
Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved

THE BENEFITS OF STATIC COMPLIANCE TESTING FOR SCA NEXT

James Ezick (Reservoir Labs, New York, NY 10012; ezick@reservoir.com)

Jonathan Springer (Reservoir Labs, New York, NY 10012; springer@reservoir.com)

ABSTRACT

The next generation of the Software Communications

Architecture (SCA) specification (SCA Next) introduces

several features that will affect the compliance certification

process. Among the more significant and high-profile

changes are the introduction of multiple supported platform

models and support for both CORBA and non-CORBA

transport layers. These features, which further abstract the

specification away from a uniform hardware/software

interface, make constructing an all-purpose dynamic testing

platform more difficult. This suggests that a certification

plan that relies more heavily on static testing might provide

a more versatile and cost-effective approach. In this paper,

we describe the benefits and implications of static

compliance testing in the context of SCA Next. This

includes a discussion of which requirements are and are not

amenable to static testing, the complexity of defining and

customizing tests, the expected performance and limitations

of those tests, and a summary of our experiences from the

development of R-Check™ SCA, our platform for static

SCA 2.2.2 compliance testing.

1. INTRODUCTION

Static testing provides power and versatility by directly

testing the software source code, across potentially multiple

file formats, as it is written. This unbiased inspection

permits simultaneous testing of all software paths and can

be used to find latent issues that do not manifest on

particular platforms or in scripted test executions. Further,

static testing can be run as code is being developed,

allowing non-compliant code to be fixed earlier in the

development cycle. This immediate code-test-repair cycle

also provides a mechanism to educate the developer on the

SCA by making direct links between lines of source code

and specification directives. Compiler-driven static analysis

mirrors the build process and scales to millions of lines of

code. Advances in static analysis and model checking

techniques allow precise specification of error conditions in

terms of well-defined operations that limit the rate of false

positives and, in some cases, can provide correctness

guarantees.

R-Check SCA [1] is a compliance testing tool being

developed in partnership with the Joint Tactical Radio

System (JTRS) Test & Evaluation Lab (JTEL) [2] that uses

static source code analysis to check requirements contained

in the SCA 2.2.2 specification. R-Check SCA uses a

compiler-grade static analysis engine combined with off-

the-shelf tools and data formats to test SCA-specific

requirements that cut across C/C++ source code,

CORBA IDL, and SCA XML descriptor files and generate

concise, reproducible incident reports. R-Check SCA has

been used to analyze production waveforms and operating

environments and is now being expanded in anticipation of

supporting SCA Next.

2. STATIC ANALYSIS

Static analysis refers to analysis performed by inspecting a

program source or binary code without requiring the code to

be executed. For source code static analysis, this also

implies that the code does not need to be compiled to

machine-dependent object code or linked. Static analysis

methods provide several advantages that make them a useful

complement to traditional dynamic (runtime) testing.

 Static methods are not influenced by common vs.

exceptional case behavior and analyze all program

paths without bias.

 Since they do not require the code to be compiled or

executed, static methods can be applied to code in an

intermediate (potentially incomplete) state.

 Static methods can be integrated into development

environments and provide a foundation for automated,

reproducible tests.

 Static methods can frequently produce counter-

examples from violations and be used to pose “what-if”

questions to aid code comprehension and perform

hypothesis testing.

For the SCA, these advantages translate to a system of

analysis methods that can be used to automate testing of

several specification requirements. Through integration with

a visual development environment, such as Eclipse [3],

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

363

Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved

analysis can be fast and transparent enough to execute with

each source file save operation. The advantage to the SCA

developer is near instantaneous feedback when a potential

violation is introduced. Even while the code is not yet ready

for compilation and runtime testing, and without the need to

construct any unit or regression test cases or specialized test

harness, the seeds of SCA violations can be found and

reported. Again, through integration with a development

environment, errors can be directly linked to SCA reference

material that provides a concise and up-to-date description

of each reported issue. Taken together, these capabilities

allow potential bugs to be found and corrected at the soonest

possible point in the development cycle through direct

action by the responsible developer.

In implementation, the term static analysis encompasses

everything from search-and-inspect type analyses, to

compiler-driven data-flow methods, to more advanced

symbolic execution and model checking techniques. These

techniques vary greatly in scalability, power, and precision.

Search-and-inspect techniques, which have been used by

JTEL for SCA 2.2 and 2.2.2 compliance testing, scale to

enterprise code, but have limited power and precision. The

most modern techniques are extremely powerful and

precise, but are frequently limited in applicability or require

expertise in formal methods to apply.

With R-Check SCA, we have taken a middle ground that

uses a compiler-grade language parser for C/C++ that

breaks code down into intermediate data structures and then

uses well-established data-flow methods of analysis to

perform requirements checking. The intent in choosing this

approach was to increase automation and analysis speed

while improving on the power and precision of the current

forms of analysis being used and still meeting the

requirement that code should be analyzable “as is.”

Data-flow methods date to the 1970’s with the discovery

that facts that may or must hold at each program point can

be computed as a fixed-point of a system of equations

defined over a lattice of fact subsets [4]. Later work

demonstrated how these techniques could be abstracted to

support reasoning over paths through reused or recursive

procedures [5]. As they are commonly applied, these

techniques function over a control-flow representation of a

program, in which nodes are program statements and edges

reflect the statement successor relation. Each statement can

be seen as transforming the “state” of some fact of interest

(e.g., is a variable live). In this way, a set of states that hold

at an initial point in the code are propagated through the

graph and “solved” for each program point, yielding the set

of states that may or must (depending on how the

transformers are defined) hold at each program point. The

exact implementation depends on the requirement being

checked, but in many cases the analysis can be restricted to

single functions. For cases where the analysis must span

multiple files, summary information can often be collected

and used to seed the analysis for other files.

These methods are the foundation of complier-driven

optimization and are commonly used to optimize data and

control flow, simplify redundant computations, and, in some

cases, detect basic errors of usage such as using a variable

before it is defined. The compiler front end used by

R-Check SCA naturally creates the intermediate data

structures necessary to implement these analyses. To meet

the requirement of checking incomplete code, we have

extended the C/C++ language parser to ignore or infer

missing information rather than halt and report a parsing

error as a compiler would. However, even with the partial-

code capability, the resulting underlying representation and

accessing API remains the same.

3. LESSONS FROM SCA 2.2.2

Depending on how a requirement is written, static testing

can vary from straightforward to very difficult. This section

describes experience with three illustrative examples from

the SCA 2.2.2 specification for applications [6].

1. AP0603, from Section 3.2.1: “Applications shall be

limited to using the OS services that are designated as

mandatory in the SCA Application Environment Profile

(AEP) (Appendix B)."

The core of this requirement is identifying procedure calls in

the code and determining if they refer to IEEE POSIX

routines designated as NRQ in Appendix B. Although this

requirement is straightforward, there are several nuances

that must be addressed to provide a complete evaluation of

compliance.

 Preprocessor directives must be properly interpreted,

including macro expansions and the inclusion or

exclusion of conditionally compiled code.

 The analysis must recognize procedure calls in context,

or, to detect calls through pointers, address-capturing

call references.

 The analysis must be able to distinguish between calls

that refer to POSIX routines as opposed to locally

redefined calls (which are permissible under the SCA).

 Ideally, the analysis should be restricted to those parts

of the code (components) that are subject to the

Appendix B AEP restrictions.

A compiler-driven data-flow approach is able to address

these nuances directly by functioning over an intermediate

representation. Preprocessor directives are executed as part

of the parsing process. The context of each code construct is

364

Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved

readily accessible through API calls and traversal functions

over the intermediate representation. Meta-information

attached to procedure calls includes declaration information

(typically used by a compiler for error reporting), so

distinguishing between POSIX and non-POSIX references

can be done in constant time. Type information, accessible

through symbol table lookup, can be used to restrict the

analysis to particular SCA elements.

As a data-flow analysis, this requirement does not require a

complex fact transition system – validity with respect to the

requirement can be determined from an independent

evaluation of each program statement. Thus, evaluation of

this requirement is dominated by the time to parse the code

(shared across all requirement analyses) and the time to test

library-declared procedure calls against the list of proscribed

NRQ function names.

2. AP0604, from Section 3.2.1.1: “Applications shall

perform file accesses through CF file interfaces.”

While a straightforward statement, static testing of this

requirement for C/C++ code requires an enumeration of the

methods of file access that are not allowed.

 For C, this includes several standard system calls, for

example, open(), close(), fread(), and

fwrite(). Note that POSIX calls such as

fprintf() are covered under the AP0603

requirement.

 For C++, this includes derivatives of the file stream

classes: ifstream and ofstream. While these are

classes in C++, they are usually used as interfaces

through class inheritance. Any method that overloads

the file access methods is potentially violating.

In addition to the API and traversal functions over the

program intermediate representation leveraged in the

analysis for AP0603, a proper analysis for this requirement

depends on domain knowledge of the C and C++ languages.

It is worth noting that there is no direct path from the text of

the requirement “shall” statement to an automated

implementation. However, as with AP0603, once the list of

proscribed actions has been defined, the analysis can be

performed with a trivial fact-transition system.

3. AP0075, from Section 3.1.3.1.2.5.2.3: “The

releaseObject operation shall release all internal

memory allocated by the component during the life of

the component.”

While a simple statement of an intuitively desirable

property, requirements such as this – essentially a restriction

against leaking memory – represent the most difficult class

of problems (in the strictest sense, undecidable) for static

analysis tools. The complexity of analyzing this requirement

stems from the fact that correctness depends on a precise

understanding of exactly which statements will execute in a

program and in which sequence.

As a tractable first approximation of a static analysis for this

requirement, allocation operations for which no

corresponding deallocation statement can be found are

treated as suspect and passed back the developer. The

developer must then assert that the code is non-violating. In

practice, this approach can have a false-positive rate (based

on feedback from developers) of more than 50%.

In addition to generating false-positive results, this process

also has the potential, depending on the precision with

which the matching step is carried out, of generating false-

negative results. A false-negative result occurs when the test

fails to detect an error that is within the scope of the

requirement being tested. For C/C++, there are multiple

examples of how this can happen.

Ex 1: Memory Leaks through Pointer Reassignment

Component::method_a() {

 p = malloc(…);

 …

 p = malloc(…);

}

Component::releaseObject() {

 free(p);

}

Second malloc() leaks memory allocated by first

malloc().

In this first example, the memory allocated by the first

assignment to “p” would not be free’d by the

releaseObject() method. This is a violation of the

requirement. While the two malloc() statements are co-

located in the example for brevity, they may not be so co-

located in actual codes. A simple matching algorithm would

not detect this violation.

Ex 2: Memory Leaks through Control Flow

Component::method_a() {

 if (A) {

 p = malloc(…);

 }

}

Component::releaseObject() {

 if (B) {

 free(p);

 }

}

If “A” evaluates to true, but “B” does not, then memory

allocated by malloc() will be leaked.

365

Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved

In this second example, the memory allocated by the

assignment to “p” is dependent on condition “A”. The

release of the memory is dependent on condition “B”. The

code is correct if and only if “A” implies “B”; that is, “B” is

true whenever “A” is true. More specifically, “B” must be

true when the “B” conditional is reached whenever “A” was

true when the “A” conditional was reached. This distinction

is important, as it reflects that either “A” or “B” or both

might depend on variable assignments that could change

during the life of the object.

These example program statement patterns occur frequently

in submitted code. More complicated examples can be

constructed that introduce leaks through looping constructs

(e.g., while) or through combinations of reassignment and

control flow. Note, however, that it is impossible to catch

instances of these more complex control-flow issues if the

only lines of code that are inspected are the isolated

malloc() and free() lines. To have any chance to

catch these defects, it is necessary, at a minimum, to inspect

operations in the broader context of the surrounding

statements. This tremendously increases both the

complexity and the time required to perform the analysis.

Refinements to the basic analysis for this requirement must

balance between eliminating false-negatives, limiting false-

positives, and speed. This opens the door to the deepest

types of analysis available today. The data-flow based

model extends to support refinements that take into account

precise statement sequencing and, in the most advanced

implementations, can tag data-flow facts with branch

predicates and test them for compatibility. Although

R-Check SCA does not yet implement this level of analysis,

in 2005 a prototype implementation of an analysis of this

type, run over the Linux kernel source tree, discovered more

than a hundred instances (in this case POSIX lock() API

mismatches) of previously undetected bugs [7] in a few

hours with a low rate of false positives.

The lesson from these examples is that, to provide a

meaningful contract, it is important that requirements not be

written in isolation from the developers or test tool authors.

In many cases, a strong, enforceable specification requires

concessions from developers on how code will be written

and awareness of how a requirement will be tested. The

SCA Next [8] guidelines for C/C++ best practices are a

positive step in this direction. Specifications should be

targeted for static or dynamic testing (or both). The

designation of requirements, done as part of the SCA Next

development, into “automatable” vs. other categories is,

likewise, a positive step.

In total, with the current design of R-Check SCA, we have

identified more than two dozen core SCA 2.2.2

requirements that can be automated. All of these

requirements can be tested over the common intermediate

representation, meaning that the tests can be performed from

a single parse of each program file. Beyond the source code

analyses described here, some of these analyses also require

consistency across supporting SCA XML domain profile

and CORBA IDL files. These files are parsed separately in

R-Check SCA with relevant facts condensed into a

summary file that is then reparsed to initialize the C/C++

analysis engine. In this way, the static analysis approach

extends to support specifications over heterogeneous and

interdependent file types.

4. BENEFITS FOR SCA NEXT

We expect certification of SCA Next to rely even more

heavily on methods of static program analysis as new

features introduce challenges that could make dynamic

(runtime) analysis harder.

 More flexibility in the interface (CORBA vs. No-

CORBA).

For SCA 2.2.2, CORBA provides a uniform interface

layer to code being tested. For code that bypasses the

CORBA transport layer, it will necessary to construct

an equivalent test harness.

 More flexibility in choice of supported capability

through units of functionality and multiple supported

SCA profiles.

The increase in supported capability sets complicates

the process of runtime testing. Typically, each

capability set requires a customized environment and

suite of tests.

 Less accessibility to component interfaces (common

access through the Domain Manager)

Less accessibility to individual components makes it

more difficult to perform individual unit tests. This

pushes runtime testing to later in the development cycle

and requires more detailed test scripts to exercise

individual components.

Carrying over from the SCA 2.2.2, the SCA Next also

retains requirements concerning non-termination, memory

cleanup, and exception handling that are difficult or

impossible to test dynamically. For termination and

memory, adequate tests require deeper analyses that can

only be built on robust analysis platforms that understand

code structure and context. C++ exceptions are an example

of a code feature that can be particularly hard to exercise at

runtime. Here, static testing offers the advantage of being

able to test exception paths without requiring the

construction of exception-inducing behavior.

366

Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved

5. STRUCTURE OF R-CHECK SCA

Figure 1 illustrates the R-Check SCA workflow,

encompassing both C/C++ source code and SCA XML

domain profile and CORBA IDL file static analysis for

SCA 2.2.2. The structure of R-Check SCA mirrors that of a

traditional compiler and linker. The R-Check static analysis

engine processes source files independently, interpreting the

usual range of compiler arguments, and generates a

summary report, in XML, for each. These files can be

interpreted independently within a development

environment to provide immediate feedback (see Figure 2)

or can be merged by a separate report post-processing utility

(R-Check Blender) into a consolidated view. Natively,

R-Check can produce reports in plain text, CSV, and HTML

formats. The HTML reports include hyperlinks to

highlighted syntax and include descriptive information

about the nature of the violation with references back to the

SCA specification itself (see Figure 3).

Using augmented data-flow techniques, we plan to

ultimately automate more than two dozen SCA 2.2.2

requirements with R-Check SCA. Moving toward

SCA Next, we are extending the core workflow to support

dependencies between source files (needed for true

interprocedural analysis) using a two-pass analysis system.

In the first pass, summary information is collected for each

file and in the second pass the analysis engine draws upon

the aggregated summary information to perform deeper

analyses. This structure mirrors our approach to consistency

checking over C/C++, SCA XML, and CORBA IDL files in

which a summary of the supporting files is passed to the

source code analysis engine.

6. SUMMARY

This paper describes the benefits of static compliance

testing for the current SCA 2.2.2 and for the forthcoming

SCA Next specifications. Static analysis provides specific

advantages that make it a natural complement to dynamic

testing. Static testing can be automated and, through

integration into a development environment, can provide the

soonest possible indication of a potential violation. Through

this sort of reinforcement, static analysis can also serve as

an aid in teaching the specification to the developer. This

results in more knowledgeable developers and tighter test-

debug cycles with fewer issues manifesting in post-

development certification and validation testing.

Static analysis methods will be an important part of the

certification process for SCA Next. New features in the

specification will make uniform dynamic testing more

difficult and several other features carried over from

SCA 2.2.2 map best to static methods. Efforts to address

coding practices and to categorize requirements by their

ability to be automated are positive steps toward a more

testable specification.

R-Check SCA provides a platform for implementing

modern static analysis techniques, capitalizing on nearly

forty years of academic and industry experience. The use of

compiler methods of paring and analysis provides

reasonable power and precision, a platform for

implementing more advanced techniques, and scalable

performance for enterprise codes.

Figure 1. R-Check SCA workflow.

367

Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved

7. ACKNOWLEDGEMENTS

Development of R-Check SCA was funded under Navy

SBIR contract N00039-09-C-0118. The authors would like

to thank our technical contact at SPAWAR, John Thom,

who has been extremely supportive of this effort and tireless

in helping us improve R-Check SCA. We would also like to

thank the team at JTEL for their patience and wealth of

valuable feedback. Finally, we would like to thank Jim Kulp

of Parera Information Services for his insight and many

valuable contributions.

8. REFERENCES

[1] J. Ezick, J. Springer, V. Litvinov, D. Wohlford, “A Path

Toward Cost-effective SCA Compliance Testing,” Proc.

of the SDR ’10 Technical Conference and Product Exposition,

December 2010.

[2] https://jtel.spawar.navy.mil.

[3] http://www.eclipse.org.

[4] G. Kildall, “A Unified Approach to Global Program

Optimization,” 1st Annual ACM SIGACT-SIGPLAN

Symposium on the Principles of Programming Languages,

1973.

[5] S. Sharir, A. Pnueli, “Two Approaches to Interprocedural

Data Flow Analysis,” in Jones and Muchnik, editors,

Program Flow Analysis: Theory and Applications. Prentice-

Hall, 1981.

[6] SCA 2.2.2 Applications Requirements List version 2.2

Release Notes, JTRS Test & Evaluation Laboratory, July

2010.

[7] Y. Zie, A. Aiken, “Saturn: A Scalable Framework for Error

Detection Using Boolean Satisfiability,” ACM Transactions

on Programming Languages and Systems (TOPLAS), Vol. 29

No. 3, May 2007.

[8] http://www.public.navy.mil/jpeojtrs/SCA/Documents/

[9] http://www.crc.gc.ca/en/html/crc/home/research/satcom/

rars/sdr/products/sca_architect

Figure 2. R-Check SCA running inside SCA Architect/Eclipse.

Through a plug-in to SCA Architect [9], a save operation

initiates a reanalysis of a source code file. R-Check SCA can

evaluate incomplete code and find violations even before the

first compilation. In this case, a violation of the SCA 2.2.2

AP0603 requirement is highlighted. Once the plug-in is

enabled, the developer sees the report and listed errors only a

few seconds after the file is saved.

Figure 3. AP0603 description linked from HTML report.

In R-Check SCA, violations can be linked directly to source

reference material. This accelerates the knowledge transfer

process, especially useful for new or evolving specifications

such as SCA Next, and leads to fewer bugs in submitted code.

368

https://jtel.spawar.navy.mil/
http://www.eclipse.org/
http://www.public.navy.mil/jpeojtrs/SCA/Documents/
http://www.crc.gc.ca/en/html/crc/home/research/satcom/%20rars/sdr/products/sca_architect
http://www.crc.gc.ca/en/html/crc/home/research/satcom/%20rars/sdr/products/sca_architect

