

SEAMLESS DYNAMIC RUNTIME RECONFIGURATION

IN A SOFTWARE-DEFINED RADIO

Michael Dickens (Consultant to RFware, LLC, South Bend, IN : mlk@rfware.com;
Graduate Student, University of Notre Dame, IN : mdickens@nd.edu)

J. Nicholas Laneman (Professor, University of Notre Dame, IN : jnl@nd.edu)
Brian P Dunn (RFware, LLC, South Bend, IN : brian@rfware.com)

ABSTRACT

We discuss implementation aspects of a software-defined
radio system that allows for dynamic waveform
reconfiguration during runtime without interrupting data-
flow processing. Traditional software-defined radio systems
execute a waveform statically, exactly as it is programmed.
Reconfiguration is provided by executing a different
waveform, which requires the system to stop processing
data while reconfiguration occurs, and also may incur an
unacceptable delay for some applications. Recent research
has demonstrated basic reconfiguration by programming
multiple branches into a waveform and dynamically
switching between branches. This technique requires
redundant resources and in general cannot be expanded to
encompass all possible waveforms of interest, but, if
implemented carefully, could be made to seamlessly process
data. We propose a system that allows for dynamic insertion
and removal of entire waveforms, individual constituent
blocks, and block algorithm implementations tailored to
specific processors. Our system performs this
reconfiguration while maintaining processing state,
seamlessly without interrupting data-processing, and with
only the resources necessary for the given waveform and
processors. In order to leverage this new level of
reconfigurability, we created a new system component: a
supervisor. This system supervisor monitors the state of
each processor and waveform execution, and moves
computations among available processors as their loads,
capabilities, and block algorithm implementations allow. An
example using a simple supervisor is provided to
demonstrate the effectiveness of our system.

1. INTRODUCTION AND MOTIVATION

As software-defined radio (SDR) becomes more
mainstream, devices using SDR will become more
sophisticated. Already, such devices are moving from bulky
handhelds with specialized processors and programming, to
ones small enough to fit into a pocket – while using

reprogrammable software executing on multi-core general-
purpose processors. In the not-so-distant future, devices will
be using many-core processors and advanced graphics
processing units (GPUs), with the ability to do real-time
SDR for complex waveforms.
 Device functionality is moving from a few static
waveforms, to smartphone capabilities including web-
browsing, augmented reality, and communications including
voice, video, and data – possibly all at the same time. These
devices will be monitoring the whitespace and other
devices’ communications, and cognitively altering their own
communications to both use available bandwidth as well as
to avoid bandwidth in use by others [1][2][3]. Such systems
cannot rely on a few static waveforms; they must instead
provide dynamic reconfiguration of waveforms during
runtime in order to maximize both device utility and battery
life. Further, some high priority functions will require high
quality of service communications capabilities. Given these
requirements, there will be a need to move computations
between processors on such devices, without impacting data
reception or transmission – i.e., providing seamless runtime
data processing and waveform reconfiguration.
 To demonstrate the practicality of such processing in a
SDR, we have taken Surfer [4], our SDR framework – the
collection of executables and libraries, header, resource, and
data files for a given project – and augmented it in such a
way that it can support both “all-in-one” processing blocks
and a new block abstraction allowing for seamless
processing. As part of the changes, we developed a new
component – a supervisor – that keeps track of the load on
the device’s processors as well as various SDR waveform
execution parameters, and can modify waveform execution
to meet user-specified requirements. We discuss these
changes in Section 3, after providing relevant background
information in Section 2 on how SDR processing works in a
general sense. In Section 4, we describe a simple application
and show the effectiveness of our technique through a
simple load threshold detection supervisor. Conclusions and
acknowledgements are then provided in Sections 5 and 6,
respectively.

Proceedings of SDR'11-WInnComm-Europe, 22- 24 Jun 2011

Copyright(c) 2011 The Software Defined Radio Forum Inc. - All Rights Reserved197

2. BACKGROUND

In this section, we discuss how current SDR frameworks
perform data processing, in as broad terms as possible. Our
goal is to provide enough relevant information such the
changes described in Section 3 can be compared with the
current methods; we are not trying to fully describe how
GNU Radio [5] or SCA [6] does its processing, but rather to
look at the way processing takes place in a general sense.

2.1. Waveform as Graph, with Block Details

Each SDR waveform can be described by an acyclic graph,
whether performing packet or frame processing of data.
Such a processing abstraction allows for a graphical
interface (GUI) to describe a given waveform – e.g., the
GNU Radio Companion [7], MathWorks’ Simulink [8], or
National Instruments’ LabVIEW [9]. Such high-level GUIs
are excellent for visualization purposes, and for users who
are not interested in the underlying implementation details.
GUI representations of SDR waveforms hide
implementation details from the user, including how data is
buffered between signal-processing blocks, the state of each
block, and where computations are actually performed.
Sometimes it is useful to delve into the inner workings of an
SDR framework to better understand its functionality and
how experiment with modifications to offer more robust
performance.
 Figure 1 shows a generic signal-processing block,
including input and output buffers, the actual processing
algorithm implementation, the block state, and the
programming glue that holds the parts together. Some
blocks will be input only (e.g., sinks, consumers), while
others are output only (e.g., sources, producers); some do
not need state (e.g., synchronous 2-stream adder) but most
do (e.g., a FIR filter requires the N filter coefficients and the
last N-1 samples, and possibly other variables depending on
the actual implementation). The size and number of each
block’s buffers can be related to those blocks preceding and
following it; each buffer holds items of some specific type,
entering and exiting at related, possibly identical, sample
rates.
 Each block is generally coded as a group of related

variables and functions using those variables (e.g., a C++
class enclosing variables for state, and methods for handling
processing and determining other relevant properties of the
specific block). In some SDR frameworks, the block itself
determines when it is ready to be scheduled to do processing
– when there is enough input data and output buffer space,
among the basic requirements – while in others it is handled
by some external process. Some SDR frameworks evaluate
the waveform as a whole a-priori to determine block
scheduling timing and buffer sizes.
 In the block configuration from Figure 1, all forms of
dynamic runtime configuration require the equivalent of a
switch, such as that in Figure 2, to handle selection of the
block or waveform. Seamless data processing can be
provided by switching between anywhere from individual
blocks to whole waveforms. Note that the individual or
group block state must be kept in sync between all blocks
using the switch, or must be copied between blocks at
switch time. Neither method makes efficient use of memory
resources and both add extra complexity to the waveform
graph – whether in GUI or script form. Although the former
method could be practically implemented for any specific
block, there is a more efficient abstraction that we use to
provide seamless data processing that will be discussed in
Section 3.

2.2. Data Processing and Reconfiguration

In SDR frameworks, data processing occurs when a pre-
specified C++ method or C-style function is called (e.g., in
GNU Radio the “general_work” method). This method
resides within the signal processing block class or is
assigned statically, such that using some other instantiation
of the same algorithm requires creating a new block and re-
connecting the graph (e.g., via the switch from Figure 2). In
current SDR frameworks, dynamic reconfiguration takes
place via the switch, or by stopping graph execution
(whether telling the blocks to stop or by stopping the
external controller), replacing the block of interest, and then
restarting the graph. Although for some applications the
latter reconfiguration style can be made to work robustly, it
is not, in general, seamless with respect to data processing
continuity and cannot be applied to real-time signal
processing in a completely general sense. Making use of a
switch can allow real-time signal processing, but does not
use resources efficiently, adds complexity to the waveform
script or GUI, and can work only with those blocks within
the switch – adding in new versions of the same block
requires modifying the GUI or script. Again, in Section 3
we provide a more robust abstraction that not only preserves
the GUI or script, but also allows for seamless
reconfiguration during real-time signal processing while
providing more efficient use of resources.
 Figure 1 – General diagram of a SDR signal-processing block

198

2.3. Surfer Basics

We developed Surfer with a number of goals in mind; one in
particular is to remove unnecessary complexity from the
end-user’s experience, while maintaining high functionality
and user-selectable flexibility in processing. Instead of using
a single thread for all processing, or a thread per block,
Surfer takes a middle-ground approach by queuing blocks
for processing in block runners – with one block runner per
thread. A key feature of Surfer is the use of thresholds on
both input and output buffers that determine when the block
should be processed; using thresholds results in constant
overhead time per block, with that overhead processing
spread across all active runners. Each Surfer block can have
specific affinity for a given runner or ordered list of runners,
choose the runner with the lowest load, or just use the first
available. Block runners can provide functionality on a
variety of processors, from the local CPU to an attached
DSP and GPU (e.g., via OpenCL [10], NVIDIA CUDA
[11], or AMD ATI Stream [12]).

3. CHANGES FOR SEAMLESS PROCESSING

We augmented Surfer to allow it to handle data processing
seamlessly during runtime, keeping in mind an overarching
goal of Surfer development: abstracting complexity away
from the user. This section describes the concepts we
implemented in this augmentation, including the splitting
off of the processing from the signal processing block, the
need for a new state construct that allows state memory to
be shared across networks and between physical processors,
and a new system monitor that allows for automated control
of the augmented system. First we provide a brief synopsis
of our use of OpenCL for accessing a GPU for signal-
processing purposes.

3.1. OpenCL

OpenCL, the “Open Computing Language”, is an open
standard for implementing general-purpose computations on
heterogeneous computing devices. We chose to use it
because it provides better cross-platform compatibility than
NVIDIA CUDA or ATI Stream alone, while still providing

high functionality. Optimized signal-processing capabilities
using CUDA or Stream could be created as alternatives to
those provided by Surfer in OpenCL.
 OpenCL performs computations via commands placed
into a queue that is owned by a context containing one or
more processing devices. Each queue supports commands
for transferring data to and from any device within its
context, as well as commands to execute a kernel – a
program compiled specifically for one or more devices.
Data transfer can be accomplished directly (e.g., similar to
the UNIX C functions ‘bcopy’ or ‘memcpy’), or via a
memory map. Data buffers can be allocated on the host or
OpenCL device, and data easily transferred between them.
 Most queue commands return an event that can be used
as a dependency for other commands – for example, that a
data transfer must occur before the kernel using that data is
executed. Most commands can also take a list of events
(e.g., as returned from other enqueued commands) that must
finish before the command is executed. Command queuing
can be done asynchronously, and in this way OpenCL
allows for multiple commands to be queued in rapid
succession so long as their event dependencies are correctly
specified.
 OpenCL signal-processing in a SDR for a given block
follows the following chain of events:
• init OpenCL constructs;
• compile kernel from program;
• to execute the kernel:

1. data transfers from host to OpenCL device;
2. kernel for execution
3. data transfers from OpenCL device to host.

The above chain of events can be separated into 3 distinct
parts: initialization, kernel creation, and task execution.
OpenCL constructs in this case are the context and queue,
both of which might be used for multiple blocks. Hence we
created an OpenCL-based block runner that contains these
constructs. A OpenCL runner must be paired with any block
executing OpenCL signal-processing.
 Because the kernel can depend on runtime parameters,
kernel compilation cannot take place until the waveform
graph is fully defined. Once the kernel is compiled,
assuming that the graph remains unchanged then this kernel
does not need to be compiled again.

Figure 3 -- Split block with separate selectable flavors

Figure 2 – Reconfiguration via synchronized switches,
with each block implementing the same algorithm

199

 Once the OpenCL constructs and kernel are created, the
actual steps to execute the kernel form a repeatable task.
Hence we created a class for the specific purpose of issuing
such repetitive tasks. This class allows the user to easily
define event dependencies and all other relevant parameters.
Once set up, task execution is entirely encompassed within
the class, and the kernel execution is reduced to calling the
task’s “execute” method (with no arguments).
 OpenCL uses a runtime compiler that takes a string
argument containing the program to be compiled; at least in
theory a single program source can be used for any device
that adheres to the OpenCL standard. Because OpenCL
programs are strings, they can be manipulated as needed for
specific needs during runtime (e.g., for an N:1 multiplexer
block, setting the value of N without having to pass it in as
an argument). We make use of this runtime compilation
feature by setting program items such as data types and the
number of input and output streams.

3.2. Computation Flavors

As implied when referring to Figure 2, some sort of switch
is required to select the waveform, block, or computation
being performed. Instead of switching between waveforms
or blocks, we moved the switch inside the block itself, and
separated the signal processing algorithm implementation
into its own class. In place of the signal processing, we
added a lookup-table containing instantiated signal
processing algorithm implementations that all provide the
same application-programming interface (API) – we call
these flavors. This new block construct is shown in Figure 3
with six possible flavors. Each flavor is given a string name
(e.g., “generic”) and the list of names is made available
external to the block so that any name in the list can be
selected as the flavor to handle processing. The lookup table
stores this selection as a pointer to the instantiated flavor,
such that accessing it does not require searching through the
table.
 The idea behind flavors is that each provides identical
functionality, such that given the same state and data input,
each will produce the same output data to within machine
precision. All flavors interface with Surfer on the local CPU
on which Surfer is executing, and then also with the remote
processing device to do the actual processing. Flavors are
classes specifically designed for processing, and not allowed
to store state or any other local data – those must remain in
the state as found in the block that owns the flavors. Note
that the actual state and buffer data need not reside on the
local CPU’s memory, but rather can reside entirely on
remote devices. From the flavors in the block’s table, any
one can be selected to do processing – even switching
between them for each time the block performs data
processing – because state is stored separately from
processing. Flavors make efficient use of resources because

they contain only the code that has to be switched and
nothing more; any method or variable common to all flavors
is found in the block’s class.
 Surfer provides at least one flavor for each block – the
“generic” implementation for the host CPU – and an
OpenCL implementation for blocks that can be efficiently
programming in that language. The user can add flavors,
either replacing or adding to those in any block’s table. Each
block using flavors contains a default flavor – generally the
first one added to the table – as well as an optional user-
supplied priority list ordering the available flavors. Each
flavor can, but does not have to, be assigned to a specific
block runner of its type – e.g., OpenCL flavors can only be
executed within an OpenCL block runner, since they require
different handling than a flavor executing on the local CPU.
In this way, Surfer allows for either runtime or a-priori
block scheduling.
 Both Surfer and flavor compilation and execution are
highly dependent on system-provided libraries, headers, and
frameworks implementing and providing access to the
classes, functions, and variables specific to the flavor’s
programming. As such, usability is determined at three
points: (1) at configure time: whether or not the required
system-provided libraries, headers, and frameworks are
available; (2) at compile time: whether the items found in
(1) work with this implementation; and (3) at run time:
whether the compiled block initializes correctly. As an
example relevant to this work, during its configure stage of
building, Surfer tests for the OpenCL library and primary
header. If the library is found, the configure script tries to
link against it to make sure that the library is readable and
usable by the user. If the header is found, the configure
script tries to use it to determine the version of OpenCL.
Assuming all tests pass, then macros will be created that
define OpenCL as being available for use when compiling,
as well as the version. OpenCL currently comes in version
1.0 or 1.1, with the latter being a superset of the former.
Thus, during compilation, the OpenCL version macro is
used to determine which OpenCL features to make use of.
Assuming compiling succeeds, then when a block that
includes an OpenCL flavor is instantiated by the user’s
application, before the flavor is added to its block’s lookup
table it will be initialized to make sure the necessary
OpenCL function calls succeed – and if all three steps are
successful then the OpenCL flavor becomes available for
processing data.
 The flavor abstraction for signal processing comes with
very little overhead in terms of additional programming
complexity or latency. The actual processing method /
function call is handled through the lookup table, and hence
incurs an additional pointer dereference, but otherwise the
additional complexity is borne by the programmer /
developer of the block and / or flavor. The point where
potential overhead does occur is when a new flavor must be

200

initialized. This event occurs only once while that flavor is
in active use, and hence the overhead latency associated
with using this flavor – assuming it is used for a significant
number of times – will be much less than the actual time
spent processing. Hence there is an additional up-front cost
to using flavors, but this cost will be negligible in long-term
use.

3.2. Dynamic Structure Variables

Given multiple flavors that provide execution on different
processors and/or using different compilers, the state must
be made transportable between processor memories and
cross-processor interpretable. A standard C++ class
instantiation / C structure can be copied between threads of
the same application, and even shared between different
processes executing on the same processor / OS. But, in
general, neither can safely be used by different processors /
OSs, whether copied or shared in some common memory,
due to differences in alignment requirements, type sizes, and
endianness. Hence, a new state construct was put in place to
address these deficiencies; we designed this new construct
to meet the following requirements:
• To allow for simple copying, all variables and their

padding and alignment must be stored within a
contiguous memory space;

• Each variable must be able to be aligned independent of
all other variables as well as the memory space;

• The memory space must be resizable to accommodate
changing array-style user parameters, e.g., the number of
filter coefficients and string names;

• Both the C++ and C interfaces to variables must be
consistent independent of where the actual memory
space is allocated or how it is sized;

• All variables must be available for accessing before and
after resizing (not necessarily during), and all variable
values must remain the same before and after resizing;

• Any variable can be dynamically added to and removed
from the structure, without affecting the other variables;

• The C++ API should match that for scalars and standard
library (std::) vectors and strings, such that these
variables are as close as possible to drop-in replacements
for the standard C++ ones; and

• The resulting C structure must provide all of the
information needed within its contiguous memory space,
such that all variables can be found and interpreted on
the host processor – independent of any differences in
endianness or type sizes.

 Given the nature of this construct, we call variables
using it dynamic structure variables. An example of a block
state using this construct is provided in Figure 4, including
five variables of different types and how each relates via a
handle (pointer to pointer) to the actual memory allocated
for it. The structure header information and glue necessary

for variable interpretation are shown in their correct
locations, but are not further described here. Individual
variable alignment inside the structure is provided knowing
that many SIMD commands require their arguments to be
aligned, but for many block states it can be ignored. The
user accesses each variable in C++ through its dynamic
structure counterpart – internally via doubly-dereferencing
the handle – and does not in general have access to the
middle-layer pointers because they are subject to change as
variables are added, removed, or resized. No matter where
the actual memory space is allocated, the variable’s value
(scalar or array) remains the same through first copying the
current value to the new location and then updating the
pointer value; the handle value always remains valid once it
is set.

3.3. Supervisor

In order to leverage the dynamic functionality provided by
flavors in an automated manner, information must be
collected on both the flavor functionality (e.g., throughput,
latency, energy use, overhead time) and system state (e.g.,
CPU load, network utilization). Surfer already provides the
basic capabilities for collecting this data; we added modules
for collecting the CPU use for a specific process down to
individual threads in the process. We also introduced a
system supervisor as the focal point for collecting and
utilizing this data. Surfer creates a default supervisor at boot
time that collects no data but also does not modify
waveform execution. The user can overload this default with
a different supervisor – e.g., one that monitors CPU load
and then can changes the flavor of certain blocks based on
user preferences. In creating a new supervisor, the user can
select from Surfer-provided functionality-monitor modules,
or use ones created outside Surfer.
 Although a supervisor does not directly schedule blocks
for processing, it can indirectly influence this processing
through the changing of input and output buffer threshold
values. More importantly, the supervisor can switch flavors
for any block where there are multiple flavors available, and
where the user has specified affinity to multiple flavors

Figure 4 – Conceptual example of a block state using dynamic
structure variables

201

(e.g., choose a flavor whose processor has a lower load than
the current flavor’s, or to move back to a flavor with higher
affinity once its processor load is below a given threshold).

4. APPLICATION EXAMPLE

Figure 5 shows a simple application graph that demonstrates
that even a basic supervisor monitoring the CPU load can
provide good performance and seamless processing using
the new Surfer flavors. Approximately 9 seconds worth of
narrowband FM (NBFM) data was taken using an Ettus
USRP1 [11] and GNU Radio, and stored into a file. The
NBFM data is decimated within the USRP1 from 64 Mega-
samples/second (MS/s) down to 250 kS/s. Each stored
sample is a complex-valued (I&Q) integer with 2 bytes per
value or 4 bytes / sample, requiring 1 M-byte/s throughput
for real-time processing. This file is then used as the data
source for the example, where the FM signal is rate limited
to 250 kS/s and then decoded via a quadrature demodulator.
The resulting audio signal is downsampled by a factor of 10,
to 25 kS/s, via a low-pass FIR filter using 1651 taps and
with a cutoff frequency of 2.7 kHz. The resulting audio
signal was then stored back to another file. For
downsampling when using the host CPU, we intentionally
used a non-optimized FIR filter that requires more CPU
utilization than an optimal one (i.e., rather than using SIMD
specialized instruction sets such as SSE, AltiVec, or
NEON). Both the quadrature demodulator and downsampler
have flavors allowing execution on the local CPU as well as
the host-computer’s GPU (via OpenCL), and their Surfer
blocks were configured to prefer using the local CPU to
OpenCL. A supervisor was monitoring the CPU load of the
host computer, and was programmed with a threshold of
60% max CPU load before switching flavors.
 With a graphical CPU load display running, we started
Surfer executing the graph in Figure 5, and then separately
started an external process that fully loaded the host CPUs
for a short duration. As shown in Figure 6, shortly after the
external process reached our user-set threshold of 60% CPU
utilization, the supervisor started moving blocks from
executing on the local CPU to using OpenCL – which
generates a smaller CPU load for Surfer. During the switch
in flavors, as well as the entire time the external process is
running, Surfer continues processing data both seamlessly
and in real time. Once the external process finished

execution and the CPU load dropped below 60%, the Surfer
supervisor started switching flavors back from OpenCL to
the local CPU. This switch resulted in the local CPU
executing all of the application’s flavors again, hence the
resumed moderate load. Throughout this example, the host
OS is running other user and system tasks, and hence there
is a difference between the total CPU load and that incurred
by Surfer alone. There is also a short lag before the
supervisor switches flavors, due to the load detection
algorithm. Note that Surfer maintains real-time throughput
during the entire waveform execution time. This example
demonstrates that the technique we developed for allowing
runtime dynamic reconfiguration can successfully process
data seamlessly.

5. CONCLUSIONS

We have developed an SDR framework with the capability
of performing seamless dynamic runtime reconfiguration.
We accomplished this task by taking the standard signal-
processing block programming, and separating the actual
processing into its own class. In the place of the processing
functionality, a lookup table is used to store the possible
processing flavors. Each flavor for a given block meets the
same API requirements, such that given a specific state and
inputs, each will generate the same outputs (within machine
tolerance). The flavor abstraction allows for the ability of
SDR-based devices to seamlessly switch processors where
the actual signal processing takes place.

6. ACKNOWLEDGEMENTS

Figure 5 – Simple example application to demonstrate
seamless runtime processing and reconfiguration

Figure 6 – Plot showing CPU load as Surfer and a CPU
hogging process execute concurrently

202

The work of Michael Dickens and Brian Dunn has been
supported by RFware, LLC. The work of J. Nicholas
Laneman has been supported in part by NIJ Grant 2006-IJ-
CX-K034 and an NVIDIA Professor Partnership Award.

[1] J. M. Chapin and W. H. Lehr, “Cognitive Radios for Dynamic

Spectrum Access – The Path to Market Success for Dynamic
Spectrum Access Technology,” IEEE Communications
Magazine, vol. 45, no. 5, pp. 96–103, May 2007.

[2] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless
Communications,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 2, pp. 201–220, February 2005.

[3] Z. Sun, G.J. Bradford, and J.N. Laneman, “Sequence
Detection Algorithms for Dynamic Spectrum Access
Networks,” in Proc. IEEE Int. Dynamic Spectrum Access
Networks (DySPAN) Symp., Singapore, April 2010.

[4] M.L. Dickens, B.P. Dunn, and J.N. Laneman, “Thresholding
for Optimal Data Processing in a Software Defined Radio

Kernel”, in Proc. of the Karlsruhe Workshop on Software
Radios (WSR), Karlsruhe, Germany, March 2010.

[5] GNU Radio Website, accessed April 2011:
http://gnuradio.org/

[6] Software Communications Architecture Website, accessed
April 2011: http://sca.jpeojtrs.mil/

[7] GNU Radio Companion Website, accessed April 2011:
http://www.joshknows.com/grc

[8] The MathWorks, Simulink Website, accessed April 2011:
http://www.mathworks.com/products/simulink/

[9] National Instruments Corporation, LabVIEW Website,
accessed April 2011: http://www.ni.com/labview/

[10] The Khronos Group, OpenCL Website, accessed April 2011:
http://www.khronos.org/opencl/

[11] NVIDIA, CUDA Website, accessed April 2011:
http://www.nvidia.com/object/cuda_home.html

[12] Advanced Micro Devices, ATI Stream Website, accessed
April 2011: http://www.amd.com/stream

[13] Ettus Research LLC, USRP1 Website, accessed April 2011:
http://www.ettus.com/products

203

