Sample Clock Offset Detection and Correction in the LTE Downlink Receiver

Elliot Briggs¹, Chunmei Kang², Amit Mane², Dan McLane², Brian Nutter¹

SDR'11 - WinnComm Europe Brussels, Belgium June 22nd – 24th

Presentation Overview

- OFDM Receiver Synchronization Basics
- Mechanics of Sample Clock Offset
- Sample Clock Offset Detection
- Developed Sample Clock Correction Technique
- Results

Traditional OFDM model example:

Impairments:

- AWGN: weak (noisy) signal
- Frequency shift: errors in RF electronics (TX and RX)
- Delay: Asynchronous startup time, multiple paths
- Sample Clock Offset?

Ideal OFDM Reception:

- •The receiver's FFT bins are aligned with each subcarrier
- Here, at the receiver, each subcarrier is orthogonal to the others

OFDM Reception Affected by Sample Clock Offset:

- Each FFT bin has a cumulative amount of shift
- The outer subcarrier positions experience the most ICI

- 40 ppm error at the receiver simulates the maximum error from 20 ppm clock oscillators at the transmitter and receiver
- 40ppm = 1.229 kHz, 8.2% of one subcarrier spacing
- Here, the SNR is 50 dB before the sampling clock error is added

• The outer subcarrier positions are no longer orthogonal and contain energy from neighboring subcarriers

- After the phase is unwound, only the ICI component remains
- The ICI appears as noise at the outer subcarrier locations

- ICI causes SNR degradation which is the most severe at the outer subcarrier locations.
- Even a 5ppm sample clock error can cause 6 dB of degradation when Es/No = 50 dB

$$D_n \approx 10 \log_{10} \left(1 + \frac{1}{3} \frac{E_s}{N_o} \left(n 10^{-6} \Delta f_s \right) \right)$$
 [1]

- The level of degradation is displayed for several levels of SNR
- The SNR is adversely affected, even with modest clock offsets

Mechanics of Sample Clock Offset

Transmitted OFDM symbols:

LTE Example:

- "Extended" cyclic prefix mode
- 20 MHz mode
- Ideally, each symbol lasts only 83.33 µs

$$T_s = 1/30.72 \text{MHz}$$
 $N_{CP} = 512$
 $N_{FFT} = 2048$
 $T_{symbol} = \sqrt[4]{C_P} + N_{FFT} T_s = 83.33 \mu \text{s}$

Mechanics of Sample Clock Offset

Received OFDM symbols:

• 2560 samples will take a longer or shorter amount of time for the receiver to collect, depending on the offset conditions

$$T_s = 1/30.72 \text{MHz} + 1/f_{error}$$

 $T_{symbol} = \P_{CP} + N_{FFT} \mathcal{T}_s \neq 83.33 \mu s$

- The rate that the symbols drift from the perfect case directly indicates the sampling clock offset magnitude.
- The direction in which the symbols drift indicate the sampling clock offset direction

Any DFT-based OFDM system must have an FFT window timing synchronization component to properly align the FFT window

Any FFT timing synchronization method can give sample clock offset information

- Using the LTE Primary Synchronization Signal (PSS)
 - Timing information provided every 5 ms
- Cyclic Prefix Correlation
 - oTiming information provided every 83.33 μs

Example: (-)+100 Hz clock offset error:

- Generates (removes) 100 extra samples per second.
- This will generate (remove) 1 sample for after 120 OFDM symbols, or 0.0083 samples to each symbol
- A +12 kHz clock offset will generate an entire sample for each OFDM symbol

$$f_{error}[n] = \frac{12,000}{N} \sum_{t=1}^{N} {\bf C}_{offset}[n-t] - S_{offset}[n-t-1]$$

$$n = N = 135,000$$

$$f_{error}[n] = \frac{12,000}{N} \sum_{t=1}^{N} {\color{red} \bullet}_{offset}[n-t] - S_{offset}[n-t-1] = 12,000 \times .05 = 600 \text{ Hz}$$

- SCO can be corrected if the signal is resampled at the correct sampling rate
- Modulate the fractional delay value at every sample to effectively resample the signal
- When the fractional delay value over/underflows, repeat/skip a sample

Developed Sample Clock Correction Technique

The resampler "compresses" the signal by continuously reducing the delay for each sample

- In this example, each sample has a
- -.05/2560 delay difference from the previous sample to correct the .05/2560 from the sample clock offset.
- When a negative delay is requested, a sample is skipped.
- Here, fewer samples are produced at the output of the resampling filter than are input
- Ideally, the resampler produces 2560 samples per 83.33 µs
- The signal should have stationary symbol timing after resampling

Developed Sample Clock Correction Technique

- The ML timing and frequency offset estimator [3] uses the cyclic prefix
 - The timing estimate is used by the loop filter and to trigger an FFT conversion
 - o The frequency offset estimate is used to correct residual frequency shift

Developed Sample Clock Correction Technique

- The receiver uses feedback correction to adjust the symbol timing and frequency correction
- The timing loop filter averages many timing estimates to get an average window drift rate, just as in the previous example
- The delay accumulator constantly accumulates fractional delay and modulates a fractional resampling filter

- Design implemented in an X5-400M FPGA board by Innovative Integration
- Two separate clocks are used, the frequency difference is measured
- With SCO compensation enabled, the minimum SNR gain is around 3 dB
- SNR gains increase at higher values of Es/No (~ 6 dB)!

- A hidden advantage to this correction technique exists
- CP correlation reliability is reduced when the sampling clock changes a significant amount in a single symbol duration
- Without SCO correction, the timing synchronization fails
- With SCO correction, the SNR values are almost identical to the 40 ppm case at 100 ppm
- The algorithm has been tested to track as much as a 7.5 kHz sample clock error (~250 ppm)!

- CFO = 100 kHz : frequency shift of over 13 subcarrier spacings
- SCO = 7.5 kHz : ~250 ppm sampling clock offset

Corner Cases:

- Maintains timing lock down to 3dB SNR
- Maintains receivability:
 - LTE cell ID decode, frame sync successful
 - SNR = 5dB
 - CFO = ±75 kHz (± 5 subcarrier spacings)
 - SCO = ±4 kHz (±133.33 ppm)

Conclusions

- The developed SCO measurement and correction method allows the LTE user equipment to be equipped with a lower cost, less precise sample clock source.
- Any timing synchronization algorithm can be employed to generate sample clock offset measurements to be used for correction
- The measurement and correction is in the *time domain*, so the algorithm is agnostic to any frequency domain information (reference symbols, training, etc).
- Can be applied to any OFDM-based standard

Conclusions

May be useful for surveillance applications, maximizes
 OFDM signal reception quality for any OFDM signal

References

- [1] T. Pollet, P. Spruyt, and M. Moeneclaey, "The BER performance of OFDM systems using non-synchronized sampling," *Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'94)*, San Francisco, USA, November 1994, pp. 253-257.
- [2] 3GPP TS 36.211 V8.9.0 "Physical Channels and Modulation". Rel. 8.
- [3] J.J. van de Beek, M. Sandell, P.O. Börjesson, "ML Estimation of Time and Frequency Offset in OFDM Systems," *IEEE Transactions on Signal Processing*, Vol. 45, No. 7, July 1997, pp. 1800 1805.