Military Tactical Communications

Practical Experience and Guidance for

Sovereign SCA Based Waveform Development

Mark Turner and Ken Dingman – Harris Corporation

THIS INFORMATION WAS APPROVED FOR PUBLISHING PER THE ITAR AS 'BASIC MARKETING INFORMATION OF DEFENSE ARTICLES' OR AS 'ADVERTISING PRINTED MATTER' PER THE EAR
Presentation Overview

- Key tenets of sovereign waveform development.
- Software Communications Architecture provides a standardized foundation.
- Candidate waveform development model.
- Recommendations.
- Conclusions.
Key Tenets – The “What”, “How” and “When”
Key Tenets - “The What”

- Definition and understanding of mission goals, system level requirements and associated use cases.
 - **Application**: Operating range, Line-of-Sight (LOS), Beyond Line-of-Sight (BLOS), Anti-Jam (AJ), Covert.
 - **Spectrum**: Frequency, bandwidth, etc.
 - **Domain**: Ground, Maritime, Air, Space, cross-domain
 - **Radio Platform Form Factor**: Aircraft, Shipboard, Fixed site, Vehicular, Man-pack, Hand-held, Small Form Factor (SFF).
 - **IA and Sovereignty Considerations**: Domain (i.e., Public, Coalition, National), assurance levels, security mechanisms (relevant encryption algorithms, key management, etc.).
 - **Networking (if applicable)**: Topology, # of users, throughput, communications protocols (standard vs. custom).
 - **Mission Planning**: Plan creation, updates, platform config.
Key Tenets - “The How”

- Waveform specification considerations:
 - New technology and capabilities, backwards compatibility.
 - Reuse of existing capabilities (organic or 3rd party) at the source code or object code level.
 - System level modeling and simulation.

- Incremental development
 - Base vs. enhanced functionality, backwards compatibility.

- Co-development of hardware platforms and software
 - Reference platform to decouple hardware dependencies.

- Portability
 - Target hardware frameworks, processing capabilities.
 - Common OE; sovereign element separation; CM.
Key Tenants - “The When”

- Understand the continuum and associated timeframe from concept to field usage (can be significant).

1999 2001 2003 2005 2007 2009 2011

Technology Maturation	Specification	Productization
Soldier Radio Waveform (SRW) | MIL-STD Integrated Waveform (IW) | Harris PRC-117G ANW2
Sovereign Waveform Development

SCA Provides a Standardized Foundation
Benefits of SDR Standards

- Facilitates communications interoperability.
- Platform knowledge sharing.
 - Reduce costs and risks associated with innovation (applies collective brainpower of industry, Government, academia).
- Reduce development costs, product time to market.
 - Leverage significant Government and commercial investment.
 - Build less software. Reuse of proven, existing waveform applications and other integrated capabilities.
 - Standardized educational elements (i.e., training courses).
 - Commercial tool suites and software development aids.
- Market competitiveness.
 - Facilitates technology insertion, third-party participation.
- Development and integration of advanced applications.
Software Communications Architecture

- Set of rules and protocols for SDR applications.
- Component Based Design (CBD) technology.
- Independence of Platform and Applications software.

Waveform Applications

SCA Operating Environment (OE)
- Services and Devices
- Core Framework (CF)
- POSIX Operating System / CORBA Middleware

Board Support Package (BSP)

Radio Set Hardware

Application Programmer Interfaces (APIs)
The SCA Today

- Becoming “de-facto” standard foundation for military SDRs across the world.
 - Represents significant investment with proven level of maturity (test, evaluation and certification; fielded solutions).
 - Combination of open and controlled elements.
- Developed as part of U.S. DoD JTRS Program.
 - Specification (v2.2.2) & suite of APIs published by U.S. DoD.
 - Evolution continues (“SCA Next” Dec-2010).
 - U.S. DoD configuration manages published baselines.
- Growing international acceptance
 - EDA “Three Category Approach” for API standardization.
 - ESSOR program adoption of SCA v2.2.2 baseline and APIs with extensions and improvement recommendations.
Three Category API Approach

Category 1
- International Open Standard
- Recognized ISO(s)
- Unclassified
- Unlimited distribution
 - Examples: SCA v2.2.2 APIs (profiles in future)

Category 2
- Multi-National Interests
- Coalition PMOs
- Unclassified
- Controlled and limited distribution
 - Examples: Coalition Waveforms (COALWNW, HDR) Security APIs

Category 3
- Specific National Interest
- National Authorities
- Classified
- Controlled and nationally limited distribution
 - Examples: Crypto Algorithms
Established “Coordinating Committee for International SCA Standards”

- Coordination Model defined for harmonization of world-wide SCA standards portfolio within an overall ecosystem.
Information Assurance and Security

- Standardization possible even for IA and security.
- WINNF International Radio Security Service API

Task Group developing a “multi-surface model”:
- Facilitates open standardization and protected interests.
- Supports both sovereign and coalition capabilities.
- Transformation layer can uniquely and securely alter information format and content.
- Private APIs (national or coalition) exposed only where applicable.
Harris SCA Pedigree

- 1st radio provider with JTEC SCA certification.
- 1st radio provider to put completed SCA waveform into JTRS Information Repository.
- 1st & only radio provider with JTEL SCA certified radios without waivers – AN/PRC-152 HH and AN/PRC-117G MP radios
- 1st & only JTRS fielded SCA waveforms.
- 1st & only fielded SCA 30-2000 MHz radio with NSA certified wideband networking.
- Official “JTRS Approved” status from JPEO.
- Ported and demonstrated SRW and WNW waveforms from JTRS IR.

Delivered > 150,000 SCA compliant radios
Harris SCA Development Heritage

- Multiple radio domains
 - U.S. DoD military
 - International military
 - Land Mobile Radio

- Diverse development categories
 - 2nd generation (pre-SCA) legacy waveforms
 - Ground, Air, ECCM, SATCOM, others.
 - Third party waveforms
 - SATCOM, Land Mobile Radio
 - Emerging technology waveform applications
 - Wideband networking waveforms
 - Waveform application reference implementations (JTRS IR)

- Multiple platforms and HW architectures
System Analysis and Requirements Definition

- Evaluation of mission goals and objectives.
- Define system requirements.
 - Applications Domains, Spectrum, IA and sovereignty, platforms, networking (if applicable), mission planning, other.
- System modeling.
 - Use case development.
- Functional partitioning and allocation.
Communications Planning

- Plan information
- Station information
- Preset configurations
- Key Management
 - TEK Assignments
- IP Addresses
- GPS
- Position Reporting

Plan Files

Radio Fill

Reports

Validation
Waveform Development Activities

Waveform Design

• System and platform considerations
 – Allocation of functionality to platform processing elements.
 – Identification, separation and protection of sovereign elements: abstraction, transformation, level.
 – Target platform architectural differences.
 – Requirements refinement.

• Key design considerations
 – Layering: PHY, MAC, Networking (Routing), Applications.
 – Information assurance: COMSEC, TRANSEC, etc.

• Modeling and simulation
 – Signals in space modeling and simulation.
 – Network simulation (i.e., connectivity, mobility, routing).
Waveform Development Activities

Waveform Integration

- Integration of GPP, DSP and FPGA
- Use of Integration Test Platform
 - Expose HW probe points
 - HMI and external interface connections
 - Allow use of GPP and DSP debuggers
- Baseband Digital components
 - Test to waveform intermediate - frequency
Waveform Development Activities

Target Platform Testing

- Closed radio platform
- Integration with RF section
 - RF control, AGC, TGC
 - Spectral performance characterized and adjusted
- Integration with CSS
- Bench testing
- Field testing
- PA Testing
Test, Evaluation and Certification

- Standards based waveform (i.e. TETRA, SATURN) can require interoperability and performance certification prior to deployment.
- Security verification and certification if appropriate.
- SCA waveform compliance evaluation to ensure ease of waveform porting.
- Other

SCA Test, Evaluation and Certification model under development by WINNF
Recommendations
Required Knowledge and Experience

- Communications theory (signal processing).
- Operating domain, waveform unique characteristics.
 - Wireless networking requires broad technical knowledge: media access, protocols, routing algorithms, QoS, other.
- Sovereignty considerations (i.e., specific national interests, security).
- System architecture and design
 - Hardware frameworks, software partitioning and coupling.
 - Real-time considerations (processing allocation, threading).
- Component Based Development (CBD), CORBA.
- Software Communications Architecture.
Required Tools and Equipment

• Development tools
 – Debuggers, compilers, emulators, layout, simulation and modeling tools, test tools, configuration management tool, requirements management, other.

• Supporting equipment
 – O-Scopes, Spectrum Analyzers, Noise Communications Generators, Power Supplies, development PCs, other.

• Test & Validation
 – Radio platforms and full sets of accessories
 • Batteries, cables, antenna, attenuators, VAAs, other.
 • Appropriate facilities
 • Power, access security, GPS and antenna access
Candidate Approaches to Consider

• Develop in-house skills and expertise
 – SCA technology and tools training.
 – Modification of an existing SCA waveform application.
 – Port 3rd party component to SCA based platform and Operating Environment.

• Establish strategic partnerships
 – Experienced radio manufacturer and waveform provider.
 – Experienced 3rd party waveform developer.
 – Domain area expert consultants.

• Incremental waveform development
 – “On-the-Job” experience, increase waveform capabilities in conjunction with expertise.
Conclusions

- Waveforms need to be specified and designed at the system level.
 - Understand the mission, requirements and use cases.
 - Development cycles generally not short or low cost.
 - Incremental development can shorten time to deployment.
- SCA provides foundation for waveform development.
 - Field proven with evolving full eco-system, leverages significant “to-date” investment.
 - SCA technology facilitates porting across multiple platforms.
- Methods to protect sovereign interests.
 - Separation of sovereign functionality.
 - Standard APIs using transformation techniques.
Mark R. Turner
Harris Corporation

Director of Software and Information Assurance Engineering
mark.turner@harris.com

Ken Dingman
Harris Corporation

Sr. Engineering Manager
Waveform Applications
ken.dingman@harris.com