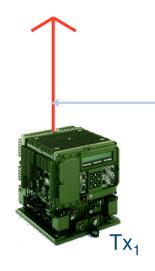


Approach to Solve the AGC API Issue in the Tactical SDR Domain

A Waveform Provider Perspective

Security and mobility in a networked world.


THALES

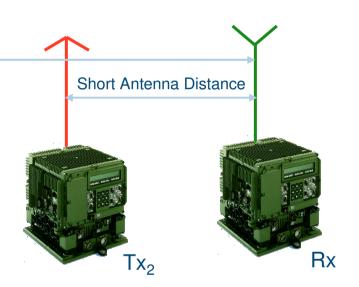
Content

- Tactical Radio Scenario
- AGC Principle in Legacy Receiver
- AGC Principle in SDR Receiver
- SDR AGC Challenges
- WFA View on AGC
- AGC API Concept
- AGC API Summary
- Conclusion

Near-Far Situation

Dynamic Range Example

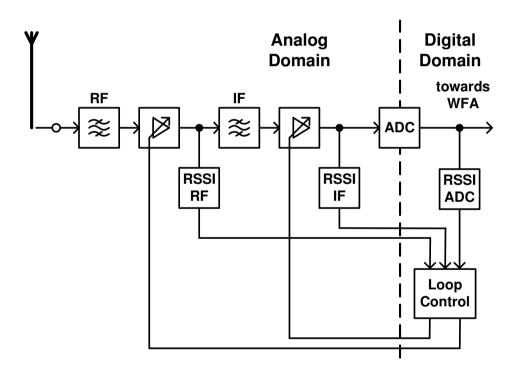
Long Antenna Distance

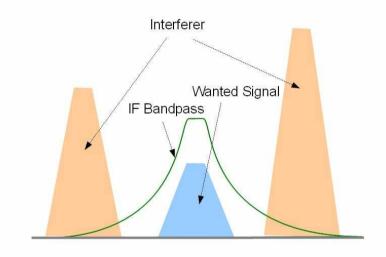

- Tx Power:
 - 40 W: 46 dBm
- Rx Sensitivity Threshold:
 - 0.3 μV: -114 dBm
- Path Loss at 2 m distance
 - 16 dB
- Opposite the property of th
 - 144 dB

Communication

No uplink/downlink

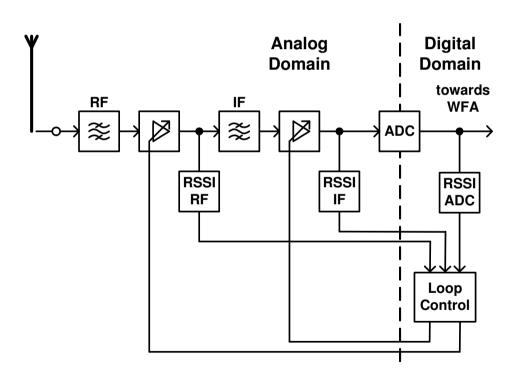
Peer to Peer

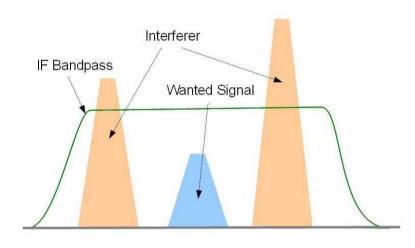

- No uplink/downlink frequency spacing
- Collocated Transmitters
 - Minimum distances:
 - few meters



Extraordinary Rx Dynamic Range Requirements

Generic AGC behavioural model




AGC loop dynamic optimized to

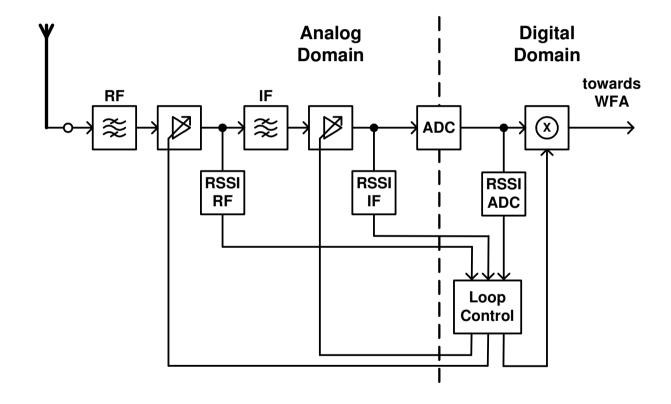
- waveform dynamic behaviour
- channel dynamic due to fading
 - dependent on relative Tx Rx speed
 - and/or reflectors
- ADC level variation rather limited

Generic AGC behavioural model

AGC loop optimization criteria

- dynamic behaviour of unknown transmitters in adjacent channels
- with unknown channel characteristica
- ADC level variation dominated by interfering signals

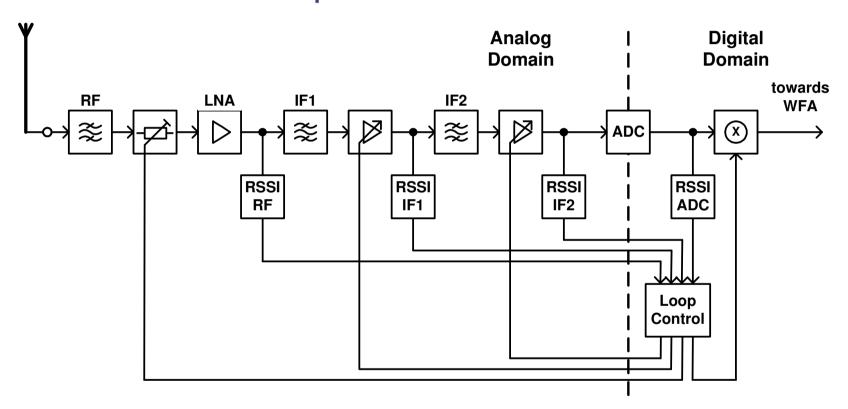
Transceiver Challenges


- ADC has to cope with high level difference between
 - input level of the wanted signal
 - ∑ level of various dominant signals

within IF range

- ⇒ Extraordinary spurious free dynamic requirements to the ADC
- A properly acting AGC loop will modulate the amplitude level of the wanted Rx signal
 - inversely to the aggregate receive level of the interfering signal mixture
 - ⇒ Level compensation required in transceiver Rx chain

Level compensation behavioural model



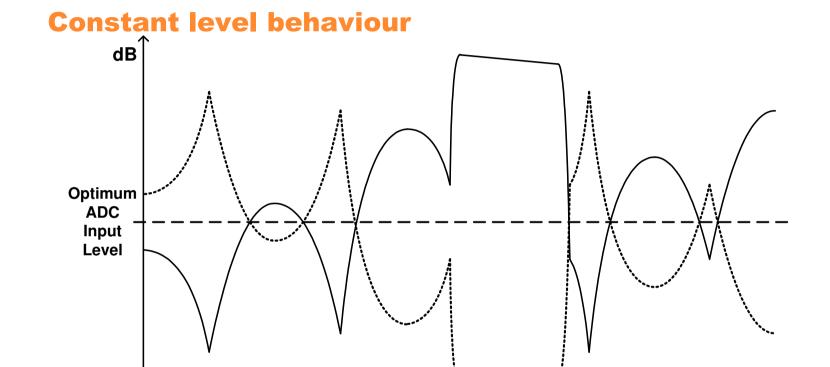
- WFA dealing with the sampled receive signal will have to
 - compensate the signal variations of the wanted signal by WFA internal AGC methods
 - cope with distortion effects caused by gain variations within Rx chain
 - properly control the AGC behaviour in real time
 - to minimize distortion effects impact on received information quality:
 - BER: Bit Error Rate
 - Voice intelligibility
- WFA dealing with the sampled receive signal will not have to
 - o deal with the internal design of the transceiver Rx chain!

Multi stage gain variation

to be hidden at the platform API towards WFA

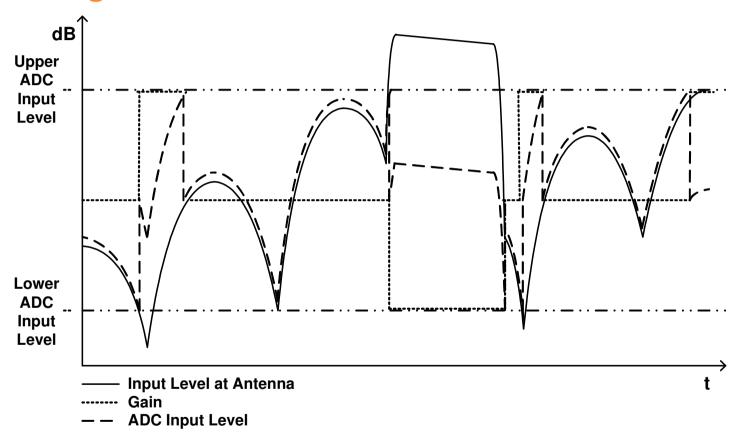
AGC API shall be intellegible from WFA designer's point of view!

- WFA dealing with the sampled receive signal will have to
 - compensate the signal variations of the wanted signal by WFA internal AGC methods
 - cope with distortion effects caused by gain variations within Rx chain
 - properly control the AGC behaviour in real time
 - to minimize distortion effects impact on received information quality:
 - BER: Bit Error Rate
 - Voice intelligibility
- WFA dealing with the sampled receive signal will not have to
 - o deal with the internal design of the transceiver Rx chain!



- WFA dealing with the sampled receive signal will have to
 - compensate the signal variations of the wanted signal by WFA internal AGC methods
 - requires Software AGC within WFA
 - but no particular impact on AGC API
 - WFA issue only

- WFA dealing with the sampled receive signal will have to
 - compensate the signal variations of the wanted signal by WFA internal AGC methods
 - cope with distortion effects caused by gain variations within Rx chain
 - properly control the AGC behaviour in real time
 - to minimize distortion effects impact on received information quality:
 - BER: Bit Error Rate
 - Voice intelligibility



- Input Level at Antenna
- ----- Gain
- ADC Input Level
- causes rather continuous (slope dependent) distortion on receive signal
- Distortion may be limited by limitation of gain slope
 - preferably independently for gain increase and gain decrease slopes

Floating level behaviour

- causes impulsive distortion on receive signal
 - at quasi-random instants

- WFA dealing with the sampled receive signal will have to
 - compensate the signal variations of the wanted signal by WFA internal AGC methods
 - cope with distortion effects caused by gain variations within Rx chain
 - properly control the AGC behaviour in real time
 - to minimize distortion effects impact on received information quality:
 - BER: Bit Error Rate
 - Voice intelligibility
 - Utilizing the knowledge about the (most) vulnerable phases of the waveform
 - Disable gain variation in such phases
 - Real time control towards transceiver Rx chain

Case: Constant Level

- setOptimumLevel
 - specifies the optimum ADC input level [dB_{FS}]
 - i.e. the ADC level to be quasi fixed (= constant) by the AGC algorithm
- setSensitizationSlope
 - specifies the maximum gain increase speed [dB/s]
- setDesensitizationSlope
 - specifies the maximum gain decrease speed [dB/s]
- enableSensitization
 - snables/disables gain increase
- enableDesensitization
 - snables/disables gain decrease


Case: Floating Level

- setUpperLevel
 - specifies the upper boundary of the floating ADC input level [dB_{FS}]
- setLowerLevel
 - specifies the lower boundary of the floating ADC input level [dB_{FS}]
- enableSensitization
 - enables/disables gain increase
- enableDesensitization
 - enables/disables gain decrease

Remark: In case of Floating Level, gain in/decrease speed shall be as fast as possible.

UML Diagram

Platform API

- suited for configuration and real time control of the AGC located within any tactical SDR receiver
- takes into account that even decades of adjacent channels may pass the IF analog filter in front of the ADC
- provides a flexible, but transparent AGC loop dynamic behaviour control adaptable to the dynamic behaviour of the receive scenario
- allows a WFA supplier to control the impact on the receive signal distortion according to
 - o continuous noise model
 - impulsive noise model
- requires no knowledge of the individual receiver design
- ensures waveform application portability onto any tactical SDR platform

Eberhard Kölble

Phone: + 49 7231 15 3823

◆ Mobile: + 49 172 813 06 52

• Fax: + 49 7231 15 3488

♦ Email: Eberhard.Koelble@thalesgroup.com

Web: www.thalesgroup.com