 20 MHz): max PHY data rate 27 Mbit/s (vs. 54)
5.9 GHz carrier frequency

digital baseband: added support for mobility — Data-aided channel estimation

\'i elr Ul

7

The BPE baseband communication platform

reconfigurable
data-path

customizable distributed

coarse-grain embedded

hardware MEmory

operators

d-memory
bank instruction
memory
d-instruction memory
scheduler and scheduler management
dispatcher
fetch

. . & registers space
b-instruction decoding

execution -
data-port

system bus interface

'l AL+ U1

Flow-control: b-instruction IYI

‘out = opcode(ino,inl,in” "“I"

instruction
memory
b-instruction
are also used
to set the way
memory d-instruction
management will access the

b-instruction
memory bank

execution unit

b-instruction
execution

register file

\'l AL+ U1

Vector processing: d-instruction IS7;

out = unitl.opcode(unitO,in0,inl)

processing units bank of static
performing = memories for
parallel and é d-memory vector allocation
plpelme_d vector ® bank —
proceSS|ng -5' Instruction
< memory
routing mesh
dynamically
d-instruction configuring
scheduler unit-memory
d-instruction and unit-unit
scheduling unit connections

\'i HI[+ "

Algorithm mapping: macros IS7;

e oy J(/% [
7

two parallel
branches each N—
performing vz
pipelined
processing among
different units

<
-hl

parallel and
pipelined processing
to reduce execution
commo0.ed time and memory
accesses

arithO.mul

v9 = arith3.mui(comml,v6)
comml.qt(arith2,vb)

v8 arith2._.sub(v4,arithl)
v7 commO.ed(arith0O,v3)
arithO.mul(vO,vl);
arithl_.mul(v0,v2) arith2.sub

comml.qt
arith3.mul

arithl.mul

Pipeline of macros Kys

macro #0 macro #1 macro #2

‘ macro #0 ’ ‘ macro #0)

macro #1 macro #1
‘ macro #2 ‘ l macro #2 ‘
macro #0 macro #1 macro #2

l macro #0 ‘ l macro #0 l l macro #0 ‘
t macro #1 ‘ t macro #1 ‘ t macro #1 ‘
l macro #2 ‘ ‘ macro #2 ‘ l macro #2 ‘

V NEIE I

Multi-thread KYl

Single-thread execution
OFDM symbol #1

OFDM symbol #2

function #2

function #3

V NEIE I

IEEE 802.11a/p reference system model Kys

source uncturer+ upsamplin
e €Ncoder p mapper p. p 8/
bits interleaver filtering

de-int Viterbi
de-punct decoding

equalizer

discard pilot and
channel virtual sub-carriers

estimation

10

Data-aided channel estimation (1/2) Kys

Data-aided channel estimation basic idea:

data detection of the current received OFDM symbol using channel
estimation corresponding to the previous OFDM symbol

the channel corresponding to the current OFDM symbol is estimated
by using the estimated data QAM symbols

Data detection through simple hard decision detection (HDD)
low extra complexity
low latency compared to 802.11a/g

Y JE 1T i
11

Data-aided channel estimation (2/2) Kys

Initial CE based on the LTS field
. LTS based Time Domain I
received freq. domain CE Least Square CE initial CE
sequence (FFT) ' _
filtering

For successive OFDM symbols (SIG and DATA) CE tracked exploiting both pilot
and the estimated data symbols

previous CE Data-aided Time Domain

received freq. domain CE Least Square CE updated CE

sequence (FFT)

\'l AL+ U1

Multimode 11a/p receiver data pipeline

7

cqualizer de-int Viterbi
d I de-punct decoding
channel recursive update: processing

bottleneck which does not allow

to build a pipeline as for 802.11a

estimation

11a

#J | N+l

11p

I I T I R I R L T

[N J [N+1 J

symbol processing time

13

Multimode 11a/p receiver code profiling

7

=

filter

synchronizer

FFT (iFFT)

channel estimation
equalizer

de-mapper

de-interleaver / de-puncturer

OFDM symbol single-thread
(@250MHz)

OFDM symbol multi-thread
(@250MH2z)

\'l AL+ U1

equalizer de-ma 2 LUEE
d P de-punct decoding

channel

estimation

11a/g (clock cycles) 11p (clock cycles)

162
1536 (latency)
200 (radix-4)
64 (QLTS) 759 (data-aided, hard-detection)
64
348 (MCS #7)
408 (MCS #7)
1432 (5.7us) 2150 (8.6us)
596 (2.4us) 1490 (5.9us)

14

Conclusions IYI

The BPE software programmable architecture has support for:
macro building
(macro-) instructions pipelining
emulate memory ping-pong access
Multi-threading

Algorithm profiling on the BPE

Translate the algorithm steps into macros
Build the macro-pipeline

PHY profiling on the BPE (MCS #7, @250 MHz)
802.11a/g: 5.7 us (single thread) ~ 2.4 us (three threads) (i.e. 54 Mbit/s)
802.11p: 8.6 us (single thread) ~ 5.9 us (two threads) (i.e. 27 Mbit/s)

Future steps
802.11p 20 MHz optional mode
Soft decision directed DA CE (FEC based, i.e. Viterbi decoding)

to address these and other issues: investigating architectural enhancements
(including the idea of a “cluster of BPE”)

\'i elr Ul i

15

