
COMPONENT BASED APPROACH FOR SDR WAVEFORM
DEVELOPMENT ON DSP TARGETS

Laurent Poyart (THALES Communications S.A., Colombes, France;

laurent.poyart@fr.thalesgroup.com); Thomas Derive (THALES
Communications S.A., Massy, France; thomas.derive@thalesgroup.com); Eric

Nicollet (THALES Communications S.A., Colombes, France;
eric.nicollet@fr.thalesgroup.com)

ABSTRACT

The proliferation of waveforms and SDR platforms
coupled with their increasing complexity implies the need
of a structured software design to gain in modularity,
flexibility, reuse and portability.
 This paper describes a global approach using Model
Driven Engineering (MDE) and Component Based
Software Engineering (CBSE) for waveform design on
SDR platforms with heterogeneous processing units (DSP,
GPP, FPGA) and particularly focuses on the DSP
solutions proposed to unify the approach initiated on the
GPP side.
 The paper will bring out the benefit of the component-
based approach to automatically adapt whole or part of a
SDR waveform from an Operating Environment (OE) to
another with different constraints and characteristics. This
capability is one of the most important key elements for
future SDR.
 The use of a tool-aided framework to define and
deploy generic software components as SCA resources
over CORBA (compliance to SCA 2.2.2 [1]) or an other
specific middleware (SCA next “CORBA optional”
orientation) will be addressed. The article will particularly
focus on DSP concerns and some performances and
portability results will be provided to illustrate the
benefits of the approach.
 The work presented in this paper has been done
thanks to the European Commission funding for the
EULER project [5] of the Framework Programme Seven,
Cooperation, Securities theme, Grant Agreement FP7-
SEC-218133.

1. MDE AND CBSE

Model Driven Engineering refers to a range of
development approaches based on the use of software
modeling as a primary form of expression. Information
contained in the model is used to transform design to code
and test artifacts. MDE involves automatic model
transformation which plays a critical role since it
automates complex, error-prone, and recurrent software
tasks. Combined with Component Based Software
Engineering, it promotes a better structure of software
with separation of concerns between infrastructure and
business logic.
 Component based software relies on assemblies of
interconnected components. A component is a unit of

composition with specified interfaces (required and
provided). The interfaces represent the contracts between
components.
Combining MDE and CBSE greatly improves embedded
software development portability and productivity.

2. CONTEXT

A crucial issue proposed by SDR programs today is to be
able to deploy a same waveform on several SDR
platforms. The SCA gives reference architecture answers
to face this challenge. Nevertheless, the SCA specification
separates CORBA and non-CORBA processing units and
gives some architecture guidelines which doesn’t address
those processing units on the same level. On one hand, the
SCA describes components named Resources for the
CORBA processing units while the non-CORBA
processing units are addressed at the communication level
with the MHAL extensions (MHAL Device, MHAL
Comm [6]). Moreover, the use of those extensions
impacts the specification of the GPP SCA Resources
which need to mix functional ports with non-functional
MHAL ports, limiting the portability of those components
on heterogeneous middleware solutions.
 In the SDR EULER project [5], it was needed to face
to portability constraints, particularly concerning the DSP.
Two kinds of SDR platforms were to be addressed: one
platform based on the CORBA middleware on the GPP
and the DSP and another platform without CORBA
support on the DSP. The initial idea was to unify the
approach between the GPP and the DSP and to minimize
the porting efforts.

Figure 1 : EULER portability issues

GPP: Intel x86
 Linux 2.6

GPP: MPC8541 INTEGRITY
DSP: TI C6416 DSPBIOS

 IP
SERVICES

MAC PHY

SECURITY
SERVICES

XCVR

GPP: PowerQuick II
 Linux 2.6
DSP: TI C6414
 µcOSII CORBA everywhere

Proceedings of SDR'11-WInnComm-Europe, 22- 24 Jun 2011

Copyright(c) 2011 The Software Defined Radio Forum Inc. - All Rights Reserved150

A MDE/CSBE approach was previously used to

address SCA architecture on the GPP and the Euler
portability requirements were the opportunity to extend it
to the DSP and to unify the approach while keeping in
mind the specific real-time constraints imposed by the
DSP (maximal reduction of the framework footprint and
CPU usage).

3. LWCCM FRAMEWORK AND ASSOCIATED
DEVELOPMENT PROCESS

For many years, a CBSE approach based on the LwCCM
OMG standard [2] has been introduced on GPP to achieve
Software Defined Radio designs. This approach is
precisely based on the MyCCM (Make Your Component
Container Model) component framework which allows
defining CCM components using IDL3/IDL. This
framework has been extended to support the SCA
Resources constructed by an assembly of CCM
components and deployed using a Core Framework.

The following diagram shows the development
process used with MyCCM.

Figure 2 : MyCCM development process

 The development process follows a top-down
approach which covers the development cycle from
modeling to tests and integration on the target.

3.1 Make Your Design

In the first step, the components specification is achieved
with your preferred modeler e.g. Rhapsody [9], Spectra
CX [10] (scheduled). This step allows describing the static
structure of the components and their dynamic

interactions: composition and collaboration features are
specified in parallel. Therefore, at this level, some domain
specific constraints and real-time properties can be
expressed. Such properties can be threading properties,
resource usage constraints or any kind of properties which
can be exploited to configure the model transformation
process. The component connections are specified and the
CCM components can be grouped to form SCA resources
[11]. The MyCCM framework offers also the possibility
to specify the components and their deployment in
conformity with OMG D&C specification [4]. The
components need to be defined in IDL3, the interfaces in
IDL and their deployment in a Component Deployment
Plan (CDP) XML file. This file contains mainly the
components implementations, their instances mapped on
the platform and the connections between components.

3.2 Generation

The second step is the transformation step in which
artifacts are generated. Those artifacts contain
stub/skeleton elements needed in order to manage the
cross-connectivity, elements needed for local
communications, threading code, CCM containers with
respect to the LwCCM containers and finally the SCA
containers. The transformation process could also be used
to generate mirror components which may serve as test
components. Finally the framework generates an
implementation template. This template is used by the
waveform developer to insert its own business code. The
containers ensure a separation between business code and
technical code which will favor reuse and also portability
improving quick adaptation to various specific platforms.

3.3 WF development

This step is dedicated to the waveform business code
implementation. The waveform developers produce the
business code which is inserted in the generated
component containers.

3.4 Build and Deployment

During the last two steps, the containers are built together
with the business code and the deployment is achieved on
the target using the deployment files generated by the
framework (SCA XML files like SAD, SCD, etc.).

 In contexts others than Software Defined Radio, the
component framework generators also fit the target
specific requirements. Thus, in aerospace domain, ADA
code can be generated or also JAVA code for less
constrained but more dynamic targeted execution
environments. The domain specific adaptations are
efficiently managed by generation tools.

1. MAKE YOUR DESIGN

#include "PhyMyImpl.h"
#include <assert.h>

namespace Phy
{
 PhyMympl::PhyMyImpl()
 {
 //INSERT YOUR
 // BUSINESS CODE
 }
}

2.
GENERATE

3. ADD YOUR
BUSINESS
CODE

4. BUILD

 5. DEPLOY

151

4. GLOBAL GPP-DSP APPROACH

4.1 IDL on DSP

One of the key elements of the unified approach between
GPP and DSP relies on the use of IDL in the component
specification. One of the issues was to define a limited
IDL profile in order to reduce its footprint on the DSP
side. This profile is described in 5.1.

4.2 CORBA-MHAL bridging solution

For some waveform developments, CORBA is not
suitable on DSP side. In this case, the SCA 2.2.2 provides
extensions for the so-called “HW processors”. The
communications between processing units are addressed
through the MHAL Comm specification [6]. In order to be
able to specify components in the same way on DSP and
GPP the operating environment has been enriched to
provide an alternative to CORBA. This solution
implements a broker pattern with simplified assumptions
compared to CORBA. Consequently, the protocol
messages are reduced in size and the broker memory
footprint is satisfactory.
 Some software artifacts (stubs, skeletons, …) have
been defined in order to be able to build SCA components
based on this dual architecture. The bridging between the
CORBA and non-CORBA sides is ensured by deploying
an extra component called “proxy”. The goal of the proxy
is to mirror each DSP based resource on the GPP. This
component, implemented as a SCA Resource, is deployed
by the Core Framework and connected to other GPP
Resources or to other proxies (depending on the
deployment plan). The proxy is connected to other SCA
Resources through functional ports (in contrast to MHAL
ports). Another function of this component is to relay the
Core Framework requests (of CF::Resource and CF::Port
interfaces) on the DSP side in order to establish, local
links on DSP when proxies are inter-connected on the
GPP, or GPP-DSP links when the Core Framework
connect a GPP Resource to a proxy (mirroring a DSP
resource). This function is ensured by using services of
the broker. Finally, the proxy performs the CORBA
versus non-CORBA transformations for all the functional
interfaces of the component. The proxy doesn’t contain
any business code and can be assimilated as a pure
container. The containers for both sides are generated
from a single component description. The following
figure illustrates this typical architecture implemented
during the EULER project in order to fit the CORBA-
MHAL bridging solution previously described.

Figure 3: CORBA / non-CORBA bridging

4.3 CORBA everywhere solution

When using a full CORBA solution, the proxies identified
in the previous solution are not required anymore because
the middleware solution is uniform between GPP and
DSP. The framework has been supporting C++
implementations of CORBA middleware for a long time
on GPP targets. During the Euler project, the framework
has just been adapted to support the PrismTech
Openfusion eORB C [7] for the DSP target. No business
code adaptations where needed on DSP when moving
from previous CORBA-less C++ solution to the CORBA
C solution.

Figure 4: CORBA everywhere

SCA
resource

SCA container

Core Framework MyCCM runtime

SCA container

QCIOP/QuicComm

Integrity DSP/BIOS

GIOP(IIOP-MQIOP)

SCA OE

CORBA

SCA
resource

SCA
container

Fonctional
ports

Corba-Orbless
bridging

Core Framework

MyCCM
runtime

SCA
container

MHAL Comm

Linux µcOSII

CORBA

GIOP(IIOP-
MQIOP)

SCA OE

Proxy

Proxy

CF::Resource

Automatically generated from a single
component specification

152

 Prior to the integration of the waveform on the
CORBA everywhere GPP/DSP platform, the waveform
was generated for a full CORBA simulation environment
on a Linux host. The migration from one CORBA
solution to another is supported by the framework
generators. The use of the simulation environment
allowed performing native tests offering more debug
capabilities and the possibility to validate functional
behaviors before the HW availability. To adapt to the
simulation environment, it is needed to simulate some
platform components e.g. transceiver and to modify
business code only if it relies on target specific services
e.g. signal processing optimized library.

5. DSP ADAPTATIONS

The development of waveform on DSP has to face more
constraints than the GPP, particularly concerning the
small memory availability. In order to meet the DSP
constraints, the MyCCM framework has been adapted.
Some optimizations have been achieved to reduce its
memory footprint and CPU usage on the DSP and some
extensions have been introduced.

5.1 IDL profile

One of the issues was to define a limited IDL profile in
order to reduce its footprint on the DSP side. This profile
supports most of the CORBA basic types (char, short,
long, boolean, octet, string), union, structures and
sequences. Complex types have been removed or are
partially supported in the interface definitions in order to
support the syntax of the SCA components interfaces
(CF::Resource and CF::Port): the Any syntax is supported
but limited to a few basic types (short, char, long, octet,
boolean) in runtime. The Object keyword is syntactically
supported but doesn’t carry any CORBA object.
A specific mapping to C++ has been defined in order to
avoid some memory overheads proposed by the default
mapping. Component migration from DSP to GPP
supported by this profile is really fastened and improved.
In order to be able to perform the migration from GPP to
DSP, the component specification has to be reduced to the
most constrained profile.
This IDL profile is not set rigidly and will surely evolve
with new targets introduction e.g. floating point DSPs.

5.2 Real Time patterns

The extensions performed to the framework concern
capabilities to handle non-functional properties including
real-time properties such as threading, resource usage.
The objective of those extensions was to provide some
real-time features and particularly capabilities to
configure components interactions. This issue is crucial in
real-time embedded development and must be available in
the first steps of the development process in order to
provide to the generators the necessary information from
which very efficient code can be produced.

5.2.1 Threading
 The first interaction pattern introduced in the MyCCM
framework concerns threading capabilities. The
framework has been enriched with the well-known Active
Object pattern [3]. The framework gives the ability to
express threading properties (priority, stack size, queue
size) and to affect a thread to one or more component
ports (active ports) distributed on one or several
components. The design pattern decouples methods
executions from methods invocations that reside in their
own thread of control. It provides a solution to
concurrency. The implementation of the pattern relies
only on POSIX API and can be easily ported to several
operating environments provided that POSIX AEP profile
is available.

The following figure shows an example of threads
allocation to components ports:

Figure 5: Threading Pattern (active object)

The next figure provides a simplified view of the design
pattern.

Figure 6: Threading Pattern (active object)

5.2.2 Memory tuning capabilities

Another pattern has been introduced in order to configure
resource usage during component interactions and
particularly the memory allocations. This pattern concerns
essentially distributed interactions and co-localized
interactions with an active port. During those interactions,

SCA resource

CCM

Component

Thread1
{ Thread_name1,

PRIO1,
15,1024}

CCM

Component

Thread2
{ Thread_name2,

PRIO2,
15,1024}

CCM

Component

Thread1
{ Thread_name1,

PRIO1,
15,1024}

Msg

Queue

Proxy

Thread1

Method
Object

« p
« exec

« cre

« pen

« creates»

« post » « exe »

« pend »

153

some software artifacts need to be created (method objects
for example). The way those objects are allocated has an
impact on the interaction performances. It depends on the
allocation time which can vary depending on the kind of
allocator used. The allocation time, when using the global
heap (malloc/new), is well known to vary depending on
the number of allocated blocks and the heap
fragmentation. Some alternative allocators (local heap,
memory partition) are provided with the framework.
Those allocators allow to act on either determinism or
memory footprint or must be tuned depending on the
interaction constraints. The framework gives the
possibility to declare memory allocators in the
deployment model and to bind them to connections/links
between components.
 The memory tuning capabilities provide flexibility and
control for both determinism and memory consumption
during component interactions.

Figure 7: Links configuration

 6. BENCHMARKS

Benchmarks have been carried out on a Texas C6416 DSP
with 600Mhz CPU frequency and 1Mbytes of internal
memory. The figures provided hereafter address the non-
CORBA solution on the DSP.

6.1 Memory footprint

The embedded framework memory footprint is small. It
represents less than 5% of the internal memory of the
DSP. The occupation ratio includes the following
elements: the MyCCM runtime, the support to SCA
components on DSP, the broker pattern to address cross
connectivity, the MHAL Comm and finally a POSIX
subset.
Those figures don’t include the RTOS and BSP memory
footprint.

The next table gives the memory footprint of a
reference component. The figures are provided in 3
configurations:

• MyCCM component without thread
• MyCCM component with one thread mapped on

input ports
• MyCCM component threaded and with the SCA

envelope generation including the cross connectivity
artifacts (stubs/skeletons). The SCA component is
generated with the same ports as the CCM
component and enriched with the CF::Resource
interface.

The component used to measure the footprint has the
following structure:

Figure 8: reference component

The IDL types used as parameters are:

typedef sequence<char,1024> payload;
typedef sequence<short,10> small_payload;
struct sType{
 short _p1;
 long p2;
 small_payload p3;
};

Table 1: reference component
*This size doesn’t include the thread stack size.

The next table gives the memory footprint of a same
component enriched with one port and some new
operations on portIn1:

Figure 9: reference component enriched

TEST
COMPONENT

portIn1

portIn2

portOut1

portOut2

short m1();
oneway void m2(in long,
 in short);

oneway void m1(in string);
oneway void m2(in payload);

oneway void m1(in short,
 in sType ,

 in long);
oneway void m2(in payload);

short m1(inout payload)
long m2(inout short);

portIn1

portIn2

TEST
COMPONENT

portOut1

portIn3

oneway void m1(in short,
 in sType, in long);
oneway void m2(in payload);
long m3(in long, in short);
oneway void m4 (in short);

oneway void m1(in long);
void m2(inout small_payload);

portOut2

D

A B

 C

Global
Heap

Partition2

Partition1

Memory Allocators

Heap2

Heap 1

Component Container
Size

(Kbytes)
a. LwCCM no thread 1,7
b. LwCCM threaded 4,5*

c. LwCCM threaded + SCA:
 - SCA resource
 - Cross Connectivity artifacts

18,1*
5,1
8,5

∆a = 2,8K
∆b = 13,6K

154

It highlights some footprint variations:

 Table 2: reference component enriched

The memory footprint tables show that the LwCCM
container for a passive component is small (less than 1%)
and grows lightly when expanding the component
specification. When the same component is declared with
active ports the container size grows in a faster way
because it manages the threads communications
(synchronizations, parameters copies if needed). The
impact of a specific method in the global container size
depends on its parameters complexity. Nevertheless it can
be observed that the final version of the component with
threading management is around 6Kbytes which is less
than 1% of the global internal memory.
 The tables also shows that the SCA part of the
container which includes the SCA component (support of
CF::Resource, CF::Port between GPP & DSP, cross
connections between DSP resource and proxy) and all the
cross connectivity artifacts is about 13,5Kbytes in its first
version and 15,9Kbytes with the extended component.
This container includes stubs/skeletons and the
marshaling/un-marshaling features which were
traditionally written by the waveform developers and
which are now automatically generated. Classically, in
order to avoid too much overhead, DSP waveform
architectures contain many LwCCM components and only
a few SCA resources.
 Up to now, some memory footprint reductions have
been manually validated concerning the SCA envelope
and the cross connectivity. Those reductions reach around
20% on the previous examples and will be integrated in
the generators.

6.2 Execution times

The execution times have been carried out with the
following interaction models:

• Local communication on DSP with client and server
components on the same thread.

• Asynchronous communication on DSP with client
and server components on separate threads (no
marshalling is performed). In this configuration, the
time is measured between the client call and the
beginning of the server execution and with a higher
thread priority on the server.

• Synchronous communication on DSP with client
and server components on separate threads (no
marshalling is performed).

• Emulated Remote Asynchronous communication.
The client communicates with the server on the same
processing unit using the distributed middleware
(marshalling / un-marshalling are included). No
transport is used so that the benchmark measures the
distributed protocol related processing removing the
transport overhead which greatly depends on the
hardware solution and the drivers (HPI, Ethernet,
RapidIO, …).

• Emulated Remote Synchronous communication.
This benchmark is performed in the same manner as
the previous one with a synchronous interaction.

The IDL prototypes used for these tests are:

(a1) oneway void pushData_ow(in payload, in sType)
(a2) oneway void doIt_ow(in long, in short)
(s1) void pushData(in payload, inout sType)
(s2) short doIt(in long, inout short)

Table 3: Benchmarks

*These timings have been measured using a partition for memory
allocation.

The benchmarks show that there is no overhead
introduced by the LwCCM container for co-localized
components in the same thread (the figures are also
applicable to co-localized SCA resources on DSP because
they are directly connected without using the broker
solution). When the components execute in distinct
threads, the timing varies depending on the allocator used
to resolve the communication pattern. Using a memory
partition for allocation gives better results and particularly
doesn’t suffer from the well-known fragmentation
problem encountered with heaps that increases the time of
allocations/de-allocations. The downside is the increased
memory consumption compared to a heap.
It can also be noticed that some IDL parameters can
increase the execution time when data copies are needed
(sequence types in asynchronous requests requires a
sequence construction on the server side). This mainly
explains the difference between the 3rd and 4th lines in the
table.
It can be noted that the code generation based on the
LwCCM component container doesn’t introduce overhead
compared to previously hand coded solutions. The
communication patterns have been captured in the
framework.

Interaction Type
Same
Thread

Time

local (a1) yes 30cycles (~50ns)
local (a2) yes 20cycles (~33ns)
asynchronous (a1) no 1794cycles(~2,3µs)*
asynchronous (a2) no 1062cycles(~1,77µs)*
synchronous (s1) no 2220cycles(~3,7µs)*
synchronous (s2) no 2240cycles(~3,7µs)*
remote asynchronous (a1) no 3791cycles(~6,3µs)*
remote asynchronous (a2) no 2697cycles(~4,5µs)*
remote synchronous (s1) no 7620cycles(~12,7µs)*
remote synchronous (s2) no 5740cycles(~9,6µs)*

Component Container
Size

(Kbytes)
a. LwCCM no thread 1,8
b. LwCCM threaded 6,4

c. LwCCM threaded + SCA:
 - SCA resource
 - Cross Connectivity artifacts

22,3
6,2
9,7

∆a = 4,6K
∆b = 15,9K

155

7. CONCLUSIONS AND PERSPECTIVES

The dual MDE/CSBE approach using MyCCM is
structuring for the waveform development. Automatic
code generation offers more productivity and more
flexibility to face the system variations and portability
requirements. The extension of the approach on the DSP
domain is an opportunity to increase the component reuse
among targets but also to ease the integration step and
allow fast prototyping in test environment. These
flexibility and portability issues have been completely
fulfilled during the Euler project.
 The separation of concerns brought up by this
approach allows focusing on business code development
and to delegates some recurrent and error-prone issues to
the code generators.
 The MyCCM framework is an open framework which
can be easily enriched with new functionalities or
standard support and this extension capacity allow to
easily capturing some design patterns which can for
example allow controlling resource usage.

Some further tasks will address model analysis
capabilities and particularly the use of MARTE profile [8]
and also the capability to use scheduling analysis tools.
Some testing issues need also to be addressed with the
automatic generation of mirror test components.

8. REFERENCES

[1] SCA v2.2.2 http://sca.jpeojtrs.mil/sca.asp
[2]Lightweight CCM
 http://www.omg.org/spec/CORBA/3.1
[3] Active Object Pattern (Douglas C. Schmidt)
[4] OMG Deployment and Configuration
 http://www.omg.org/spec/DEPL/4.0/
[5] FP7 EULER project
 Web site http://www.euler-project.eu/
[6] Joint Tactical Radio System (JTRS) Standard Modem

Hardware Abstraction Layer Application Program
Interface (API).
http://www.public.navy.mil/jpeojtrs/sca/Documents/S
CA_APIs/API_2.13_20100629_Mhal.pdf

[7] PrismTech web site http://www.prismtech.com
[8] MARTE UML profile for modeling, analysis of real-

time and embedded systems, an OMG standard:
http://www.omgmarte.org/

[9] IBM® Rational® Rhapsody web site
http://www-01.ibm.com/software/awdtools/rhapsody/

[10] Prismtech Spectra CX web site
http://www.prismtech.com/spectra/products/spectra-cx

[11] Patent WO 2010060925; SEIGNOLE Vincent;
HACHET Olivier; COUNIL Bruno; BALP
Hugues(SEIGNOLE, VINCENT, ; HACHET,
OLIVIER, ; COUNIL, BRUNO, ; BALP, HUGUES) ;
“Method and System for encapsulating a plurality of
software components compatible with the CCM
standard into a software standard compatible with the
SCA standard”.
https://register.epo.org/espacenet/regviewer

156

