Wireless Innovation Forum European Conference 2011
An over-the-air reconfiguration API for cognitive radio testbeds

Moritz Fischer, Martin Braun, Jens P. Elsner, Friedrich K. Jondral
Outline

- Cognitive Radio
- Brief introduction to over-the-air reconfiguration
 - What is it?
 - How does it fit into the CR context?
- Implementation
 - Requirements of a CR testbed
 - Soft- & Hardware
- Results
 - Component Integration
 - Example meter (sensor)
- Demonstration
COGNITIVE RADIO
Cognitive Radio – In a nutshell

- 2000: Mitola coins the term *Cognitive Radio* in his Ph.D. thesis
- Cognitive Radio according to Mitola
 - User centric
 - Intelligent
 - Adaptive
- A fusion of
 - SDR
 - Sensors / Awareness
 - Artificial Intelligence
SHORT INTRO TO OVER-THE-AIR RECONFIGURATION
Over-the-air-reconfiguration - Introduction

Components
- Multiple radio terminals
 - Master
 - Slave
- Common (known) waveform

Components
- Master decides to change waveform
- Two cases:
 - Both terminals know the waveform
 - Transmit parameters
 - Only one terminal knows the waveform
 - Transmit waveform

Problem
- Adding new components at runtime
Over-the-air reconfiguration – Security

Source code
- Transmitted source code needs privileges (hardware access)

Transmission over the air
- Data integrity
- User authentication
- Possibly secrecy

Solution
- Run different parts of the system in separate processes
- Cryptography
 - Hash functions
 - Digital Signatures
Over-the-air reconfiguration – CR context

<table>
<thead>
<tr>
<th>Often neglected</th>
</tr>
</thead>
<tbody>
<tr>
<td>- For Communications we need at least two terminals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CR autonomously selects waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Partner needs to be notified</td>
</tr>
<tr>
<td>→ OTAR becomes necessary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CR autonomously creates waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Decisions are based on knowledge (History, Environment)</td>
</tr>
<tr>
<td>- The developed waveforms differ!</td>
</tr>
<tr>
<td>→ OTAR becomes necessary</td>
</tr>
</tbody>
</table>
IMPLEMENTATION
Implementation – Requirements Analysis

Security
- Data integrity
- User authentication

Scalability
- Adding new components has to be simple
 - Meters / sensors
 - Artificial intelligence
 - RF frontend

Flexibility
- Run different parts in separate processes
- Try to avoid limitations imposed on new components
 - Programming language
 - Operating system
Implementation – Software used

GNU Radio
- Signal Processing Framework
- Free Software
- Mostly PHY Layer
 - Integration of RF Frontend
 - Modulator / Demodulator

GNU Privacy Guard
- Framework for cryptography (RSA, AES, SHA-1…)
- Free Implementation of RFC 4880
- Cross Platform

D-Bus
- „low-latency, low-overhead, easy to use IPC“
- Part of the freedesktop.org project
- RPC, Signals, Asynchronous Programming
Implementation – Component Integration

Overview

- Two domains
 - CR
 - Environment
- Connections via D-Bus

- Cognitive Engine not implemented
- Reconfiguration Controller
 - configures SDR
 - Protocol for reconfiguration
Implementation – Reconfiguration Controller

Protocol Parser
- Contains Protocol
 - simple, line based
 - FSM
- exchangeable

Module Manager
- Availability of the modules / waveforms
- Security
 - Signatures
 - Hashes

Reconfiguration Controller

Protocol Parser
- check availability
- add
- get module

Module Manager (Master)
- current waveform

Module Manager (Slave)*
- * dashed parts only used in Master configuration

start / stop / exchange

check availability

Communications Engineering Lab
Prof. Dr. rer. nat. Friedrich K. Jondral
RESULTS
Results

- Components
 - Framework
 - Testing and implementing CR Terminals
 - Easy integration of new components
 - Waveforms can be developed in GNU Radio

- Demonstrator
 - OTAR Reconfiguration
 - Three example waveforms
 - Audio streaming
 - Video streaming
 - Narrowband FM
Communications Engineering Lab
Prof. Dr.rer.nat. Friedrich K. Jondral

Q&A / Discussion