

A COMPONENT-BASED ARCHITECTURE FOR PROTOCOL DESIGN AND

DEVELOPMENT IN SDR FRAMEWORKS

Maurizio Colizza, Marco Faccio, Claudia Rinaldi, Fortunato Santucci

University of L’Aquila, Center of Excellence DEWS

L’Aquila, Italy
e-mail: colizza@westaquila.com, marco.faccio@univaq.it, claudia.rinaldi@univaq.it,

fortunato.santucci@univaq.it

ABSTRACT

The increasing interest in software defined radio (SDR) as

enabling technology for defining and developing advanced

wireless systems, e.g. mobile ad-hoc networks (MANET)

with high degree of adaptivity and ability to (re)configure in

application scenarios, motivates research efforts in

developing methods and tools for supporting a complete and

sound design flow, that encompasses i) waveform/protocol

specification, ii) thorough validation through accurate

simulations and early stage testing, and then iii) rapid code

development on selected target platform. This paper

proposes a SW architecture which derives from the

application of a new methodology fors synthesis, design and

analysis, called Tissue Methodology. The proposed

architecture aims at reducing the development time through

the use of reconfigurable SW components and the

application of automatic code generation techniques.

Key words : Architecture, Methodology, Automatic code

generation.

1. INTRODUCTION

The most recent evolutions concerning telecommunication

systems have presented the problem of an efficient use of

spectral resources. This has pushed the research and

industrial communities into the investigation of algorithms

for resource dynamical access[7]. The modelling and design

of a SDR requires the ability of dynamically configuring a

communication system as a function of radio services

offered by the environment. Furthermore, the

reconfiguration covers all layers of the protocols stack. This

high degree of configurability opens new possibilities in

terns of services dynamical access from one side, while

introducing new problems on the other side due to the

dynamicity introduced in the protocol stack.

Despite those needs of high degree of configurability , it can

be observed that state-of-the-art approaches offer too

complex and heavy architectures resulting in

underutilization of their potentialities and still lack

significantly in several components, with critical drawbacks

in those environments where performance estimation and

assessment are particularly challenging (e.g. MANETs). A

(non exhaustive) list of current weaknesses in the available

tools (e.g. NSx,OPNET, OMNET) can be provided as

follows,

1. simulators are not typically conceived to offer the

opportunity to reuse the developed code for subsequent

implementation on the target device;

2. merging of measurement code and business code is not

typically addressed;

3. tools for sound and easy support of tracking projects

requirements into the developed code are not available;

4. tools for supporting automatic generation of reports that

rely on qualitative and quantitative performance

assessment are not satisfactory;

5. high level cross verification for performance analysis

(e.g. logic trigger) is not addressed.

With the motivation of bringing improvements in the

depicted technical framework, our research group is

involved in several projects, e.g. ARTEMIS PRESTO [8]

and FP7 NoE HYCON2 [9] both co-funded by the EC.

Although the main research problems are different, both

projects are conceived with the problem of overcoming

limitations due to the current in use technologies.

Specifically, the PRESTO project is mainly focused on: 1.

the improvement of test-based embedded software

development and validation procedure, while considering

the constraints of industrial development processes; 2. the

definition of functional and performance analysis with

platform optimization at an early stage of the development

process. The project also intends to explicitly consider some

industrial development constraints: simplified use of tools,

smooth integration in current design processes, framework

of tools that is flexible enough to adapt to different process

methodologies, design languages and integration test,

platform modeling for early comparison of results with real

scenarios and fast prototyping. Through the WP6, HYCON2

also pursues research advances in developing methods and

tools for analysis and design in the broad range of complex

and networked embedded systems.

Proceedings of SDR'12-WInnComm-Europe, 27-29 June 2012

©2012 The Software Defined Radio Forum, Inc.-All Rights Reserved 55

The present paper is intended to report on our research

activity, that is focused on defining and developing a set of

tools (suite) to support the sound design, appropriate

verification/test and development of embedded software for

SDR systems. Specifically, we are defining a workflow

whose qualifying features are as follows: 1. the design of a

system or subsystem in a network/protocol stack is model-

based; 2. the amount of manually written code (firstly for

simulation) is minimized, while the code is usually obtained

from the model through a set of procedures for automatic

code generation; 3. the probes for measurement may be

placed in the model; they can be automatically switched off

when the model is used to produce code for target devices;

the model holds true independently of the target device; 4.

when a probe for measure is selected, the generated track

can be automatically added to a technical report. The suite is

intended to provide the designer with the abilities of: 1.

developing a protocol model through the composition of

library components; 2. generating code for simulation and

test in a network simulator starting from the model; 3.

generating code for a target device, starting from the model;

4. integrating protocol models with application related

models, e.g. those encountered in the context of networked

control systems. The paper will report on already achieved

results in terms of developed models and simulation

environments.

The paper is structured as follows: in section 2 we describe

the architecture proposed, in section 3 we present the

requirements arising from the tissue ide (Integrated

Development Environment) assumed, while section 4 is

related to the application of tissue pattern for protocol

designed, a case-study for IEEE 802.15.4 physical layer is

investigated in section 5 and finally section 6 concludes the

paper and discusses future works.

2. ARCHITECTURE DEFINITION

In order to introduce improvements with respect to

limitations enumerated in the previous section, this section

proposes an implementation of a new methodological

approach, namely Tissue Methodology[1].

The methodology proposed in [1] emphasizes the following

modeling paradigms:

1. modular programming [3], [4], [5];

2. patterns programming ;

3. events oriented programming [6];

4. fractal programming [2].

The design pattern used in this methodology was named as

Tissue Pattern. The Tissue pattern has the aim of enabling

the design by using a basic module which is able to :

1. receive and generate events (H);

2. process events (P);

3. storing a state space or other information (S);

4. increase their “skills” through interaction with other

units or through a reconfiguration;

The growth of tissues is achieved through the repetition of

basic units, as well as the fractal structures; the link between

H, S and P is represented by functional calls, an access to

remote resources, or any communication protocol. The basic

units can be used to build macro structures that can be in

turn used for growing a tissue. Following this approach, a

protocol stack can be rethought as show in Figure 1,.

It show a model made up of a basic tissue pattern; each of

the H modules receives events from the other layers and, at

the same time, it generates events towards the others layers.

Each event, in each layer, is processed from the P module.

The data exchanged between two layers, or the data needed

to a P module, are stored in the S module.

Figure 1 This figure show an example of how to use the

basic tissue pattern to model a protocol stack.

Specifically, the SAPs (Service Access Points) between

two layers is modelled through the H module.

Figure 2 Data set.

56

It is worthwhile mentioning that each S module represents a

system to store data (e.g. a bank of memories, a remote data

source). The P module, or the H module, may retrieve a

specific data set, through an identification code. Through

this code, the module, which needs to use the data set,

receives an handle; this handle enables the use of the data set

in read/write mode, Figure 2. The data set could be

composed by basic types (e.g. boolean, int, double) or

structured data type. If the designer defines all data types

needed by the project, the S module may be implemented

through automatic code generation. Moreover, using

standardized data structures, or rather, data structures which

were obtained from predefined data structures, the measure

code may be generated in automatic mode too and may be

automatically switched off when the model is used to

produce code for the target device. Along this vision, it is

important to define :

1. a technique to exchange information between different

layers, or rather, between different modules of type H;

2. a technique to index of each data set;

3. a technique to manage events generation and the

processing.

In the next sections we will suggest a SW implementation

for these techniques.

3. REQUIREMENTS OF THE TISSUE IDE

This section deals with the definition of requirements

needed to implement a system through the exploitation of

the Tissue Methodology. The first step consists in isolating

the main characteristics of each paradigm that is at the basis

of the Tissue Methodology. The modular programming is

the first concept to be taken into account.

In order to be able to build a system through input/output

functionalities and memory partitioning, the environment

has to provide a support for the creation of the module, that

has to be supplied with input/output ports for receiving and

generating events (Req.1). Moreover, each module needs to

provide an handle through which it is possible to interact

with it (Req.2).

In order to exchange events, a communication protocol

(Req.3) is required. One of the possible protocols to be used

is the Message Passing Interface (MPI); this protocol is

particularly interesting because of the existence of a version

for real time systems, named Real Time MPI. This is very

important for our purposes because the environment we

want propose has to allow the designer to simulate the

architecture that is going to be implemented on the target

device (Req.4). With this design choice, starting from

architectural models, it is possible to automates, through

automatic code generation, the implementation of the model

for simulation activities, or for prototyping activities, in

order to avoid any porting activity, any redesign activity,

any new testing activity (Req.5).

Basing on previously described requirements, the events

simulator OMNET++ has been chosen.

The next section is devoted to describe the Sequence

diagram of the design pattern which is used in Figure 1.

4. TISSUE PATTERN FOR PROTOCOLS DESIGN

The issue of designing a protocol layer using tissue

methodology, can be solved by the use of the tissue pattern

shown in Figure 3.

This pattern represents the basic configuration to build a

system where the tasks to deal with are shared among

different entities, that can be classified in logical layers.

However, if a cross layer interaction is needed, the

architecture depicted in Figure 1 inherently supports this

interaction. This concept can be explained with the help of

Figure 4.

Figure 3 Basic Tissue Pattern.

Figure 4 Sequence Diagram for a Basic Tissue Pattern.

57

Referring to Figure 4, it has to be observed that in addition

to the Data Set there are: the operation set,containing the

handles for cach functionality, and the event set, containing

the handles to the events. Each data set is characterized by

two coordinates, the handle of the reference storage,

sHandle, and the handle of the specific data, handleDk, with

k referring to indices data types in range [1,N]. for the data

set, [1,M] for the operation set, [1,L] for the event set.

This choice brings to the following advantages :

1. all the data set can be moved from one storage

module to another;

2. any data set can be handled from any P module or

H module; indeed it is possible to use the pair

(sHandle,handleDk) from any module;

Moreover, the exploitation of previous advantages facilitates

measurement operations; this way another requirement of

our IDE (Integrated Development Environment) is fullfilled.

Before going into the development of techniques to

automate the generation of the code through which

implementing the tissue pattern, and hence the protocol

stack, it is necessary to verify the feasibility of these

techniques. Next section proposes an application of the

tissue pattern to a 802.15.4 physical layer.

5. APPLICATION OF THE TISSUE PATTERN TO

IMPLEMENT 802.15.4 PHYSICAL LAYER

In order to verify the feasibility of this methodology and to

spotlight the differences with a traditional design, like OOP

(Object Oriented Programming), we started from an existing

project and we redesigned this project through the reusing

the existing code in order to produce a Tissue Methodology

compliant implementation. The project chosen is part of a

framework developed to simulate MANET networks

through the use of the OMNET++. The framework is named

INETMANET; we focused on the physical layer 802.15.4

implementation. The process followed to do this conversion

includes the following steps:

1. definition of data types to cover all the data

managed into the phy layer;

2. association of a unique identification code to each

data type;

3. association of a unique handle to each data type;

Figure 5 shows the identification codes, while Figure 6

shows the implementation of the handles for each data type,

basing on the “map” data structure of C++ STL (Standard

Library). The following methods have been implemented to

manage data types:

1. virtual void* select802154Data(const char*

data,int* typeData,wrapper_t tW): it returns the

handle to specified through the typeData ID;.

2. virtual void set802154Data(const char* data,int*

typeData,wrapper_t tW,void* dataMP): it adds a

new data structure

in order to retrieve the handle of the storage module, the

needed methods are :

1. cModule*hs802154PHY=(getParentModule()-

>getSubmodule("sphy"));

2. ::S802154PHY*hS802154PHY=check_and_cast<S8021

54PHY *>(hs802154PHY);

This is a way to satisfy the requirement Req.2; in order to

meet Req.3, the basic functionalities of the H module are

listed below :

Figure 5 Data ID list.

Figure 6 Class Diagram for the generic set.

58

1. virtual void fCSend(cMessage* msg,int idGate,int

sel,simtime_t t); it is needed to control the

generation of events in the H module;

2. virtual void fCSelfMsg(simtime_t t,cMessage*

msg); it is needed to set internal events (e.g.

Timer);

3. virtual void fCancEvent(cMessage* msg,int sel); it

is needed to cancel an event which is expired or

that was processed;

4. virtual void deleteSelfMsg(cMessage* msg); it is

needed to cancel an internal event which is expired

or that was processed;

These methods are necessary since the H module has to

generate events; however, the P module, as a result of a

processing, could need to generate an event.

Figure 7

To do this, the P module has to be able to let the event to the

H module, in order for the H module to generate the event

towards the destination.

When an event is received on the H interface, the H module

ask the P module for the execution of one of the following

operations :

1. updateDisplayString(*drawCoverage,*sensitivity,*t

ransmitterPower,updateString,*updateStringInterva

l);

2. handlePrimitive(msg->getKind(), msg) : it is useful

to manage the primitives exchange between the

802.15.4 physical layer and 802.15.4 mac layer;

3. handleUpperMsg(airframe) : it is useful to manage

the messages originated from the mac layer;

4. handleSelfMsg(msg) : it is useful to manage the

internal messages;

5. handleLowerMsgStart(airframe);

6. bufferMsg(airframe) : it is useful to manage the

queue of the air frames Protocol Data Units;

All these methods are placed in the P module. This closes

the implementation of the basic tissue pattern of Figure 4.

Now, basing on Software Defined Radio paradigms, the

reprogramming of a device is to be taken into account.

Using tissue architecture, the reprogramming could be

implemented through the execution of the following steps :

Figure 8 Example of dynamic tissue pattern

reconfiguration.

1. if the generic H module is not able to identify an

operation request for its P module, it sends a

notification of not recognized event to another H

module, devoted to recognize this type of events.

This specific module, is trained to process new

events through the use of an xml file, which

contains the information about the type of event

and the type of P module (part of a collection of P

modules) which has to be instantiated.

59

2. The H module that has to manage unrecognized

messages can instantiate a new P module,

specifically designed for the new types of event,

and link the new P module with the old P Module,

as depicted in Figure 8. Moreover, the old H

module is updated;

6. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the implementation requirements

needed of a new methodology, named Tissue Methodology;

moreover, an environment which satisfies these

requirements was selected, specifically OMNET++. In the

context of this environment, a basic tissue pattern was

developed and exploited to study the applicability of the

tissue methodology to implement an IEEE 802.15.4 phy

layer model.

The future works, already in progress, regards the

development of techniques to automate the generation of the

code for S, H and P modules for the basic tissue pattern

used for IEEE 802.15.4 PHY layer, and to extend the basic

tissue pattern to others layers of the protocols stack,

specifically 802.15.4 MAC layer.

7. REFERENCES

[1] M. Colizza, M. Faccio, C. Rinaldi, F. Santucci, “ A
METHODOLOGY TO DESIGN AN ADVANCED
FRAMEWORK FOR EFFICIENT MODELLING AND TESTING
OF MANETS”, in Proc. of Wireless Telecommunication
Synmposium, IEEE April 2012, to appear
[2] http://fractal.ow2.org/documentation.html
[3] K.K. Lau and Z. Wang. Software Component Models. IEEE
Trans. Software Eng., vol. 33 n° 10 , October 2007.
[4] S. Sicard, F. Boyer, and N. De Palma. Using Components for
Architecture-Based Management: The Self-Repair Case. in Proc. of
30th International Conference on Software Engineering (ICSE
2008). ACM, 2008, ISBN: 978-1-60558-079-1
[5] P.C. David, M. L´eger, H. Grall, T. Ledoux, and T. Coupaye.
A Multi-stage Approach for Reliable Dynamic Reconfigurations of
Component-Based Systems. In 8th IFIP Int. Conf. Distributed
Applications and Interoperable Systems, DAIS 2008, volume 5053
of LNCS, 2008.
[6] K. Mani Chandy, Michel. Charpentier, Agostino Capponi,
Towards a Theory of Events DEBS ’07, June 20–22, 2007
Toronto, Ontario, Canada
[7] III Mitola, J. and Jr. Maguire, G.Q., “Cognitive radio: making
software radios more personal,” Personal Communications, IEEE,
vol. 6, no. 4, pp. 13 –18, aug 1999.
[8] http://www.presto-embedded.eu/
[9] http://www.hycon2.eu/

60

