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ABSTRACT 

 

In the recent years, Software-Defined Radio (SDR) has 

gained increased attention from the scientific and industrial 

communities. Software components, baseband architectures 

and a myriad of design approaches were proposed in the 

perspective of realizing reconfigurable and interoperable 

devices. Open standards such as the Software 

Communication Architecture (SCA) were proposed to 

enable waveform porting and SDR interoperability. They 

included various abstraction concepts such as abstraction 

layers, middleware frameworks and hardware drivers. 

However, this effort was mainly focused on the baseband 

side. Little effort was deployed in the SDR radiofrequency 

(RF) / analog side, especially on the design level. In this 

paper, we investigate the challenges in RF circuitry which 

make front-ends’ design methodologies awkward for SDRs. 

We propose a new design scheme based on a hardware 

abstraction strategy as a response to this issue. Finally, we 

present a case study in which the proposed design scheme 

will be used to design a RF filter in a step-by-step fashion.  

 

1. INTRODUCTION 

 

The crucial need of the military, police and firefighters for 

professional mobile radios allowing real-time and unlimited 

interaction between these forces on the ground had emerged 

the concept of full interoperable and reconfigurable radios. 

Such a radio is intended to be a multi-standard, multi-

channel and multi-service device providing services 

transparency, immediate reconfigurability and components 

exchangeability. This implies a proper unification of 

communication systems and new mechanisms enabling 

reconfigurability, interoperability and full porting of 

communication standards between the different hardware 

platforms. In addition, the current state of technology still 

hinders the design of fully reconfigurable hardware. For 

example, the resolution of the analog-to-digital (A/D) 

converters is limited [1, 2]. Radiofrequency front-ends offer 

little margins of reconfigurability which needs a broadband 

and linear frequency response as well as a wide dynamic 

range to enable multi-standard designs. In the digital side, 

most of handset designers use communication-dedicated 

hardware to implement baseband algorithms such 

modulation / demodulation, equalization and digital 

filtering. This design choice was somewhat mandatory to 

cope with antagonist factors such as (i) requirements in 

terms of processing delay, bit-error rate, etc. (ii) the size, 

weight and power (SWaP) constraints and (iii) the market 

pressure in terms of cost and time-to-market (TTM). 

 Historically, it was progressively shown that using 

dedicated hardware is not the best solution for 

reconfigurable radio design, especially in multi-standard 

context [3]. The advances in software design and digital 

processing suggested the implementation of baseband 

operations (e.g. signal processing) as software components 

which can theoretically run on different hardware platforms. 

This was the inception of the software radio (SR) concept. 

 In fact, various definitions are provided in literature for 

the term software radio. The most common one is the 

following: “A software radio refers to a device fully 

reconfigurable using software at any level of radio protocol 

stack. It implicitly supposes that A/D conversion is carried 

out at the antenna” [4]. However, the practical 

implementation of such a device is only possible at very low 

frequencies due to serious technology limitations. For this 

reason, another paradigm emerged namely software-defined 

radio which refers to a presently realizable version of a 

software radio. The idea is to limit the frequency range at 

the antenna using analog filtering to overcome the A/D 

conversion limitations while baseband processing is 

intensively carried out by software. Communication 

standards are implemented as waveforms including the 

modulation / demodulation, coding, access and duplex 

modes as well as the protocol structure of transmission / 

reception methods [5]. 

 To make waveforms portable between different 

hardware platforms, initiatives such as the Software 

Communications Architecture (SCA) have been proposed to 

provide an abstraction layer allowing software components 

to run independently from the underlying hardware. 

Furthermore, SCA enables interoperability between SDRs 

using Common Object Request Broker Architecture 

(CORBA). The Government Reference Architecture (GRA) 

is another initiative to enable modular software design for 

above 2 GHz (A2G) SDRs [6]. 

 While most of efforts in both academia and industry, 

involved in the promotion and development of the SDR 

paradigm had a particular interest in hardware abstraction to 

enable waveform porting and interoperability between SDRs 

as well as the reconfigurability using over-the-air 

downloadable software components, little effort was 
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deployed to review the design of the radiofrequency front-

ends in charge of the wireless communications. In fact on 

the digital front, hardware architectures such as digital signal 

processors (DSP), Field-Programmable Gate Array (FPGA) 

and General-Purpose Processors (GPP), had been deeply 

investigated [7]. Middleware frameworks, drivers and 

abstraction layers were developed to enable the porting of 

software components such as waveforms, user applications 

and other services between these platforms [8]. However on 

the analog front, design of RF front-ends is still carried out 

using classical techniques and offer little reconfiguration and 

interoperability. No design methodologies supporting 

hardware abstraction are currently in use. Most design 

schemes are still too technology-dependent to enable neither 

easy technology insertion nor efficient component 

exchangeability. 

 In this context, we investigated the matter of hardware 

abstraction in RF design in order to elaborate effective 

proposals enhancing the design of RF front-ends for SDR. 

We finally proposed a new design scheme based on the 

hardware abstraction. In this paper, we first review the basic 

abstraction concepts already developed in SDR’s digital 

side. Then, we review the design challenges in RF/analog 

domain that require an effective response in order to 

enhance front-ends’ design and reconfigurability. In the 

fourth section, we present the new design scheme and its key 

abstraction concepts. Finally, section 5 presents a step-by-

step case study demonstrating how a RF filter can be 

designed using the proposed design scheme. 

 

2. ABSTRACTION CONCEPTS IN SOFTWARE-

DEFINED RADIO DESIGN 

 

The term Software-Defined Radio was invented by Joseph 

Mitola in 1991 [9] who was the first to propose the 

architecture of a radio whose baseband operations are 

entirely carried out by software [9]. It is intended to push the 

transition between hardware and software as close to the 

antenna as possible [2]. The benefits of a SDR are 

numerous: it offers an unprecedented level of flexibility. 

Waveforms are easy to change, fix or upgrade. They are also 

portable and cost-effective. Multi-mode radios become easy 

to implement because many channels and standards can be 

supported simultaneously via the execution of concurrent 

waveforms [2]. Additionally, the time required for the 

design, implementation, testing and upgrade of SDRs is 

reduced. All these benefits are the result of using hardware 

abstraction layers and middleware allowing the masking of 

underlying hardware and enhancing the portability of both 

waveforms and hardware. In this section, we study some 

examples of the abstraction mechanisms used in SDR 

design. It is worth noting that it is not an exhaustive list, but 

rather an illustrative one. 

 

2.1. A Typical Software-Defined Radio Architecture 

 

[10] presents a typical SDR architecture for a multimedia 

multi-standard mobile handset. As shown in Figure 1, this 

architecture is composed of several layers: 

 System Hardware: This layer consists of the 

physical hardware to be used for signal processing 

and data handling. It can use DSPs, FPGAs and / or 

GPPs as well as memory blocks, etc. 

 Real-time Operating System (RTOS) and hardware 

drivers: This layer serves as an intermediate 

between the upper layers and the underlying 

hardware. It provides controlled access to the 

system resources such as memory banks, timers and 

processors. 

 Software and hardware abstraction layers: These 

layers offer uniform access functionalities and 

procedures to the system resources for the upper 

layers (especially applications). 

 Framework: acts as a “presentation” layer. It 

ensures that the system has the required capabilities 

(e.g. data transfer capabilities, synchronization 

functionalities, etc.) before proceeding further in 

the processing of high-level requests. 

 Application and services layer: It provides all the 

functionalities needed for the modulation / 

demodulation, equalization, digital filtering, etc. It 

may be an internally layered layer especially in 

multi-standard context. 

 Human Machine Interface: It is the highest level 

layer and allows the interaction with the end user 

(presentation of the received data, reception of the 

user commands, etc.). 
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Figure 1. SDR block diagram of a multi-standard mobile handset 

[10] 

 

This example of an SDR block dedicated to a multimedia 

multi-standard mobile handset shows the importance of 

abstraction layers either software or hardware. Three types 

of abstraction layers are presented: (i) a “presentation” 
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framework that controls certain parameters related to the 

data and performance and ensures that high-level requests 

are coherent with the current system capabilities, (ii) 

Hardware / software abstraction layers which mask the 

physical details of the underlying hardware and its 

management by the RTOS (access allowed via the OS 

primitives, APIs and interfaces) and (iii) Hardware drivers 

which provide the basic primitives to get access to specific 

peripherals. 

 As one may notice, the abstraction layer concept aims to 

enable the independence of the applications and services 

from the underlying hardware. However, the portability of 

software components may be limited only to some 

platforms. The interoperability is also not ensured because 

different SDRs may not be able to communicate. An obvious 

solution is the standardization of the abstraction layers in 

order to make software (respectively hardware) components 

from various origins executable on (respectively compatible 

with) different hardware platforms. 

 

2.2. Software Communication Architecture 

 

In order to make waveforms portable across platforms and 

SDRs interoperable, the Joint Tactical Radio System (JTRS) 

initiative was proposed for the purposes of radio 

communication systems unification, services’ transparency 

and components’ exchangeability. This initiative led to the 

elaboration of the software communication architecture. The 

SCA is an open framework instructing SDR engineers how 

the hardware and software blocks have to act together within 

the JTRS [5]. In particular, the SCA describes how a 

waveform has to be implemented on a given hardware 

platform. It defines also the software structure and especially 

defines the interfaces within an SDR. 

 The SCA core framework works within the JTRS 

operating environment (OE) which also includes a real-time 

operating system and an object request broker (ORB). This 

open framework establishes a coherent abstraction paradigm 

by the strict separation of software and hardware domains. It 

defines the interfaces between them which facilitate the 

development of either software or hardware by multiple 

vendors. It supports standardized APIs developed for the 

purpose of enabling applications porting and devices 

exchangeability. Interoperability between SCA-compliant 

SDRs comes from the use of object request brokers allowing 

the exchange of objects as well as the access to distributed 

software and hardware resources independently from the 

platform. 

 While the SCA offers a rich framework providing basic 

requirements for SDR development, it suffers from some 

lacks: it targeted systems ranging from low frequencies to 

approximately 2 GHz. It also faced a limited success in both 

industry and academia. In the technical side, the porting 

costs using the SCA are surprisingly not negligible. 

Moreover, it does not address the important architecture and 

design issues for waveform portability. For example, the 

SCA does not also specify any requirements or particular 

guidelines about the underlying hardware architecture such 

as physical interconnections, processing units, timers, etc. 

[11]. These SCA limitations pushed the US military to adopt 

a novel design framework for SDRs.  

 

2.3. Government Reference Architecture 

 

While the SCA provides several guidelines about how the 

software components should be designed and developed for 

an SCA-compliant SDR, it does not address the overall 

communication system. In particular, it has no specific 

instructions about the underlying hardware architecture. 

Consequently, the waveforms portability is expensive and 

devices exchangeability is not realized as anticipated. As a 

result, the Government Reference Architecture (GRA) was 

proposed. 

 The GRA is a software / firmware framework approach 

for above 2 GHz military satellite communications’ terminal 

design and development. This framework aims to establish 

modular and open system architectures to maximize modules 

integration from various vendors as well as endorsing design 

flexibility, high portability and interoperability. It targets 

also the reduction of costs during the development, 

integration and upgrade phases [6]. 

 While it is still a classified framework, public data 

shows that the GRA is a part of the Modular Open-Systems 

Approach (MOSA) which aims to modular system design, 

has well-defined interfaces and supported by common-used 

industry standards [12]. The GRA defines an Open Systems 

Interface (OSI) which is a software layer with an associated 

cooperative hardware architecture responsible for system 

control, data flow and traffic management [6]. It also defines 

a “middleware layer” that consists of a standardized terminal 

backbone and a Common Integration Layer (CIL) [6]. The 

CIL is simply a set of interfaces and APIs used to develop 

an open system architecture [6]. 

 The GRA defined also the Modem Hardware 

Abstraction Layer which is an API specifically designed to 

enhance waveforms portability. It is intended to abstract the 

modem hardware and radio operating environment from the 

waveform applications to provide suitable host environment 

across platforms [13]. It facilitates the reuse of software / 

firmware modules in order to build across-platform physical 

radio system on which it can run [14]. 

 In addition, the GRA defined a set of APIs and 

standards to handle both software and hardware design. The 

definition of suitable interfaces between components, strict 

partitioning of radio system and the abstraction of 

underlying hardware enhance the portability of waveforms, 

the reuse of modules and also facilitate the technology 

insertion. 
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3. CHALLENGES IN RF/ANALOG DESIGN 

 

If salient efforts had been sustained for years in the SDR 

baseband side where communication standards and open 

APIs were implemented as software components in order to 

alleviate waveform portability, reuse and upgrade and 

bolster interoperability and reconfigurability, little efforts 

were deployed in the RF front-end side were circuitry design 

methodologies are still too technology-dependent to provide 

neither reconfigurable nor flexible front-ends.   

Despite the advances in computer-aided design (CAD) 

tools and manufacturing platforms, manufacturers of RF 

systems and subsystems are experiencing an increasing 

pressure. The first reason is economic: Market trends are 

challenging fueled by new services and requirements 

claimed by both end users and network operators. Therefore, 

it has become necessary to update RF design, 

implementation and testing techniques and tools in order to 

address market and emerging applications’ needs. The 

second reason is technical: Despite the fact that time-to-

market and engineering costs are crucial factors, the current 

design and manufacturing procedures offer little to no 

design/product reuse possibilities, which limits efficiency. 

A wireless radio system such as a SDR consists of two main 

building blocks: The first is digital or baseband part, where 

signal processing, internetworking and user applications are 

handled. The second is the RF front-end responsible for 

analog transmission and/or reception of radio signals 

carrying data using electromagnetic waves. Bringing 

emerging concepts such as end-to-end reconfigurability, 

efficient waveform portability, interoperability and 

scalability to wireless systems requires that both building 

blocks be able to meet the requirements of reconfigurability.   

On the baseband side, one can argue that baseband 

subsystems (including both software and hardware) can meet 

such demanding requirements. This is because of the 

abundance of advanced CAD environments that include 

automatic synthesis tools and hardware abstraction strategies 

as well as the availability of modeling, hardware description 

languages and protocol layer standards. Hence, all of these 

instruments constitute a viable framework helping 

effectively the development of baseband systems that satisfy 

the requirements of next-generation networks and fit 

specifically with open wireless architectures and platforms. 

In fact, the effort of hardware abstraction had particularly 

remarkable effects in the evolution made in the baseband 

side. Indeed, today hardware abstraction is widely exploited 

in digital systems. It allows the designer to focus on the 

functionality and the related effects rather than the details of 

the underlying hardware. In doing so, it virtually masks the 

physical details of the intrinsic architecture [15], [16]. In 

fact, hardware abstraction has been boosting the industry of 

very large scale integration (VLSI) devices and especially 

general-purpose processors. It led to the birth of a 

hierarchical design approach in digital circuits that replaced 

the old techniques that were not amenable to design 

automation. It thus helped to reduce design complexity and 

created effective modularity. In the digital world, at each 

design level, the internal details of a complex module are 

replaced by a black box view. This black box is described 

by a model with known characteristics and contains all the 

information needed to deal with the block at the next level of 

hierarchy. This approach has led to the emergence of 

powerful CAD tools working with cell libraries. These 

libraries contain the technological information about the 

cells and atomic devices of which the module is composed. 

This concept finds its roots in the software design where 

libraries of software routines are used. Any software 

program can use the routines of these libraries without 

looking inside their structure or how they were implemented. 

It only cares about the intended result when the right input / 

output parameters are provided [17]. 

 By contrast, RF front ends and subsystems had not seen 

the same rate of advances and changes. Despite notable 

advances in design tools, RF front ends’ design procedures 

are still almost fully manual and are carried out according to 

old design schemes and flows. Actually, these conventional 

strategies are too costly, long and do not enable easy 

technology insertion. RF devices and components handle 

mainly analog signals. They have several particularities such 

as the sensitivity to the noise level, frequency and 

temperature drifts and may behave in non-linear mode where 

additional noise, interferences and signal distortion may 

occur. Moreover, the developed architectures are often non 

reusable. The changes and corrections of the design 

according to new specifications are very expensive and may 

take a lot of time. Final system integration is tedious, risky 

and slow particularly when different technologies are 

involved in the system architecture. The classic RF design 

scheme, either top-down- or bottom-up-like, lacks formal 

communication rules between the different developers 

involved in the project. Interpretation errors and forgotten 

specifications can easily happen and have negative effects 

on the designed system performance, cost and also the time-

to-market factor [18]. In addition, RF design is not only non-

adaptive but also very technology-dependent. Available RF 

technologies and even CAD tools often impose rigid 

constraints to achieve a given RF functionality. As a result, 

classical RF design is unable to ensure rapid design, 

prototyping and integration. It does not allow flexible and 

fast adaptation of CAD tools, technology libraries and 

product lines for new RF products especially SDRs and 

multi-standard radios. Consequently, it is not ready to meet 

the requirements of emerging wireless and mobile networks 

and represents a substantial bottleneck that must be 

overcome. To do so, it is necessary to elaborate a new RF 

design scheme that is able to tackle these issues. For this 

purpose, the research activities being conducted, target the 

elaboration of such a scheme supporting true adaptability, 
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flexibility and automation. This scheme also avoids 

specifications and communications errors from one design 

stage to another. Additionally, automation is an important 

goal and will be addressed in the proposed scheme, which 

we present in the next section as part of a complete 

framework.  

 

4. HARDWARE ABTRACTION-BASED DESIGN 

FRAMEWORK FOR RF/ANALOG DESIGN  

 

As stated above, the field of RF design needs a reliable 

approach which brings some degrees of freedom to the 

designer and provides certain levels of abstraction thus 

allowing the high-level design of RF devices and 

components and masking, at least partially, the physical 

details of implementation. At the following, we first present 

the proposed design scheme. Then, we show how the 

concepts of abstraction we adopted evolved and their impact 

on the design of RF front-ends. 

 

4.1. The Proposed Design Scheme 

 

The basic idea, initially proposed in [19], consists of 

considering that any RF system (or subsystem) is a black-

box that is defined by inputs, outputs, and configuration 

parameters which act on a transfer function describing the 

system’s behaviour. This consideration allows a high-level 

functional description of any RF device and brings a 

considerable abstraction of technology details related to that 

system. Starting from this point, we proposed an improved 

design scheme for RF components which is conceived in a 

way that separates the functional view of the system from 

the technology details of the underlying platform. It begins 

with a hardware-abstracted function description, which 

captures the desired functionality, and flows to synthesis and 

realisation through several sequential steps as illustrated in 

Figure 2. At the heart of this design scheme lays a new data 

structure, called Q-matrix, which is a generic 

multidimensional matrix that captures all of the RF device’s 

electrical attributes through a minimum set of parameters. 

This structure makes the communication between the 

different stages easily feasible and enables the re-use of 

existing CAD tools through custom format conversions. 

 In a preliminary work, this proposed design approach 

was further elaborated through a case study [20]. We 

considered a typical RF transceiver and started by capturing 

its functional description using the Unified Modeling 

Language (UML). This step was then repeated using the 

Systems Modeling Languages (SysML) instead. 
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Figure 2. Improved RF design scheme [19] 

 

4.2. Evolution of the Abstraction Concepts inside the 

Design Scheme 

 

Modeling practice is a suitable solution to build functional 

descriptions independent from technology platform for 

complex RF front-ends. However, the question of how a 

complex RF system will be synthesized from its SysML 

model according to the initial specifications was an 

outstanding question to answer. In fact, we were inspired 

from the software engineering domain where intensive 

modeling activities are elaborated for complex software 

designs. The Object Management Group (OMG) proposed 

the Model-Driven Engineering (MDE) which provides a 

standardized approach to bolster complex software systems’ 
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design using intensive modeling activities [21]. In practice, 

the MDA defines three main levels of abstraction (or 

subsequent models) that are reused by MDE (see Figure 3). 

As [21] states, the first level of modeling is the Platform-

Independent Model (PIM). It is a “model with a high level of 

abstraction that is independent of any implementation 

technology” [21]. The PIM describes the system (or a part 

of it) from functional viewpoint without defining how this 

function is practically realized. The second level defined by 

this approach is the Platform-Specific Model (PSM). This 

model is tailored to specify the target system considering the 

specific details of a given platform technology. The PSM is 

generated using a particular transformation from the PIM. 

For each platform technology, a PSM is derived from the 

corresponding PIM using a particular transformation. The 

third and final level is the implementation (e.g. source code 

for software systems) which is also derived from the PSM 

using a predefined transformation. It is worthwhile to note 

that, according to [21], a transformation is the process of 

“generation of a target model from a source model 

according to a given transformation definition” (or rules). 
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Figure 3. Model-Driven Engineering abstraction levels 

 

For the proposed scheme to be streamlined along key MDE 

concepts, the first task is to delimit its various stages in 

accordance with MDE’s three level approach, as shown in 

Figure 3. To this end we continue to consider the Q-matrix 

in a central position accessible at various steps be they in the 

PIM, the PSM or Implementation phases. The resulting 

mapping of our design scheme to the MDE’s 

PIM/PSM/Implementation framework is captured in Figure 

4. Under this scheme, the PIM covers the functional 

description of the system, the coherence verification and 

possibly system level simulation. In this domain, the system 

is presented as a level that is totally independent from any 

technology details or platform. At this level, the abstraction 

is very high in a way that even an unrealistic system may be 

functionally described but rejected through coherence 

verification. Next, the PSM domain may include system 

simulation and covers the steps of the synthesis process, 

which is composed of three sub-steps, namely, granularity 

refinement, technology mapping and performance 

simulation. In this domain, the system model is enriched 

with technology details and the abstraction level is lowered 

in order to take in consideration the physical constraints. At 

this level, technology limitations, if any, that may prevent 

the realization of the stated specifications are generally 

discovered and feedback to the previous stages can be given 

so the design process may be restarted or re-iterated. On the 

other hand if no technology limitations are met, then the 

design will be feasible and can be moved on to the 

Implementation domain which encompasses the 

manufacturing and testing steps. 

Having established the proper mapping between the 

MDE framework and our RF design cycle, the next step 

consists of defining the required transformations to transit 

between domains.  To be streamlined with the MDE 

approach, these transformations must allow the translation of 

the PIM (e.g., SysML model offering a relevant functional 

description) of an RF device to a PSM (e.g., mathematical or 

technical model considering a target technology). This PSM 

should be transformable to an implementation realizing the 

RF functionality. 

This said, the transformation from PIM to PSM is 

dependent on the nature of the system. However, the PIM 

describes a set of parameters and attributes that are 

transformable to PSM elements. For example, the 

transformation shall take into account the power level and 

the bandwidth in which the device is operating. If the system 

to develop is a power amplifier, then the transformation may 

analyze and then generate mathematically the amplifier 

model that can operate at those conditions bearing in mind 

some considerations such as stability, noise, linearity, and so 

on. 
 

5. CASE STUDY: DESIGNING A RF FILTER USING 

THE PROPOSED APPROACH 

 

To illustrate the principles announced in the previous 

section, we present in this one, how an RF filter can be 

designed using the proposed approach. The example we 

present here, is intentionally simple and realistic in order to 

ease the illustration. At the beginning, one should note that 

an RF filter is a passive device widely used in 

communications in order to select a given bandwidth useful 

for a specific application. Technically speaking, an RF filter 

is a two-port symmetrical network. The design of such 

devices has been the subject of research activities for 

decades. A large amount of literature exists about the art of 

filter design. For in-depth readings, the reader may refer to 

[22], [23], [24] and [25]. 
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Figure 4. The design scheme with the different MDE domains 

 

For the present case study, we have chosen to realize a 

lowpass RF filter having the following specifications (see 

Table 1): 

 
Table 1. Specifications of a typical lowpass RF filter 

Items Specifications Unit 

Passband Edge Frequency (f0) 0.9 GHz 

Cutoff Frequency (fc) 0.5 GHz 

Insertion Loss in passband  6.0 dB 

Ripple in passband  0.2 dB 

Attenuation  53 @ f0 dB 

Input / Output Impedance 50  

 

The steps of applying the MDE approach to RF filter design 

are the following: 

 

5.1. PIM Domain Steps 

 

The RF filter specifications can be captured using a SysML 

model [20]. One can capture both the properties and the 

requirements of the filter using the diagrams that SysML 

offers such as the block definition diagram (bdd) and 

requirements diagrams. The internal structure of the filter 

and its behavior (frequency response form) can also be 

captured by SysML if they are specified. The bdd of the 

filter captures the filter parameters and the constraints to 

which these parameters should obey. Figure 5 presents a 

typical bdd of an RF filter. The property “Type” stands for 

the filter type (e.g. lowpass, bandpass, highpass, etc.). One 

should notice that this bdd is a part of an entire SysML 

model modeling a passive RF filter. It contains the definition 

of used units, the bdd, the requirements, etc. Due to a matter 

of space, we present here only the bdd. 

The frequency response of an RF filter can be 

mathematically modeled by a function. This mathematical 

model is totally independent from the technology. Many 

known models are described in literature such as 

Butterworth (also called maximally-flat), Chebyshev, 

Bessel, etc. [26]. Depending on the values of the RF filter 

parameters already specified by the designer, the PIM may 

correspond or not to a particular mathematical model of 

filters that characterizes its general frequency response. For 

example, if the specified ripple is equal to zero then the 

corresponding mathematical model which can present a 

frequency response meeting this constraint is the maximally 

flat one. If the designer implies a sharp frequency response 

at the edge of the passband, Chebyshev model may be the 

best to meet this requirement. Hence, different PIMs can be 

defined to an RF filter. 

 Looking at the specified parameters of the filter, one 

can notice that the ripple is greater than zero and the 

bandpass attenuation is slightly large. These observations 

suggest that the Chebyshev mathematical model is well 

suited to meet the filter’s specifications. 

 

5.1.1. Coherence Verification of the filter Specifications 

The main goal of coherence verification is to carry out a 

preliminary check to verify the coherence of the values 

specified by the designer. This check is carried out 

according to a set of rules specified in the SysML model of 

the filter (see constraints subsection in Figure 5). Such rules 

take their legitimacy from both the filter theory and also the 

available implementation technology. For example, it is not 
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possible to obtain a stopband attenuation greater than 100 

dB at a normalized frequency of 1.05 with conventional 

design methods. Such a choice judged as “unfeasible” is 

then rejected. 

 

bdd Passive RF Filter Stereotype

«block»

Passive RF Filter

values

Bandwidth:GHz

CentralFrequency:GHz

CutoffFrequency:GHz

StopBandAtt:dB

InsertionLoss:dB

ReturnLoss:dB

Type:FilterType

Ripple:dB

Qfactor:void

NoiseFigure:dB

constraints

{StopBandAtt ≥ 100}

{InsertionLoss = 0}

{ReturnLoss ≥ 40}

{Qfactor ≥ 10
6
}

{ripple vs. RL}

 
Figure 5. The block definition diagram modeling the RF filter 

characteristics 

 

The equations (E.1) present a set of possible rules already 

defined in the bdd of Figure 5. Obviously, the specifications 

given in Table 1, successfully pass the test. 
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     (E.1) 

 

5.1.2. Q-matrix Creation 

Another objective of the coherence verification is to prepare 

the creation and the use of the Q-matrix. This data structure 

is based on a mathematical formalism that does not accept 

any incoherencies [19]. Then to allow the fill of the Q-

matrix with the electrical parameters initially deduced from 

the specifications and use them afterwards in the different 

stages of design, particularly within the transformation from 

the PIM to PSM, errors and incoherencies are not allowed 

and quickly revealed using this process. Theoretically, if the 

set of rules used to perform the coherence verification is 

complete, inconsistent specifications cannot be accepted 

from the beginning. 

 

5.2. Transformation from PIM to PSM 

Several methods exist in literature about how a filter can be 

designed. Two main methods are predominant: (i) image 

parameter and (ii) insertion-loss methods [22], [26]. The 

transformation from the filter PIM to PSM that we propose 

here is inspired from the second method which is frequently 

used. This transformation is composed of the following 

steps: 

 

4.2.1. Order Calculation and Prototype Generation 

Traditionally, the filtering functionality is represented by a 

network of lumped components (resistors, inductors and 

capacitors) [24]. The order of the filter determines the 

number of lumped elements that will constitute the network 

performing the required filtering response over the required 

bandwidth.  

The order of a filter Chebyshev is calculated according 

to (E.2) [23, p.357]: 
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    (E.2) 

Carrying out the calculations, we get 6.9766N  . Due to 

the fact that N  must be an integer, we choose 7N  . 

Hence, the corresponding lowpass prototype is as shown in 

Figure 6. 

 

 
 

Figure 6. Lumped components prototype of the target filter 

After frequency normalization, the values of ig  where 

1..7,i   are computed following the equations of 

Chebyshev lowpass filter synthesis [23, p.359]. After 

frequency and impedance scaling, these values correspond 

to the values of the inductors iL  and capacitors jC which 

compose the filter network. Finally, we obtain the results in 

Table 2. 

After generating the filter prototype, we obtained the 

values of its different lumped components. To check the 

validity of these values and figure out the frequency 

response of the resulting network, we carried out the 

simulation of this network using Advanced Design System 

(ADS) [27]. The frequency response of the designed filter is 

as shown in Figure 7(a) (for the insertion loss) and 7(b) (for 

the return loss). 
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Table 2. Values of the filter’s lumped components 

Lumped Element Value (Unit) 

L1 (g1) 21.84 nH 

C2 (g2) 8.772 pF 

L3 (g3) 34.22 nH 

C4 (g4) 9.552 pF 

L5 (g5) 34.22 nH 

C6 (g6) 8.772 pF 

L7 (g7) 21.84 nH 

 

 (a) 

 
(b) 

 

Figure 7. Frequency response of the lowpass filter: (a) insertion 

loss, (b) return loss 

 

5.2.2. Technology Considerations 

After generating the prototype of the filter and the 

calculation of the lumped components values, the details of 

the technology must be taken into consideration. For this 

case study, we consider using lumped components, which 

typically have low parasitics at frequencies below 500 MHz, 

and a standard printed circuit board (PCB) substrate (Rogers 

RO3010 Substrate) on which the filter will be fabricated. 

With the aid of the ADS package and using its built-in 

library of L and C lumped components provided by Dale 

Technologies, we carry out final filter simulation and 

produce a circuit layout for the completed design. This 

resulting layout, shown in Figure 8, constitutes the output of 

our PIM to PSM transformation. It is typically given in a 

standard format (i.e., Gerber Format), and can then be used 

by various fabrication processes (in the Implementation 

domain) where it generally goes through a transformation 

that makes it compatible with the particular fabrication 

equipment/process being used. 

The lowpass filter characteristics and the lumped 

element realization were chosen for illustration purposes and 

for simplicity reasons. However, bandpass and highpass 

filters can also be designed by using well established 

transformation identities known as Kuroda’s identities [22, 

p.406]. Similarly, distributed elements may be used instead 

of lumped component by relying on simple transformations 

that use high characteristic impedance lines, 
h

oZ , to produce 

the equivalent inductances ( L ) and low characteristic 

impedance lines, 
l

oZ , to produce the equivalent 

capacitances (C ). These transformations are given by the 

equations (E.3) and (E.4) [23, p.382]: 
h

oZ d
L




          (E.3) 

l

o

d
C

Z




              (E.4) 

where   is the phase constant, d  is the transmission line 

physical length and 2 f   is the angular frequency. 

 

 
 

Figure 8. Final layout of the lowpass filter 

 

6. CONCLUSION 

 

In both academia and industry, the SDR paradigm is seen as 

the technology of the future. The hopes that one day end-to-

end reconfigurability, effective interoperability and high 

flexibility will be achieved by the implementation of the 

ultimate software radio are real. Current efforts are deployed 

to define open standards allowing the development of fully 

portable software components across platforms. Various 

techniques of both hardware and software abstraction are 

used to enable cost-effective waveforms porting and 
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interoperability. However in the RF front-end side, little 

research effort targeted to adapting the design 

methodologies of RF front-ends to the pace of advances 

occurring in the SDRs’ baseband design. RF design 

methodologies lack flexibility and are very technology-

dependent. To find out a suitable response to this issue, we 

proposed a new design methodology based on hardware 

abstraction which aims to uncouple the RF device’s 

functionality from technology. 

 The proposed design scheme includes a functional 

description stage in which the structure, requirements and 

constraints of complex RF systems are captured. We used 

modeling languages such as SysML to elaborate the 

platform-independent model of the system under design. 

This model is synthesized in the next stage of design using a 

model-to-model transformation (i.e. PIM to PSM). This 

operation results in a platform-specific model which is in 

practice a circuit implemented in a given technology. The 

design data are centralized in the Q-matrix all over the 

design scheme enabling thus cooperative design.  

 The abstraction and automation concepts we used and 

are inspired from the MDE approach offer a novel view for 

system design where functional and operational levels are 

separated. The technology input becomes an input to the 

design cycle which eases the insertion of various 

technologies and even the benchmark of their resulting 

performance. While our design scheme still needs 

refinement and experimentation, the case study we presented 

in this paper provides an overview of how a RF device such 

as a filter can be designed using the proposed design 

methodology.  
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