www.thalesgroup.com

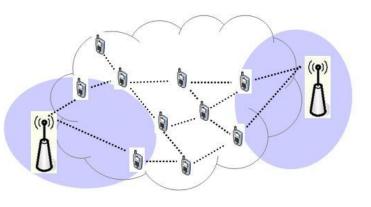
WinnComm-SDR'11

Routing pattern Selection for opportunistic network management

Michel Bourdellès, Stéphane Pega 2011/06/24

THALES

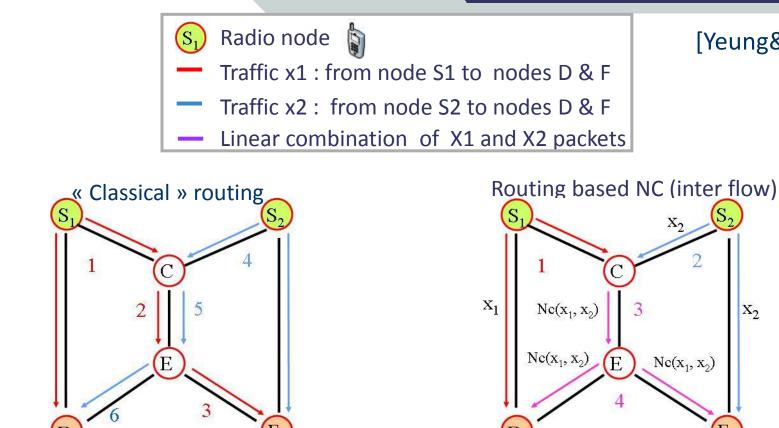
Modify or Hide in the header / footer properties : 2011/06/24


Context of opportunistic network (FP7 OneFit project [onefit])

- Multi Radio Access Technologies management with infrastructure and infrastructure-less networks.
- Radio resource optimization (cognitive radio)
- Standardization activities [ETSI RRS]

Focus on the optimization on the ad-hoc part of the Opportunistic network.

- Routing improvements
- Radio resources optimization
- Optimization on Multi flows combinations


Proposal : Use combination of network coding with routing protocols

THALE

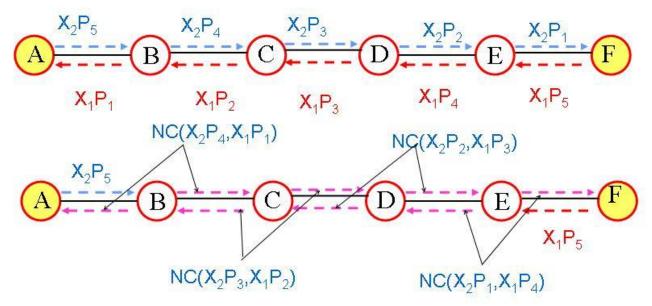
[Yeung&all]

 X_2

Principle

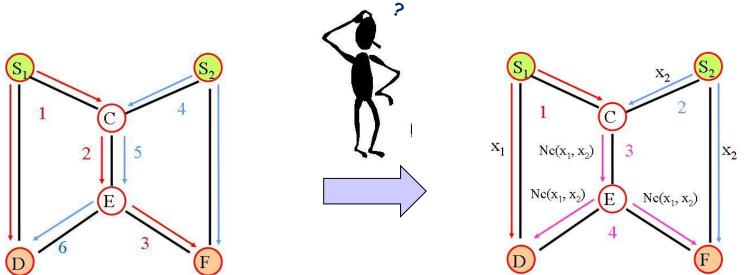
Nc(x1, x2) = x1 xor x2Size (Nc(x1, x2)=size(x1)=size(x2) D receives X1 and, NC(x1,X2), D decodes x2

Gain


Throughput gain: 33% (from 6 to 4 emissions), Gain in consumption

Radio resource optimization (nodes C and E)

COPE [Katti&all]


- **_ _ _** Traffic X2 from A to F
- — Traffic X1 from F to A
- — Linear combination of X1 and X2 packets

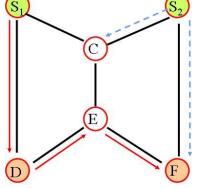
Gain

Throughput gain: (n-2)/2 + 2, n number of packet emissions In the example: gain of 40% (from 10 to 6 emissions)

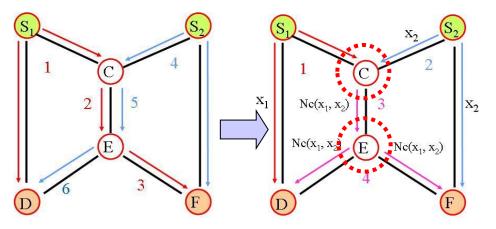
 Protocol elements proposed to reroute the traffic to optimize the radio resources of a set of independant traffic flows.

THALES

Main ideas


• Determination of the topological situation network coding may be applied

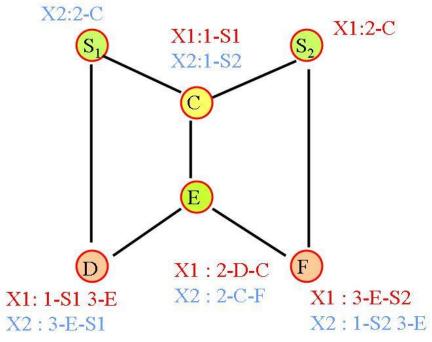
- Memorization of information on the route flooding phase discovery
- Transmission of information from the destination nodes to the initial one to detect the optimization potentialities over the network.
- Minimal multi-traffic routing information reported to the initial nodes to reroute the traffic flows.



Requirements to be met by the solution

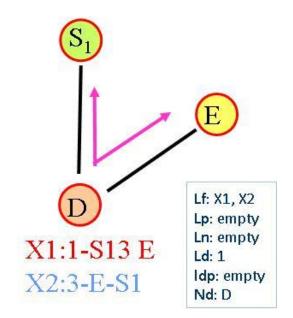
 To be applied on only part time traffic application, some currently ongoing.

With directives for radio resource allocation optimization


Requirements to be met by the solution

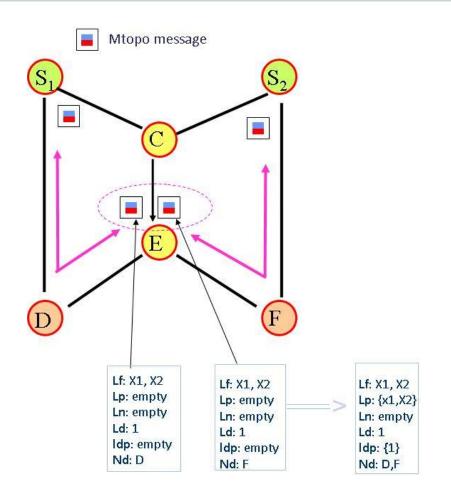
- Extension to as general as possible topologies, including bi directional flows.
- Parameterization : NC routing decision to be taken with respect to information (QoS :throughput, latency, link stability, duration of the traffics) collected over the network.
- To be extended for the use of other kind of multi-flows optimization (cooperative relaying, full use of multi-paths).
- Capability to switch from "classical" routing to "NC based" routing in identified added-value situation.

First phase:


- Node memorization information transmitted from the flooding phase using a bounded Dijkstra algorithm [ref Dijk], at a traffic establishment phase.
- Information memorized at the node step:
 - For each flow:
 - the distance to the source node, and
 - the neighbor identifier
 - Time to live memorization time

Second phase:

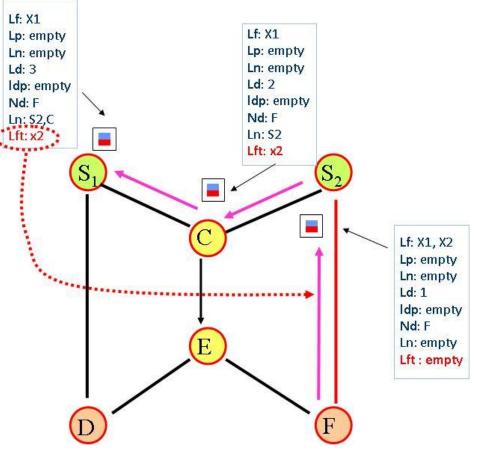
- Transmission from the destination nodes of MTopo messages to the initial nodes using of the information memorized
- Main information of the MTopo messages
 - **O** Lf: List of the traffic flows
 - Lp: List of the flows potentially optimized by NC
 - Nd: list of the path distance for the list of flows Lp
 - **O** Ln: list of the traffic flows distance of Lf
 - Nd: list of terminal nodes originator of the message information



Algorithm description: Second phase

Second phase:

- Relay node detection
- From packets received from different neighbors, a node may determine if it can be a potential relay node for the network coding of several flows.
- In the example, node E is a potential relay node for the flows X1 and X2
- The Mtopo messages are transmitted to the initial nodes.



12 / 19

Knowledge of other flow paths at a flow initial node

Second phase:

- The Lft parameter indicates that a path contains a sub path for a flow from a destination node to the initial node of the flow of the list Lft.
- In the example, S1 has the knowledge of the S2-F traffic link for X2.
- S1 (resp. S2) knows if S2 (resp.S1) has multipaths to access to final nodes.
- The S1 and S2 nodes have not to synchronize to decide to apply network coding optimization

Algorithm description: Third phase

Lf: X2

Ln: E.C

Ld: 3,3

ldp: {2,2}

Lp: $\{x1, X2\}$

FirstCod: C

13 / 19

- From the information relayed to the S1 and S2, decisions are taken on the application of network coding.
- Complementary information:
 - FirstCod: first node the network coding will be applied

Lf: X1,

Ln: E,C

Ld: 3,3

Idp: {2,2}

Nd: D.F

Lp: {x1,X2}

FirstCod: C

Lf: X1

Lp: vide

Ln: \$2,C

Idp: vide

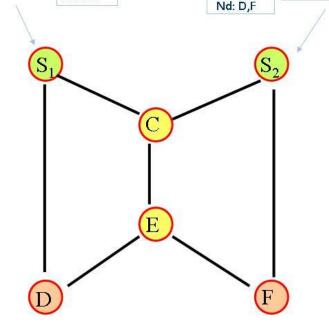
Ld: 3

Nd: F

Lft: X2

Lf: X1, X2

Lp: vide


Ln: vide

ldp: vide

Ld: 1

Nd: D

 Ldp: List of distances from the FistCod to the destination nodes of the coded traffic

Lf: X2

Lp: vide

Ln: \$1,C

ldp: vide

Ld: 3

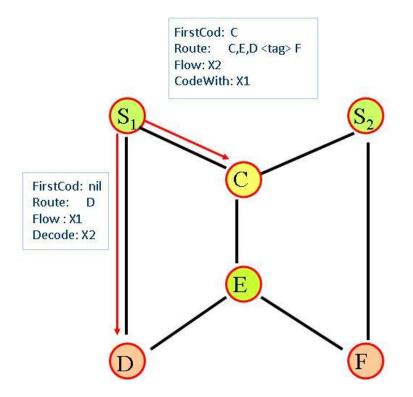
Nd: D

Lft: X1

Lf: X1, X2

Lp: vide

Ln: vide

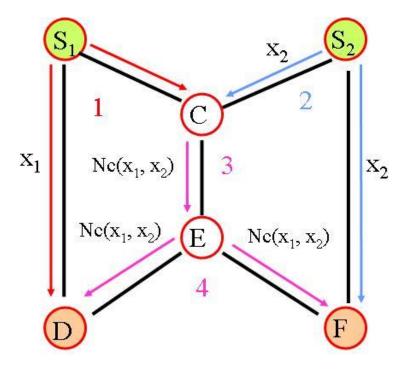

ldp: vide

Ld: 1

Nd: F

Fourth phase:

- Determination of the new routes, with potentially use of Network Coding.
- Transmission of MEstablish messages
 - FirstCod: first node the coding is applied, null if no coding applied
 - Branches the route is broadcast for multicast in a list
 - Flow id of the traffic establishment
 - Flow id of the flow(s) NC is applied

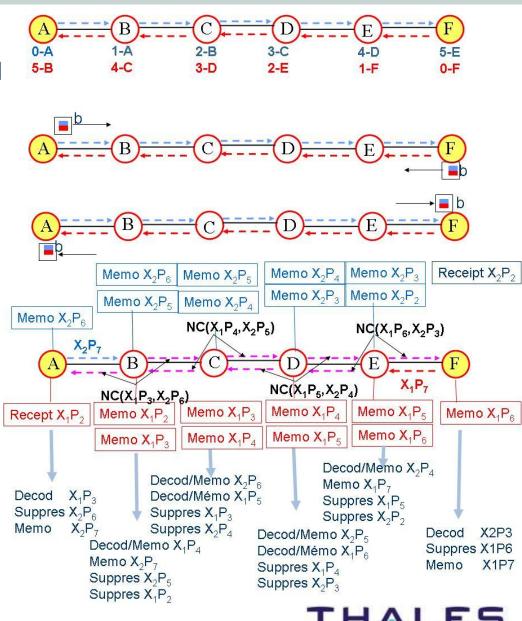


THALES

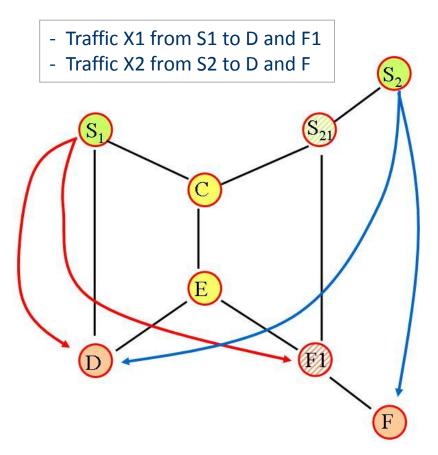
Algorithm description: Fifth phase

Fifth phase:

 Establishment of the traffic with the coding/decoding directives applied.

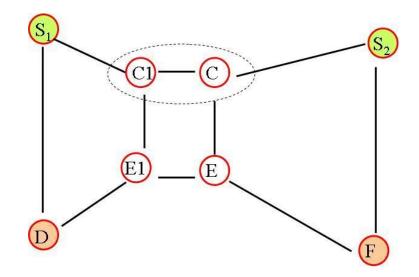


¹⁶/¹⁹ Application on the particular situation of bidirectional flows


Application on bidirectional flows:

- Nodes A and F considered as initial and final
- Field added on Mtopo messages
 - bidirFlows: Info on the flows bidirectional
- Modification on the algorithm
 - Memorization of packets received
 - Coding/Decoding phases on each relay nodes

Definition of the delegated nodes


- Initial delegated nodes:
 - S2 delegates to S21 the Lft information stampering.
- Destination delegated nodes
 - F delegates to F1 the destination node behavior

Detection of multi paths network coding may be used

- Deterministic determination of one of the two potentialities
- Use of the two paths to improve the throughput

Thank you for your attention

[Onefit] www.onefit-eu.org

[ETSI RRS] http://www.etsi.org/website/technologies/RRS.aspx

[Yeung&all] R.W. Yeung and Z. Zhang, "Distributed source coding for satellite communications," IEEE Trans. Inf. Theory, pp. 1111–1120, 1999.

[COPE] Katti, S.; Rahul, H. Wenjun Hu Katabi, D. Medard, M. Crowcroft, J "XORs in the Air: Practical Wireless Network Coding" IEEE/ACM Transactions on Networking, June 2008 Volume: 16 Issue:3 On page(s): 497 - 510 ISSN: 1063-6692

[Dijkstra] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 24.3: Dijkstra's algorithm". Introduction to Algorithms (Second ed.). MIT Press and McGraw-Hill. pp. 595–601.

