SDR '12 – WInnComm – Europe 27 Jun 2012, Brussels

Spectrum Sensing in the Vehicular Environment: An Overview of the Requirements

Haris Kremo, Rama Vuyyuru* and Onur Altintas Toyota InfoTechnology Center Japan *Toyota InfoTechnology Center US

Outline

Motivation:

Why cognitive radio in the vehicular environment?

Spectrum awareness:

Impact of mobility on sensing requirements Sensing versus geolocation database lookup

- Utilization of temporal and spatial channel diversity: Mobility versus collaboration
- Influence of sensing on MAC sublayer design: Synchronization of sensing in vehicle-to-vehicle (V2V) networks

Why cognitive radio in the vehicular environment?

- Scarcity of dedicated spectrum
 - in US 75 MHz around 5.9 GHz is dedicated to DSRC
 - considering 10 MHz to be dedicated to V2V communication [Kenney '11]
 - in Japan
 - 10 MHz between 755 and 765 MHz
 - 70 MHz around 5.8 GHz
 - for toll collection, road info,...
 - very short range
 - different PHY from DSRC
 - 802.11p performance
 - PHY efficiency less than 2.7 b/s/Hz
 - CSMA/CA MAC overhead

further reduces that number

linear formation, single lane, 500 m range no retransmissions (Mb/s, packets/s, bytes)

http://www.soumu.go.jp/main_content/000134495.pdf

Hassan et al, Performance Analysis of the IEEE 802.11 MAC Protocol for DSRC Safety Applications, IEEE Transactions on Vehicular Technology, Vol. 60, No. 8, October 2011

Emerging applications and proliferation of mobile devices

http://www.worldcarfans.com/10510278356/generalmotors-develops-vehicle-to-vehicle-communication

Telemetry feed from the CAN bus to a USB stick or a smartphone over Bluetooth

http://www.nikkei.com/article/DGXNASFK03012_T00C12A2000000 http://www.tune86.com/ft-86-news/908-toyota-gps-track-day-technology-ft-86

http://techcrunch.com/2011/11/28/ new-siri-hack-will-start-your-car-if-you-ask-nicely/

ΤΟΥΟΤΑ

INFOTECHNOLOGY

CENTER CO., LTD.

OpenXC Architecture

Purpose of the cognitive vehicular networks

1. Satisfying capacity demand for Intelligent Transportation Systems (ITS) applications

2. Offloading of delay insensitive communications from the dedicated spectrum

Advantages of the TV band:

1. Larger range due to larger antenna aperture

- 3. Diffraction: "easier bending around corners"
 - better coverage at urban intersections

Comparison with IEEE 802.22 cognitive WRANs

- Comparing system engineering level features of
 - 1. Existing cognitive solutions in the TV white space versus
 - 2. Vehicular cognitive networks

	IEEE 802.22 WRANs	Cognitive vehicular networks
Application	Internet access	ITS, possibly Internet access
Range	~ 30 km	at most a few km
Mobility	low: stationary, pedestrian	can exceed 100 km/h
Topology	centralized with base station	I2V: centralized V2V: ad-hoc
Population density	~ 5 users/km ²	up to 200 cars/km/lane
Propagation environment	 likely LOS large delay spread large propagation delay slow time variations 	LOS, NLOSfast time variations

Influence of mobility on the sensing link budget

INFOTECHNOLOGY CENTER CO., LTD.

Geolocation database lookup

- Alternative to challenging sensing requirements:
 - 1. Form a database of primary users
 - 2. Calculate protected areas using some propagation model
 - 3. Secondary users
 - Estimate their location
 - Query the database to determine free channels
 - Preferable spectrum awareness method in the US and UK
- FCC and IEEE 802.22:
 - spectrum occupancy must be assessed every time you move more than
 50 m
 - FCC accuracy requirement: < 50 m
 - 802.22 accuracy requirement: < 100 m with 67% reliability

\$GPGGA,071106.00,3540.2356,N,13944.2119,E,1,06,2.0,165.1,M,39.4,M,,*64

\$GPGGA,001007.00,3540.1865,N,13944.1963,E,1,03,3.6,4.4,M,39.4,M,,*6C

Database lookup issue 2: Mobility induced congestion

- Assume average speed 100 km/h
 - a car traverses 50 m in 1.8 s
- Assume average distance between cars 25 m
- Assume 10 km base station range
 - 400 cars in a lane across 10 km: 2400 cars on a six-lane freeway

Sensing versus database lookup 1: Sensing fails but GPS works

[Ikegami et al '84]

- Hidden node: Edge diffraction over the sound barrier
 - Assume just enough power for a TV in front to operate
 - Secondary is still close enough to create significant interference

Sensing versus database lookup 2: Sensing works but GPS fails

TOYOTA InfoTechnology Center Co., Ltd.

- Long tunnel: plenty of spectrum
- But inside the tunnel
 - Cannot sense
 - No GPS signal
 - Typically no access to Internet (including the geolocation DBs)
 - Spectrum occupancy at the tunnel exit is unknown

Improving sensing through utilization of diversity

- Sensing over N independent channel fades reduces outage probability
 - Spatial diversity: collaboration of multiple sensors
 - Temporal diversity: moving sensor experiences channel variations
- Temporal diversity is preferable
 - Hard to maintain connectivity in a vehicular network
- Regulatory domain requirements could be
 - Perform sensing every T seconds
 - Perform sensing every *D* meters
- How to determine *N*?
 - If too large
 - increases sensing overhead
 - mixing correlated values not helpful
 - If too small
 - diversity is not exploited

Temporal diversity

- Channel coherence is described by
 - decorrelation distance $D_{\rm c}$
 - decorrelation time $T_{\rm c}$
 - they are related through vehicle speed v
- Crude estimates for D_c and T_c can be a priori tabulated

$$T_c = \frac{D_c}{v}$$

[Cudmuncon '01]	environment	$D_{ m c}$ (m)
at 900 MHz	suburban	300
	urban	7

Select $\alpha > 1$ to accommodate for inaccuracies

sensing

Sensing and MAC sublayer design

- Activities controlled on the MAC layer
 - Scheduling of quiet periods for sensing
 - Selection of the sensing duration
 - Exchange of sensing related messages
 including data fusion for cooperative sensing
 - Keeping track of unused available channels for backup
 - "Pushing" of spectrum availability information from the database to the terminals without sensing capability

These tasks are difficult to coordinate in ad-hoc V2V networks

No base station to coordinate these activities as in centralized networks

Regulatory domain issues

- Different bands might be available for white space utilization
- Different channel width inside the same bands
 - digital TV: 6, 7, or 8 MHz wide.
- Different licensed standards in the same band
 - digital TV example: ATCS, DVB, and ISDB-T
 - require different feature detection: pilot tone versus pilot symbols
- Different across regulatory domains
 - Example: in 802.22 geolocation accuracy for Canada is not specified
- The design of vehicular MAC can be standardized differently across regulatory domains
 - Example:
 - Japan: mix of TDMA for I2V and CSMA for V2V in 700 MHz band
 - The US: CSMA/CA based DSRC in 5.9 GHz band

Conclusion

- Protecting primary users in the mobile environment is challenging
- Spectrum scarcity imposes development of cognitive vehicular networks
- Neither spectrum sensing nor geolocation database lookup alone can provide sufficient protection for incumbent users
- Vehicular environment makes easier to utilize temporal diversity rather than spatial diversity to improve sensing performance
 - decentralized and volatile V2V network topology makes collaboration difficult
 - repetition of sensing is a more viable option
 - for efficient utilization of temporal diversity the scale of channel fluctuations should be taken into account
- Another challenge in ad-hoc V2V networks is synchronization of quiet periods for sensing

Backup slides

Database lookup issue 3: Access latency

- A car sends request to the database at position A
- Reply arrives when the car is at B
- How far they are apart?
 - at 100 km/h delay of 1 s corresponds to ~ 28 m
- Is the reply information valid at B?
 - the car must anticipate future positions and query in advance

