
A RF HARDWARE ABSTRACTION-BASED METHODOLOGY FOR FRONT-

END DESIGN IN SOFTWARE-DEFINED RADIOS

Sabeur Lafi; Ammar Kouki; Ahmed Elzayat and Jean Belzile

(École de technologie supérieure, Montréal, Québec, Canada;

{sabeur.lafi.1, ahmed.elzayat.1}@ens.etsmtl.ca, {ammar.kouki, jean.belzile}@etsmtl.ca)

ABSTRACT

In the recent years, Software-Defined Radio (SDR) has

gained increased attention from the scientific and industrial

communities. Software components, baseband architectures

and a myriad of design approaches were proposed in the

perspective of realizing reconfigurable and interoperable

devices. Open standards such as the Software

Communication Architecture (SCA) were proposed to

enable waveform porting and SDR interoperability. They

included various abstraction concepts such as abstraction

layers, middleware frameworks and hardware drivers.

However, this effort was mainly focused on the baseband

side. Little effort was deployed in the SDR radiofrequency

(RF) / analog side, especially on the design level. In this

paper, we investigate the challenges in RF circuitry which

make front-ends’ design methodologies awkward for SDRs.

We propose a new design scheme based on a hardware

abstraction strategy as a response to this issue. Finally, we

present a case study in which the proposed design scheme

will be used to design a RF filter in a step-by-step fashion.

1. INTRODUCTION

The crucial need of the military, police and firefighters for

professional mobile radios allowing real-time and unlimited

interaction between these forces on the ground had emerged

the concept of full interoperable and reconfigurable radios.

Such a radio is intended to be a multi-standard, multi-

channel and multi-service device providing services

transparency, immediate reconfigurability and components

exchangeability. This implies a proper unification of

communication systems and new mechanisms enabling

reconfigurability, interoperability and full porting of

communication standards between the different hardware

platforms. In addition, the current state of technology still

hinders the design of fully reconfigurable hardware. For

example, the resolution of the analog-to-digital (A/D)

converters is limited [1, 2]. Radiofrequency front-ends offer

little margins of reconfigurability which needs a broadband

and linear frequency response as well as a wide dynamic

range to enable multi-standard designs. In the digital side,

most of handset designers use communication-dedicated

hardware to implement baseband algorithms such

modulation / demodulation, equalization and digital

filtering. This design choice was somewhat mandatory to

cope with antagonist factors such as (i) requirements in

terms of processing delay, bit-error rate, etc. (ii) the size,

weight and power (SWaP) constraints and (iii) the market

pressure in terms of cost and time-to-market (TTM).

 Historically, it was progressively shown that using

dedicated hardware is not the best solution for

reconfigurable radio design, especially in multi-standard

context [3]. The advances in software design and digital

processing suggested the implementation of baseband

operations (e.g. signal processing) as software components

which can theoretically run on different hardware platforms.

This was the inception of the software radio (SR) concept.

 In fact, various definitions are provided in literature for

the term software radio. The most common one is the

following: “A software radio refers to a device fully

reconfigurable using software at any level of radio protocol

stack. It implicitly supposes that A/D conversion is carried

out at the antenna” [4]. However, the practical

implementation of such a device is only possible at very low

frequencies due to serious technology limitations. For this

reason, another paradigm emerged namely software-defined

radio which refers to a presently realizable version of a

software radio. The idea is to limit the frequency range at

the antenna using analog filtering to overcome the A/D

conversion limitations while baseband processing is

intensively carried out by software. Communication

standards are implemented as waveforms including the

modulation / demodulation, coding, access and duplex

modes as well as the protocol structure of transmission /

reception methods [5].

 To make waveforms portable between different

hardware platforms, initiatives such as the Software

Communications Architecture (SCA) have been proposed to

provide an abstraction layer allowing software components

to run independently from the underlying hardware.

Furthermore, SCA enables interoperability between SDRs

using Common Object Request Broker Architecture

(CORBA). The Government Reference Architecture (GRA)

is another initiative to enable modular software design for

above 2 GHz (A2G) SDRs [6].

 While most of efforts in both academia and industry,

involved in the promotion and development of the SDR

paradigm had a particular interest in hardware abstraction to

enable waveform porting and interoperability between SDRs

as well as the reconfigurability using over-the-air

downloadable software components, little effort was

Proceedings of SDR'11-WInnComm-Europe, 22- 24 Jun 2011

Copyright(c) 2011 The Software Defined Radio Forum Inc. - All Rights Reserved29

deployed to review the design of the radiofrequency front-

ends in charge of the wireless communications. In fact on

the digital front, hardware architectures such as digital signal

processors (DSP), Field-Programmable Gate Array (FPGA)

and General-Purpose Processors (GPP), had been deeply

investigated [7]. Middleware frameworks, drivers and

abstraction layers were developed to enable the porting of

software components such as waveforms, user applications

and other services between these platforms [8]. However on

the analog front, design of RF front-ends is still carried out

using classical techniques and offer little reconfiguration and

interoperability. No design methodologies supporting

hardware abstraction are currently in use. Most design

schemes are still too technology-dependent to enable neither

easy technology insertion nor efficient component

exchangeability.

 In this context, we investigated the matter of hardware

abstraction in RF design in order to elaborate effective

proposals enhancing the design of RF front-ends for SDR.

We finally proposed a new design scheme based on the

hardware abstraction. In this paper, we first review the basic

abstraction concepts already developed in SDR’s digital

side. Then, we review the design challenges in RF/analog

domain that require an effective response in order to

enhance front-ends’ design and reconfigurability. In the

fourth section, we present the new design scheme and its key

abstraction concepts. Finally, section 5 presents a step-by-

step case study demonstrating how a RF filter can be

designed using the proposed design scheme.

2. ABSTRACTION CONCEPTS IN SOFTWARE-

DEFINED RADIO DESIGN

The term Software-Defined Radio was invented by Joseph

Mitola in 1991 [9] who was the first to propose the

architecture of a radio whose baseband operations are

entirely carried out by software [9]. It is intended to push the

transition between hardware and software as close to the

antenna as possible [2]. The benefits of a SDR are

numerous: it offers an unprecedented level of flexibility.

Waveforms are easy to change, fix or upgrade. They are also

portable and cost-effective. Multi-mode radios become easy

to implement because many channels and standards can be

supported simultaneously via the execution of concurrent

waveforms [2]. Additionally, the time required for the

design, implementation, testing and upgrade of SDRs is

reduced. All these benefits are the result of using hardware

abstraction layers and middleware allowing the masking of

underlying hardware and enhancing the portability of both

waveforms and hardware. In this section, we study some

examples of the abstraction mechanisms used in SDR

design. It is worth noting that it is not an exhaustive list, but

rather an illustrative one.

2.1. A Typical Software-Defined Radio Architecture

[10] presents a typical SDR architecture for a multimedia

multi-standard mobile handset. As shown in Figure 1, this

architecture is composed of several layers:

 System Hardware: This layer consists of the

physical hardware to be used for signal processing

and data handling. It can use DSPs, FPGAs and / or

GPPs as well as memory blocks, etc.

 Real-time Operating System (RTOS) and hardware

drivers: This layer serves as an intermediate

between the upper layers and the underlying

hardware. It provides controlled access to the

system resources such as memory banks, timers and

processors.

 Software and hardware abstraction layers: These

layers offer uniform access functionalities and

procedures to the system resources for the upper

layers (especially applications).

 Framework: acts as a “presentation” layer. It

ensures that the system has the required capabilities

(e.g. data transfer capabilities, synchronization

functionalities, etc.) before proceeding further in

the processing of high-level requests.

 Application and services layer: It provides all the

functionalities needed for the modulation /

demodulation, equalization, digital filtering, etc. It

may be an internally layered layer especially in

multi-standard context.

 Human Machine Interface: It is the highest level

layer and allows the interaction with the end user

(presentation of the received data, reception of the

user commands, etc.).

Human Machine Interface (HMI)

Applications & Services

Hardware Abstraction

Layer

Software Abstraction

Layer

Hardware Drivers

System Hardware (digital)

Real-Time Operating

System (RTOS)

Framework
Common

Services

Figure 1. SDR block diagram of a multi-standard mobile handset

[10]

This example of an SDR block dedicated to a multimedia

multi-standard mobile handset shows the importance of

abstraction layers either software or hardware. Three types

of abstraction layers are presented: (i) a “presentation”

30

framework that controls certain parameters related to the

data and performance and ensures that high-level requests

are coherent with the current system capabilities, (ii)

Hardware / software abstraction layers which mask the

physical details of the underlying hardware and its

management by the RTOS (access allowed via the OS

primitives, APIs and interfaces) and (iii) Hardware drivers

which provide the basic primitives to get access to specific

peripherals.

 As one may notice, the abstraction layer concept aims to

enable the independence of the applications and services

from the underlying hardware. However, the portability of

software components may be limited only to some

platforms. The interoperability is also not ensured because

different SDRs may not be able to communicate. An obvious

solution is the standardization of the abstraction layers in

order to make software (respectively hardware) components

from various origins executable on (respectively compatible

with) different hardware platforms.

2.2. Software Communication Architecture

In order to make waveforms portable across platforms and

SDRs interoperable, the Joint Tactical Radio System (JTRS)

initiative was proposed for the purposes of radio

communication systems unification, services’ transparency

and components’ exchangeability. This initiative led to the

elaboration of the software communication architecture. The

SCA is an open framework instructing SDR engineers how

the hardware and software blocks have to act together within

the JTRS [5]. In particular, the SCA describes how a

waveform has to be implemented on a given hardware

platform. It defines also the software structure and especially

defines the interfaces within an SDR.

 The SCA core framework works within the JTRS

operating environment (OE) which also includes a real-time

operating system and an object request broker (ORB). This

open framework establishes a coherent abstraction paradigm

by the strict separation of software and hardware domains. It

defines the interfaces between them which facilitate the

development of either software or hardware by multiple

vendors. It supports standardized APIs developed for the

purpose of enabling applications porting and devices

exchangeability. Interoperability between SCA-compliant

SDRs comes from the use of object request brokers allowing

the exchange of objects as well as the access to distributed

software and hardware resources independently from the

platform.

 While the SCA offers a rich framework providing basic

requirements for SDR development, it suffers from some

lacks: it targeted systems ranging from low frequencies to

approximately 2 GHz. It also faced a limited success in both

industry and academia. In the technical side, the porting

costs using the SCA are surprisingly not negligible.

Moreover, it does not address the important architecture and

design issues for waveform portability. For example, the

SCA does not also specify any requirements or particular

guidelines about the underlying hardware architecture such

as physical interconnections, processing units, timers, etc.

[11]. These SCA limitations pushed the US military to adopt

a novel design framework for SDRs.

2.3. Government Reference Architecture

While the SCA provides several guidelines about how the

software components should be designed and developed for

an SCA-compliant SDR, it does not address the overall

communication system. In particular, it has no specific

instructions about the underlying hardware architecture.

Consequently, the waveforms portability is expensive and

devices exchangeability is not realized as anticipated. As a

result, the Government Reference Architecture (GRA) was

proposed.

 The GRA is a software / firmware framework approach

for above 2 GHz military satellite communications’ terminal

design and development. This framework aims to establish

modular and open system architectures to maximize modules

integration from various vendors as well as endorsing design

flexibility, high portability and interoperability. It targets

also the reduction of costs during the development,

integration and upgrade phases [6].

 While it is still a classified framework, public data

shows that the GRA is a part of the Modular Open-Systems

Approach (MOSA) which aims to modular system design,

has well-defined interfaces and supported by common-used

industry standards [12]. The GRA defines an Open Systems

Interface (OSI) which is a software layer with an associated

cooperative hardware architecture responsible for system

control, data flow and traffic management [6]. It also defines

a “middleware layer” that consists of a standardized terminal

backbone and a Common Integration Layer (CIL) [6]. The

CIL is simply a set of interfaces and APIs used to develop

an open system architecture [6].

 The GRA defined also the Modem Hardware

Abstraction Layer which is an API specifically designed to

enhance waveforms portability. It is intended to abstract the

modem hardware and radio operating environment from the

waveform applications to provide suitable host environment

across platforms [13]. It facilitates the reuse of software /

firmware modules in order to build across-platform physical

radio system on which it can run [14].

 In addition, the GRA defined a set of APIs and

standards to handle both software and hardware design. The

definition of suitable interfaces between components, strict

partitioning of radio system and the abstraction of

underlying hardware enhance the portability of waveforms,

the reuse of modules and also facilitate the technology

insertion.

31

3. CHALLENGES IN RF/ANALOG DESIGN

If salient efforts had been sustained for years in the SDR

baseband side where communication standards and open

APIs were implemented as software components in order to

alleviate waveform portability, reuse and upgrade and

bolster interoperability and reconfigurability, little efforts

were deployed in the RF front-end side were circuitry design

methodologies are still too technology-dependent to provide

neither reconfigurable nor flexible front-ends.

Despite the advances in computer-aided design (CAD)

tools and manufacturing platforms, manufacturers of RF

systems and subsystems are experiencing an increasing

pressure. The first reason is economic: Market trends are

challenging fueled by new services and requirements

claimed by both end users and network operators. Therefore,

it has become necessary to update RF design,

implementation and testing techniques and tools in order to

address market and emerging applications’ needs. The

second reason is technical: Despite the fact that time-to-

market and engineering costs are crucial factors, the current

design and manufacturing procedures offer little to no

design/product reuse possibilities, which limits efficiency.

A wireless radio system such as a SDR consists of two main

building blocks: The first is digital or baseband part, where

signal processing, internetworking and user applications are

handled. The second is the RF front-end responsible for

analog transmission and/or reception of radio signals

carrying data using electromagnetic waves. Bringing

emerging concepts such as end-to-end reconfigurability,

efficient waveform portability, interoperability and

scalability to wireless systems requires that both building

blocks be able to meet the requirements of reconfigurability.

On the baseband side, one can argue that baseband

subsystems (including both software and hardware) can meet

such demanding requirements. This is because of the

abundance of advanced CAD environments that include

automatic synthesis tools and hardware abstraction strategies

as well as the availability of modeling, hardware description

languages and protocol layer standards. Hence, all of these

instruments constitute a viable framework helping

effectively the development of baseband systems that satisfy

the requirements of next-generation networks and fit

specifically with open wireless architectures and platforms.

In fact, the effort of hardware abstraction had particularly

remarkable effects in the evolution made in the baseband

side. Indeed, today hardware abstraction is widely exploited

in digital systems. It allows the designer to focus on the

functionality and the related effects rather than the details of

the underlying hardware. In doing so, it virtually masks the

physical details of the intrinsic architecture [15], [16]. In

fact, hardware abstraction has been boosting the industry of

very large scale integration (VLSI) devices and especially

general-purpose processors. It led to the birth of a

hierarchical design approach in digital circuits that replaced

the old techniques that were not amenable to design

automation. It thus helped to reduce design complexity and

created effective modularity. In the digital world, at each

design level, the internal details of a complex module are

replaced by a black box view. This black box is described

by a model with known characteristics and contains all the

information needed to deal with the block at the next level of

hierarchy. This approach has led to the emergence of

powerful CAD tools working with cell libraries. These

libraries contain the technological information about the

cells and atomic devices of which the module is composed.

This concept finds its roots in the software design where

libraries of software routines are used. Any software

program can use the routines of these libraries without

looking inside their structure or how they were implemented.

It only cares about the intended result when the right input /

output parameters are provided [17].

 By contrast, RF front ends and subsystems had not seen

the same rate of advances and changes. Despite notable

advances in design tools, RF front ends’ design procedures

are still almost fully manual and are carried out according to

old design schemes and flows. Actually, these conventional

strategies are too costly, long and do not enable easy

technology insertion. RF devices and components handle

mainly analog signals. They have several particularities such

as the sensitivity to the noise level, frequency and

temperature drifts and may behave in non-linear mode where

additional noise, interferences and signal distortion may

occur. Moreover, the developed architectures are often non

reusable. The changes and corrections of the design

according to new specifications are very expensive and may

take a lot of time. Final system integration is tedious, risky

and slow particularly when different technologies are

involved in the system architecture. The classic RF design

scheme, either top-down- or bottom-up-like, lacks formal

communication rules between the different developers

involved in the project. Interpretation errors and forgotten

specifications can easily happen and have negative effects

on the designed system performance, cost and also the time-

to-market factor [18]. In addition, RF design is not only non-

adaptive but also very technology-dependent. Available RF

technologies and even CAD tools often impose rigid

constraints to achieve a given RF functionality. As a result,

classical RF design is unable to ensure rapid design,

prototyping and integration. It does not allow flexible and

fast adaptation of CAD tools, technology libraries and

product lines for new RF products especially SDRs and

multi-standard radios. Consequently, it is not ready to meet

the requirements of emerging wireless and mobile networks

and represents a substantial bottleneck that must be

overcome. To do so, it is necessary to elaborate a new RF

design scheme that is able to tackle these issues. For this

purpose, the research activities being conducted, target the

elaboration of such a scheme supporting true adaptability,

32

flexibility and automation. This scheme also avoids

specifications and communications errors from one design

stage to another. Additionally, automation is an important

goal and will be addressed in the proposed scheme, which

we present in the next section as part of a complete

framework.

4. HARDWARE ABTRACTION-BASED DESIGN

FRAMEWORK FOR RF/ANALOG DESIGN

As stated above, the field of RF design needs a reliable

approach which brings some degrees of freedom to the

designer and provides certain levels of abstraction thus

allowing the high-level design of RF devices and

components and masking, at least partially, the physical

details of implementation. At the following, we first present

the proposed design scheme. Then, we show how the

concepts of abstraction we adopted evolved and their impact

on the design of RF front-ends.

4.1. The Proposed Design Scheme

The basic idea, initially proposed in [19], consists of

considering that any RF system (or subsystem) is a black-

box that is defined by inputs, outputs, and configuration

parameters which act on a transfer function describing the

system’s behaviour. This consideration allows a high-level

functional description of any RF device and brings a

considerable abstraction of technology details related to that

system. Starting from this point, we proposed an improved

design scheme for RF components which is conceived in a

way that separates the functional view of the system from

the technology details of the underlying platform. It begins

with a hardware-abstracted function description, which

captures the desired functionality, and flows to synthesis and

realisation through several sequential steps as illustrated in

Figure 2. At the heart of this design scheme lays a new data

structure, called Q-matrix, which is a generic

multidimensional matrix that captures all of the RF device’s

electrical attributes through a minimum set of parameters.

This structure makes the communication between the

different stages easily feasible and enables the re-use of

existing CAD tools through custom format conversions.

 In a preliminary work, this proposed design approach

was further elaborated through a case study [20]. We

considered a typical RF transceiver and started by capturing

its functional description using the Unified Modeling

Language (UML). This step was then repeated using the

Systems Modeling Languages (SysML) instead.

Q

SysML/UML Diagrams

XML Description

Coherence Verification

System Simulation

Granularity Refinement

Technology Mapping

Performance Simulation

Manifacturing

Tests & Measurements

S
y
n
th

e
s
is

A
n
a
ly

s
is

Implementation

V
a

lid
a

tio
n

Specific
atio

ns

Interface

Design Step

Legend:

Design Data Exchange

Functio
nal D

escrip
tio

n

Figure 2. Improved RF design scheme [19]

4.2. Evolution of the Abstraction Concepts inside the

Design Scheme

Modeling practice is a suitable solution to build functional

descriptions independent from technology platform for

complex RF front-ends. However, the question of how a

complex RF system will be synthesized from its SysML

model according to the initial specifications was an

outstanding question to answer. In fact, we were inspired

from the software engineering domain where intensive

modeling activities are elaborated for complex software

designs. The Object Management Group (OMG) proposed

the Model-Driven Engineering (MDE) which provides a

standardized approach to bolster complex software systems’

33

design using intensive modeling activities [21]. In practice,

the MDA defines three main levels of abstraction (or

subsequent models) that are reused by MDE (see Figure 3).

As [21] states, the first level of modeling is the Platform-

Independent Model (PIM). It is a “model with a high level of

abstraction that is independent of any implementation

technology” [21]. The PIM describes the system (or a part

of it) from functional viewpoint without defining how this

function is practically realized. The second level defined by

this approach is the Platform-Specific Model (PSM). This

model is tailored to specify the target system considering the

specific details of a given platform technology. The PSM is

generated using a particular transformation from the PIM.

For each platform technology, a PSM is derived from the

corresponding PIM using a particular transformation. The

third and final level is the implementation (e.g. source code

for software systems) which is also derived from the PSM

using a predefined transformation. It is worthwhile to note

that, according to [21], a transformation is the process of

“generation of a target model from a source model

according to a given transformation definition” (or rules).

Platform-Independent Model

(PIM)

Platform-Specific Model

(PSM)

Implementation

(e.g., source code)

 u

v

u Transformation from PIM to PSM

v Transformation from PSM to the implementation

T
o

w
a

rd
s
 P

L
A

T
F

O
R

M

A
B

S
T

R
A

C
T

IO
N

T
o

w
a

rd
s
 P

L
A

T
F

O
R

M

S
P

E
C

IF
IC

IT
Y

Figure 3. Model-Driven Engineering abstraction levels

For the proposed scheme to be streamlined along key MDE

concepts, the first task is to delimit its various stages in

accordance with MDE’s three level approach, as shown in

Figure 3. To this end we continue to consider the Q-matrix

in a central position accessible at various steps be they in the

PIM, the PSM or Implementation phases. The resulting

mapping of our design scheme to the MDE’s

PIM/PSM/Implementation framework is captured in Figure

4. Under this scheme, the PIM covers the functional

description of the system, the coherence verification and

possibly system level simulation. In this domain, the system

is presented as a level that is totally independent from any

technology details or platform. At this level, the abstraction

is very high in a way that even an unrealistic system may be

functionally described but rejected through coherence

verification. Next, the PSM domain may include system

simulation and covers the steps of the synthesis process,

which is composed of three sub-steps, namely, granularity

refinement, technology mapping and performance

simulation. In this domain, the system model is enriched

with technology details and the abstraction level is lowered

in order to take in consideration the physical constraints. At

this level, technology limitations, if any, that may prevent

the realization of the stated specifications are generally

discovered and feedback to the previous stages can be given

so the design process may be restarted or re-iterated. On the

other hand if no technology limitations are met, then the

design will be feasible and can be moved on to the

Implementation domain which encompasses the

manufacturing and testing steps.

Having established the proper mapping between the

MDE framework and our RF design cycle, the next step

consists of defining the required transformations to transit

between domains. To be streamlined with the MDE

approach, these transformations must allow the translation of

the PIM (e.g., SysML model offering a relevant functional

description) of an RF device to a PSM (e.g., mathematical or

technical model considering a target technology). This PSM

should be transformable to an implementation realizing the

RF functionality.

This said, the transformation from PIM to PSM is

dependent on the nature of the system. However, the PIM

describes a set of parameters and attributes that are

transformable to PSM elements. For example, the

transformation shall take into account the power level and

the bandwidth in which the device is operating. If the system

to develop is a power amplifier, then the transformation may

analyze and then generate mathematically the amplifier

model that can operate at those conditions bearing in mind

some considerations such as stability, noise, linearity, and so

on.

5. CASE STUDY: DESIGNING A RF FILTER USING

THE PROPOSED APPROACH

To illustrate the principles announced in the previous

section, we present in this one, how an RF filter can be

designed using the proposed approach. The example we

present here, is intentionally simple and realistic in order to

ease the illustration. At the beginning, one should note that

an RF filter is a passive device widely used in

communications in order to select a given bandwidth useful

for a specific application. Technically speaking, an RF filter

is a two-port symmetrical network. The design of such

devices has been the subject of research activities for

decades. A large amount of literature exists about the art of

filter design. For in-depth readings, the reader may refer to

[22], [23], [24] and [25].

34

Figure 4. The design scheme with the different MDE domains

For the present case study, we have chosen to realize a

lowpass RF filter having the following specifications (see

Table 1):

Table 1. Specifications of a typical lowpass RF filter

Items Specifications Unit

Passband Edge Frequency (f0) 0.9 GHz

Cutoff Frequency (fc) 0.5 GHz

Insertion Loss in passband  6.0 dB

Ripple in passband  0.2 dB

Attenuation  53 @ f0 dB

Input / Output Impedance 50 

The steps of applying the MDE approach to RF filter design

are the following:

5.1. PIM Domain Steps

The RF filter specifications can be captured using a SysML

model [20]. One can capture both the properties and the

requirements of the filter using the diagrams that SysML

offers such as the block definition diagram (bdd) and

requirements diagrams. The internal structure of the filter

and its behavior (frequency response form) can also be

captured by SysML if they are specified. The bdd of the

filter captures the filter parameters and the constraints to

which these parameters should obey. Figure 5 presents a

typical bdd of an RF filter. The property “Type” stands for

the filter type (e.g. lowpass, bandpass, highpass, etc.). One

should notice that this bdd is a part of an entire SysML

model modeling a passive RF filter. It contains the definition

of used units, the bdd, the requirements, etc. Due to a matter

of space, we present here only the bdd.

The frequency response of an RF filter can be

mathematically modeled by a function. This mathematical

model is totally independent from the technology. Many

known models are described in literature such as

Butterworth (also called maximally-flat), Chebyshev,

Bessel, etc. [26]. Depending on the values of the RF filter

parameters already specified by the designer, the PIM may

correspond or not to a particular mathematical model of

filters that characterizes its general frequency response. For

example, if the specified ripple is equal to zero then the

corresponding mathematical model which can present a

frequency response meeting this constraint is the maximally

flat one. If the designer implies a sharp frequency response

at the edge of the passband, Chebyshev model may be the

best to meet this requirement. Hence, different PIMs can be

defined to an RF filter.

 Looking at the specified parameters of the filter, one

can notice that the ripple is greater than zero and the

bandpass attenuation is slightly large. These observations

suggest that the Chebyshev mathematical model is well

suited to meet the filter’s specifications.

5.1.1. Coherence Verification of the filter Specifications

The main goal of coherence verification is to carry out a

preliminary check to verify the coherence of the values

specified by the designer. This check is carried out

according to a set of rules specified in the SysML model of

the filter (see constraints subsection in Figure 5). Such rules

take their legitimacy from both the filter theory and also the

available implementation technology. For example, it is not

35

possible to obtain a stopband attenuation greater than 100

dB at a normalized frequency of 1.05 with conventional

design methods. Such a choice judged as “unfeasible” is

then rejected.

bdd Passive RF Filter Stereotype

«block»

Passive RF Filter

values

Bandwidth:GHz

CentralFrequency:GHz

CutoffFrequency:GHz

StopBandAtt:dB

InsertionLoss:dB

ReturnLoss:dB

Type:FilterType

Ripple:dB

Qfactor:void

NoiseFigure:dB

constraints

{StopBandAtt ≥ 100}

{InsertionLoss = 0}

{ReturnLoss ≥ 40}

{Qfactor ≥ 10
6
}

{ripple vs. RL}

Figure 5. The block definition diagram modeling the RF filter

characteristics

The equations (E.1) present a set of possible rules already

defined in the bdd of Figure 5. Obviously, the specifications

given in Table 1, successfully pass the test.

6

10

100 dB

0 dB

Re 40 dB

10

10log 1 10
returnLoss

StopBandAtt

InsertionLoss

turnLoss

Qfactor

ripple





 







  

    
  

 (E.1)

5.1.2. Q-matrix Creation

Another objective of the coherence verification is to prepare

the creation and the use of the Q-matrix. This data structure

is based on a mathematical formalism that does not accept

any incoherencies [19]. Then to allow the fill of the Q-

matrix with the electrical parameters initially deduced from

the specifications and use them afterwards in the different

stages of design, particularly within the transformation from

the PIM to PSM, errors and incoherencies are not allowed

and quickly revealed using this process. Theoretically, if the

set of rules used to perform the coherence verification is

complete, inconsistent specifications cannot be accepted

from the beginning.

5.2. Transformation from PIM to PSM

Several methods exist in literature about how a filter can be

designed. Two main methods are predominant: (i) image

parameter and (ii) insertion-loss methods [22], [26]. The

transformation from the filter PIM to PSM that we propose

here is inspired from the second method which is frequently

used. This transformation is composed of the following

steps:

4.2.1. Order Calculation and Prototype Generation

Traditionally, the filtering functionality is represented by a

network of lumped components (resistors, inductors and

capacitors) [24]. The order of the filter determines the

number of lumped elements that will constitute the network

performing the required filtering response over the required

bandwidth.

The order of a filter Chebyshev is calculated according

to (E.2) [23, p.357]:

10

1

10

1 0

10 1

cosh

10 1

cosh

insertionLoss

ripple

c

N
f

f





  
  
  
  
  
   

 
 
 

 (E.2)

Carrying out the calculations, we get 6.9766N  . Due to

the fact that N must be an integer, we choose 7N  .

Hence, the corresponding lowpass prototype is as shown in

Figure 6.

Figure 6. Lumped components prototype of the target filter

After frequency normalization, the values of ig where

1..7,i  are computed following the equations of

Chebyshev lowpass filter synthesis [23, p.359]. After

frequency and impedance scaling, these values correspond

to the values of the inductors iL and capacitors jC which

compose the filter network. Finally, we obtain the results in

Table 2.

After generating the filter prototype, we obtained the

values of its different lumped components. To check the

validity of these values and figure out the frequency

response of the resulting network, we carried out the

simulation of this network using Advanced Design System

(ADS) [27]. The frequency response of the designed filter is

as shown in Figure 7(a) (for the insertion loss) and 7(b) (for

the return loss).

36

Table 2. Values of the filter’s lumped components

Lumped Element Value (Unit)

L1 (g1) 21.84 nH

C2 (g2) 8.772 pF

L3 (g3) 34.22 nH

C4 (g4) 9.552 pF

L5 (g5) 34.22 nH

C6 (g6) 8.772 pF

L7 (g7) 21.84 nH

 (a)

(b)

Figure 7. Frequency response of the lowpass filter: (a) insertion

loss, (b) return loss

5.2.2. Technology Considerations

After generating the prototype of the filter and the

calculation of the lumped components values, the details of

the technology must be taken into consideration. For this

case study, we consider using lumped components, which

typically have low parasitics at frequencies below 500 MHz,

and a standard printed circuit board (PCB) substrate (Rogers

RO3010 Substrate) on which the filter will be fabricated.

With the aid of the ADS package and using its built-in

library of L and C lumped components provided by Dale

Technologies, we carry out final filter simulation and

produce a circuit layout for the completed design. This

resulting layout, shown in Figure 8, constitutes the output of

our PIM to PSM transformation. It is typically given in a

standard format (i.e., Gerber Format), and can then be used

by various fabrication processes (in the Implementation

domain) where it generally goes through a transformation

that makes it compatible with the particular fabrication

equipment/process being used.

The lowpass filter characteristics and the lumped

element realization were chosen for illustration purposes and

for simplicity reasons. However, bandpass and highpass

filters can also be designed by using well established

transformation identities known as Kuroda’s identities [22,

p.406]. Similarly, distributed elements may be used instead

of lumped component by relying on simple transformations

that use high characteristic impedance lines,
h

oZ , to produce

the equivalent inductances (L) and low characteristic

impedance lines,
l

oZ , to produce the equivalent

capacitances (C). These transformations are given by the

equations (E.3) and (E.4) [23, p.382]:
h

oZ d
L




 (E.3)

l

o

d
C

Z




 (E.4)

where  is the phase constant, d is the transmission line

physical length and 2 f  is the angular frequency.

Figure 8. Final layout of the lowpass filter

6. CONCLUSION

In both academia and industry, the SDR paradigm is seen as

the technology of the future. The hopes that one day end-to-

end reconfigurability, effective interoperability and high

flexibility will be achieved by the implementation of the

ultimate software radio are real. Current efforts are deployed

to define open standards allowing the development of fully

portable software components across platforms. Various

techniques of both hardware and software abstraction are

used to enable cost-effective waveforms porting and

37

interoperability. However in the RF front-end side, little

research effort targeted to adapting the design

methodologies of RF front-ends to the pace of advances

occurring in the SDRs’ baseband design. RF design

methodologies lack flexibility and are very technology-

dependent. To find out a suitable response to this issue, we

proposed a new design methodology based on hardware

abstraction which aims to uncouple the RF device’s

functionality from technology.

 The proposed design scheme includes a functional

description stage in which the structure, requirements and

constraints of complex RF systems are captured. We used

modeling languages such as SysML to elaborate the

platform-independent model of the system under design.

This model is synthesized in the next stage of design using a

model-to-model transformation (i.e. PIM to PSM). This

operation results in a platform-specific model which is in

practice a circuit implemented in a given technology. The

design data are centralized in the Q-matrix all over the

design scheme enabling thus cooperative design.

 The abstraction and automation concepts we used and

are inspired from the MDE approach offer a novel view for

system design where functional and operational levels are

separated. The technology input becomes an input to the

design cycle which eases the insertion of various

technologies and even the benchmark of their resulting

performance. While our design scheme still needs

refinement and experimentation, the case study we presented

in this paper provides an overview of how a RF device such

as a filter can be designed using the proposed design

methodology.

7. REFERENCES

[1] M. Löhning, G. Fettweis, “The Effects of Aperture Jitter and
Clock Jitter in Wideband ADCs,” International Workshop on
ADC Modeling and Testing, 2003.

[2] M.J. Leferman, Rapid Prototyping Interface for Software-
Defined Radio Experimentation, Worcester Polytechnic
Institute, Massachusetts, 2010.

[3] V. Rodriguez, C. Moy, and J. Palicot, “An Optimal
Architecture for a Multi-standard Reconfigurable Radio,”
IEEE 17th International Symposium on Personal, Indoor and
Mobile Radio Communications, pp. 1-5, 2006.

[4] H.W.W. Tuttlebee, “Software-Defined Radio: Facets of
Developing Technology,” IEEE Personal Communications,
Vol. 06, pp. 38-44, 2002.

[5] K.F. Jondral, “Software-Defined Radio – Basics and
Evolution to Cognitive Radio,” EURASIP Journal on
Wireless Communications and Networking, Vol. 2005, pp.
275-283, 2005.

[6] T. Rittenbach, “High Capacity Communication Capability
(H3C) GRA: Alternatives for Third Party A2G Waveform
Porting,” IEEE Military Communications Conference, pp. 1-
5, 2007.

[7] J. DeGroat, G. Reehal, and S. Nagarjuna, “Synthesizing
Digital Modules for Software-Defined Radio,” IEEE National
Aerospace and Electronics Conference, pp. 358-363, 2009.

[8] V. Giddings, T. Kacpura, and V. Kovarik, “Methods and
Approaches for Abstraction of Hardware Dependencies in
Software-Defined Radio,” SDR Forum Technical Conference,
pp. 1-6, 2007.

[9] J. Mitola, “The Software Radio Architecture,” IEEE
Communications Magazine, Vol. 33, No. 5, pp. 26-38, 1995.

[10] L. Sabel, “Software-Defined Radio – The solution for multi-
standard multimedia in the mobile environment,” EBU
Technical Review, No. 309, pp. 1-8, 2007.

[11] V.J. Kovariak, “Integrated Terminal System Development:
The HC3 Reference Architecture,” IEEE Military
Communications Conference, 2007.

[12] P. Bhaskar, Z. Jianxin, and T. Rittenbach, “Software
Development of Satcom Terminals,” IEEE Military
Communications Conference, 2008.

[13] M. Kling, et al., “An Implementation of the Government
Reference Architecture Waveform Developer and System
Integrator Roles,” IEEE Military Communications
Conference, pp. 1-5, 2008.

[14] L. Pucker, “Component-based Development of Radio
Systems and Subsystems: Are we there yet? [Trends in
DSP],” IEEE Communications Magazine, Vol. 45, No. 6, pp.
44-46, 2007.

[15] S. Yoo, and A.A. Jerreya, “Introduction to hardware
abstraction layers for SoC,” Design, Automation and Test
Conference, pp. 336-337, 2003.

[16] S.M. Lee, D.G. Kim, and D.R. Shin, “General Purpose
Hardware Abstraction Layer for Multiple Virtual Machines in
Mobile Devices,” 11th International Conference on Advanced
Communication Technology, Vol. 01, pp. 362-364, 2009.

[17] J.M. Rabaey, Digital Integrated Circuit – A Design
Perspective, Prentice Hall, Second Edition, pp. 8 – 12, 2002.

[18] R. Frevert, et al., Modeling and Simulation of RF System
Design, Springer, 2005.

[19] S. Lafi, A.B. Kouki, J. Belzile, and A. Ghazel, “Towards a
Coherent Framework for Automated RF Front-Ends Design
Using Hardware Abstraction,” IEEE International Summit of
Telecommunications Conference, pp. 1-5, 2007.

[20] S. Lafi, A.B. Kouki, and J. Belzile, “Modeling
Radiofrequency Front-Ends Using SysML: a Case Study of a
UMTS Transceiver,” 1st International Workshop on Model-
Based Architecting and Construction of Embedded Systems,
pp. 115-128, 2008.

[21] A. Kleppe, J. Warmer and W. Bast, MDA Explained – The
Model-Driven Architecture: Practice and Promise, Addison
Wesley, 2003.

[22] D.M. Pozar, Microwave Engineering, John Wiley & Sons
Inc., Third Edition, 2005.

[23] D.K. Misra, Radio-Frequency and Microwave
Communication Circuits: Analysis and Design, Wiley-
Interscience, Second Edition, 2004.

[24] I. Hunter, et al., “Microwave Filter Design from System’s
Perspective,” IEEE Microwave Magazine, Vol. 08, pp. 71-77,
2007.

[25] I. Hunter, et al., “Microwave Filters – Applications and
Technology,” IEEE Transactions on Microwave Theory and
Techniques, Vol. 50, No. 03, pp. 794-805, 2002.

[26] J.S. Hong, and M.J. Lancaster, Microstrip Filters for
RF/Microwave Application, John Wiley & Sons, 2001.

[27] Agilent Technologies, Advanced Design System Overview,
http://www.home.agilent.com/agilent/product.jspx?nid=-
34346.0.00&cc=US&lc=eng, 2011.

38

