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ABSTRACT 

 

The next generation of the Software Communications 

Architecture (SCA) specification (SCA Next) introduces 

several features that will affect the compliance certification 

process. Among the more significant and high-profile 

changes are the introduction of multiple supported platform 

models and support for both CORBA  and non-CORBA 

transport layers. These features, which further abstract the 

specification away from a uniform hardware/software 

interface, make constructing an all-purpose dynamic testing 

platform more difficult. This suggests that a certification 

plan that relies more heavily on static testing might provide 

a more versatile and cost-effective approach. In this paper, 

we describe the benefits and implications of static 

compliance testing in the context of SCA Next. This 

includes a discussion of which requirements are and are not 

amenable to static testing, the complexity of defining and 

customizing tests, the expected performance and limitations 

of those tests, and a summary of our experiences from the 

development of R-Check™ SCA, our platform for static  

SCA 2.2.2 compliance testing. 

 

1. INTRODUCTION 

 

Static testing provides power and versatility by directly 

testing the software source code, across potentially multiple 

file formats, as it is written. This unbiased inspection 

permits simultaneous testing of all software paths and can 

be used to find latent issues that do not manifest on 

particular platforms or in scripted test executions. Further, 

static testing can be run as code is being developed, 

allowing non-compliant code to be fixed earlier in the 

development cycle. This immediate code-test-repair cycle 

also provides a mechanism to educate the developer on the 

SCA by making direct links between lines of source code 

and specification directives. Compiler-driven static analysis 

mirrors the build process and scales to millions of lines of 

code. Advances in static analysis and model checking 

techniques allow precise specification of error conditions in 

terms of well-defined operations that limit the rate of false 

positives and, in some cases, can provide correctness 

guarantees. 

R-Check SCA [1] is a compliance testing tool being 

developed in partnership with the Joint Tactical Radio 

System (JTRS) Test & Evaluation Lab (JTEL) [2] that uses 

static source code analysis to check requirements contained 

in the SCA 2.2.2 specification. R-Check SCA uses a 

compiler-grade static analysis engine combined with off-

the-shelf tools and data formats to test SCA-specific 

requirements that cut across C/C++ source code, 

CORBA IDL, and SCA XML descriptor files and generate 

concise, reproducible incident reports. R-Check SCA has 

been used to analyze production waveforms and operating 

environments and is now being expanded in anticipation of 

supporting SCA Next. 

 

2. STATIC ANALYSIS 

 

Static analysis refers to analysis performed by inspecting a 

program source or binary code without requiring the code to 

be executed. For source code static analysis, this also 

implies that the code does not need to be compiled to 

machine-dependent object code or linked. Static analysis 

methods provide several advantages that make them a useful 

complement to traditional dynamic (runtime) testing. 

 

 Static methods are not influenced by common vs. 

exceptional case behavior and analyze all program 

paths without bias. 

 Since they do not require the code to be compiled or 

executed, static methods can be applied to code in an 

intermediate (potentially incomplete) state. 

 Static methods can be integrated into development 

environments and provide a foundation for automated, 

reproducible tests. 

 Static methods can frequently produce counter-

examples from violations and be used to pose “what-if” 

questions to aid code comprehension and perform 

hypothesis testing. 

For the SCA, these advantages translate to a system of 

analysis methods that can be used to automate testing of 

several specification requirements. Through integration with 

a visual development environment, such as Eclipse [3], 
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analysis can be fast and transparent enough to execute with 

each source file save operation. The advantage to the SCA 

developer is near instantaneous feedback when a potential 

violation is introduced. Even while the code is not yet ready 

for compilation and runtime testing, and without the need to 

construct any unit or regression test cases or specialized test 

harness, the seeds of SCA violations can be found and 

reported. Again, through integration with a development 

environment, errors can be directly linked to SCA reference 

material that provides a concise and up-to-date description 

of each reported issue. Taken together, these capabilities 

allow potential bugs to be found and corrected at the soonest 

possible point in the development cycle through direct 

action by the responsible developer. 

In implementation, the term static analysis encompasses 

everything from search-and-inspect type analyses, to 

compiler-driven data-flow methods, to more advanced 

symbolic execution and model checking techniques. These 

techniques vary greatly in scalability, power, and precision. 

Search-and-inspect techniques, which have been used by 

JTEL for SCA 2.2 and 2.2.2 compliance testing, scale to 

enterprise code, but have limited power and precision. The 

most modern techniques are extremely powerful and 

precise, but are frequently limited in applicability or require 

expertise in formal methods to apply. 

With R-Check SCA, we have taken a middle ground that 

uses a compiler-grade language parser for C/C++ that 

breaks code down into intermediate data structures and then 

uses well-established data-flow methods of analysis to 

perform requirements checking. The intent in choosing this 

approach was to increase automation and analysis speed 

while improving on the power and precision of the current 

forms of analysis being used and still meeting the 

requirement that code should be analyzable “as is.” 

Data-flow methods date to the 1970’s with the discovery 

that facts that may or must hold at each program point can 

be computed as a fixed-point of a system of equations 

defined over a lattice of fact subsets [4]. Later work 

demonstrated how these techniques could be abstracted to 

support reasoning over paths through reused or recursive 

procedures [5]. As they are commonly applied, these 

techniques function over a control-flow representation of a 

program, in which nodes are program statements and edges 

reflect the statement successor relation. Each statement can 

be seen as transforming the “state” of some fact of interest 

(e.g., is a variable live). In this way, a set of states that hold 

at an initial point in the code are propagated through the 

graph and “solved” for each program point, yielding the set 

of states that may or must (depending on how the 

transformers are defined) hold at each program point. The 

exact implementation depends on the requirement being 

checked, but in many cases the analysis can be restricted to 

single functions. For cases where the analysis must span 

multiple files, summary information can often be collected 

and used to seed the analysis for other files. 

These methods are the foundation of complier-driven 

optimization and are commonly used to optimize data and 

control flow, simplify redundant computations, and, in some 

cases, detect basic errors of usage such as using a variable 

before it is defined. The compiler front end used by  

R-Check SCA naturally creates the intermediate data 

structures necessary to implement these analyses. To meet 

the requirement of checking incomplete code, we have 

extended the C/C++ language parser to ignore or infer 

missing information rather than halt and report a parsing 

error as a compiler would. However, even with the partial-

code capability, the resulting underlying representation and 

accessing API remains the same. 

 

3. LESSONS FROM SCA 2.2.2 

 

Depending on how a requirement is written, static testing 

can vary from straightforward to very difficult. This section 

describes experience with three illustrative examples from 

the SCA 2.2.2 specification for applications [6]. 

1. AP0603, from Section 3.2.1: “Applications shall be 

limited to using the OS services that are designated as 

mandatory in the SCA Application Environment Profile 

(AEP) (Appendix B)." 

The core of this requirement is identifying procedure calls in 

the code and determining if they refer to IEEE POSIX  

routines designated as NRQ in Appendix B. Although this 

requirement is straightforward, there are several nuances 

that must be addressed to provide a complete evaluation of 

compliance. 

 Preprocessor directives must be properly interpreted, 

including macro expansions and the inclusion or 

exclusion of conditionally compiled code. 

 The analysis must recognize procedure calls in context, 

or, to detect calls through pointers, address-capturing 

call references. 

 The analysis must be able to distinguish between calls 

that refer to POSIX routines as opposed to locally 

redefined calls (which are permissible under the SCA). 

 Ideally, the analysis should be restricted to those parts 

of the code (components) that are subject to the 

Appendix B AEP restrictions. 

A compiler-driven data-flow approach is able to address 

these nuances directly by functioning over an intermediate 

representation. Preprocessor directives are executed as part 

of the parsing process. The context of each code construct is 

364



Proceedings of the SDR ’11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum, Inc. All Rights Reserved 

readily accessible through API calls and traversal functions 

over the intermediate representation. Meta-information 

attached to procedure calls includes declaration information 

(typically used by a compiler for error reporting), so 

distinguishing between POSIX and non-POSIX references 

can be done in constant time. Type information, accessible 

through symbol table lookup, can be used to restrict the 

analysis to particular SCA elements. 

As a data-flow analysis, this requirement does not require a 

complex fact transition system – validity with respect to the 

requirement can be determined from an independent 

evaluation of each program statement. Thus, evaluation of 

this requirement is dominated by the time to parse the code 

(shared across all requirement analyses) and the time to test 

library-declared procedure calls against the list of proscribed 

NRQ function names. 

2. AP0604, from Section 3.2.1.1: “Applications shall 

perform file accesses through CF file interfaces.” 

While a straightforward statement, static testing of this 

requirement for C/C++ code requires an enumeration of the 

methods of file access that are not allowed. 

 For C, this includes several standard system calls, for 

example, open(), close(), fread(), and 

fwrite(). Note that POSIX calls such as 

fprintf() are covered under the AP0603 

requirement. 

 For C++, this includes derivatives of the file stream 

classes: ifstream and ofstream. While these are 

classes in C++, they are usually used as interfaces 

through class inheritance. Any method that overloads 

the file access methods is potentially violating. 

In addition to the API and traversal functions over the 

program intermediate representation leveraged in the 

analysis for AP0603, a proper analysis for this requirement 

depends on domain knowledge of the C and C++ languages. 

It is worth noting that there is no direct path from the text of 

the requirement “shall” statement to an automated 

implementation. However, as with AP0603, once the list of 

proscribed actions has been defined, the analysis can be 

performed with a trivial fact-transition system. 

3. AP0075, from Section 3.1.3.1.2.5.2.3: “The 

releaseObject operation shall release all internal 

memory allocated by the component during the life of 

the component.” 

While a simple statement of an intuitively desirable 

property, requirements such as this – essentially a restriction 

against leaking memory – represent the most difficult class 

of problems (in the strictest sense, undecidable) for static 

analysis tools. The complexity of analyzing this requirement 

stems from the fact that correctness depends on a precise 

understanding of exactly which statements will execute in a 

program and in which sequence. 

As a tractable first approximation of a static analysis for this 

requirement, allocation operations for which no 

corresponding deallocation statement can be found are 

treated as suspect and passed back the developer. The 

developer must then assert that the code is non-violating. In 

practice, this approach can have a false-positive rate (based 

on feedback from developers) of more than 50%. 

In addition to generating false-positive results, this process 

also has the potential, depending on the precision with 

which the matching step is carried out, of generating false-

negative results. A false-negative result occurs when the test 

fails to detect an error that is within the scope of the 

requirement being tested. For C/C++, there are multiple 

examples of how this can happen. 

Ex 1: Memory Leaks through Pointer Reassignment 

Component::method_a() { 

    p = malloc(…); 

    … 

    p = malloc(…); 

} 

 

Component::releaseObject() { 

    free(p); 

} 

 

Second malloc() leaks memory allocated by first 

malloc(). 

In this first example, the memory allocated by the first 

assignment to “p” would not be free’d by the 

releaseObject() method. This is a violation of the 

requirement. While the two malloc() statements are co-

located in the example for brevity, they may not be so co-

located in actual codes. A simple matching algorithm would 

not detect this violation. 

Ex 2: Memory Leaks through Control Flow 

Component::method_a() { 

    if (A) { 

        p = malloc(…); 

    } 

} 

 

Component::releaseObject() { 

    if (B) { 

        free(p); 

    } 

} 

 

If “A” evaluates to true, but “B” does not, then memory 

allocated by malloc() will be leaked. 
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In this second example, the memory allocated by the 

assignment to “p” is dependent on condition “A”. The 

release of the memory is dependent on condition “B”. The 

code is correct if and only if “A” implies “B”; that is, “B” is 

true whenever “A” is true. More specifically, “B” must be 

true when the “B” conditional is reached whenever “A” was 

true when the “A” conditional was reached. This distinction 

is important, as it reflects that either “A” or “B” or both 

might depend on variable assignments that could change 

during the life of the object. 

These example program statement patterns occur frequently 

in submitted code. More complicated examples can be 

constructed that introduce leaks through looping constructs 

(e.g., while) or through combinations of reassignment and 

control flow. Note, however, that it is impossible to catch 

instances of these more complex control-flow issues if the 

only lines of code that are inspected are the isolated 

malloc() and free() lines. To have any chance to 

catch these defects, it is necessary, at a minimum, to inspect 

operations in the broader context of the surrounding 

statements. This tremendously increases both the 

complexity and the time required to perform the analysis. 

Refinements to the basic analysis for this requirement must 

balance between eliminating false-negatives, limiting false-

positives, and speed. This opens the door to the deepest 

types of analysis available today. The data-flow based 

model extends to support refinements that take into account 

precise statement sequencing and, in the most advanced 

implementations, can tag data-flow facts with branch 

predicates and test them for compatibility. Although  

R-Check SCA does not yet implement this level of analysis, 

in 2005 a prototype implementation of an analysis of this 

type, run over the Linux kernel source tree, discovered more 

than a hundred instances (in this case POSIX lock() API 

mismatches) of previously undetected bugs [7] in a few 

hours with a low rate of false positives. 

The lesson from these examples is that, to provide a 

meaningful contract, it is important that requirements not be 

written in isolation from the developers or test tool authors. 

In many cases, a strong, enforceable specification requires 

concessions from developers on how code will be written 

and awareness of how a requirement will be tested. The 

SCA Next [8] guidelines for C/C++ best practices are a 

positive step in this direction. Specifications should be 

targeted for static or dynamic testing (or both). The 

designation of requirements, done as part of the SCA Next 

development, into “automatable” vs. other categories is, 

likewise, a positive step. 

In total, with the current design of R-Check SCA, we have 

identified more than two dozen core SCA 2.2.2 

requirements that can be automated. All of these 

requirements can be tested over the common intermediate 

representation, meaning that the tests can be performed from 

a single parse of each program file. Beyond the source code 

analyses described here, some of these analyses also require 

consistency across supporting SCA XML domain profile 

and CORBA  IDL files. These files are parsed separately in 

R-Check SCA with relevant facts condensed into a 

summary file that is then reparsed to initialize the C/C++ 

analysis engine. In this way, the static analysis approach 

extends to support specifications over heterogeneous and 

interdependent file types. 

 

4. BENEFITS FOR SCA NEXT 

 

We expect certification of SCA Next to rely even more 

heavily on methods of static program analysis as new 

features introduce challenges that could make dynamic 

(runtime) analysis harder. 

 More flexibility in the interface (CORBA vs. No-

CORBA). 

For SCA 2.2.2, CORBA provides a uniform interface 

layer to code being tested. For code that bypasses the 

CORBA transport layer, it will necessary to construct 

an equivalent test harness. 

 More flexibility in choice of supported capability 

through units of functionality and multiple supported 

SCA profiles. 

The increase in supported capability sets complicates 

the process of runtime testing. Typically, each 

capability set requires a customized environment and 

suite of tests. 

 Less accessibility to component interfaces (common 

access through the Domain Manager) 

Less accessibility to individual components makes it 

more difficult to perform individual unit tests. This 

pushes runtime testing to later in the development cycle 

and requires more detailed test scripts to exercise 

individual components. 

Carrying over from the SCA 2.2.2, the SCA Next also 

retains requirements concerning non-termination, memory 

cleanup, and exception handling that are difficult or 

impossible to test dynamically. For termination and 

memory, adequate tests require deeper analyses that can 

only be built on robust analysis platforms that understand 

code structure and context. C++ exceptions are an example 

of a code feature that can be particularly hard to exercise at 

runtime. Here, static testing offers the advantage of being 

able to test exception paths without requiring the 

construction of exception-inducing behavior. 
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5. STRUCTURE OF R-CHECK SCA 

 

Figure 1 illustrates the R-Check SCA workflow, 

encompassing both C/C++ source code and SCA XML 

domain profile and CORBA IDL file static analysis for  

SCA 2.2.2. The structure of R-Check SCA mirrors that of a 

traditional compiler and linker. The R-Check static analysis 

engine processes source files independently, interpreting the 

usual range of compiler arguments, and generates a 

summary report, in XML, for each. These files can be 

interpreted independently within a development 

environment to provide immediate feedback (see Figure 2) 

or can be merged by a separate report post-processing utility 

(R-Check Blender) into a consolidated view. Natively,  

R-Check can produce reports in plain text, CSV, and HTML 

formats. The HTML reports include hyperlinks to 

highlighted syntax and include descriptive information 

about the nature of the violation with references back to the 

SCA specification itself (see Figure 3). 

Using augmented data-flow techniques, we plan to 

ultimately automate more than two dozen SCA 2.2.2 

requirements with R-Check SCA. Moving toward  

SCA Next, we are extending the core workflow to support 

dependencies between source files (needed for true 

interprocedural analysis) using a two-pass analysis system. 

In the first pass, summary information is collected for each 

file and in the second pass the analysis engine draws upon 

the aggregated summary information to perform deeper 

analyses. This structure mirrors our approach to consistency 

checking over C/C++, SCA XML, and CORBA IDL files in 

which a summary of the supporting files is passed to the 

source code analysis engine. 

6. SUMMARY 

 

This paper describes the benefits of static compliance 

testing for the current SCA 2.2.2 and for the forthcoming 

SCA Next specifications. Static analysis provides specific 

advantages that make it a natural complement to dynamic 

testing. Static testing can be automated and, through 

integration into a development environment, can provide the 

soonest possible indication of a potential violation. Through 

this sort of reinforcement, static analysis can also serve as 

an aid in teaching the specification to the developer. This 

results in more knowledgeable developers and tighter test-

debug cycles with fewer issues manifesting in post-

development certification and validation testing. 

Static analysis methods will be an important part of the 

certification process for SCA Next. New features in the 

specification will make uniform dynamic testing more 

difficult and several other features carried over from  

SCA 2.2.2 map best to static methods. Efforts to address 

coding practices and to categorize requirements by their 

ability to be automated are positive steps toward a more 

testable specification. 

R-Check SCA provides a platform for implementing 

modern static analysis techniques, capitalizing on nearly 

forty years of academic and industry experience. The use of 

compiler methods of paring and analysis provides 

reasonable power and precision, a platform for 

implementing more advanced techniques, and scalable 

performance for enterprise codes. 

 

  

Figure 1. R-Check SCA workflow. 
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Figure 2. R-Check SCA running inside SCA Architect/Eclipse. 

Through a plug-in to SCA Architect [9], a save operation 

initiates a reanalysis of a source code file. R-Check SCA can 

evaluate incomplete code and find violations even before the 

first compilation. In this case, a violation of the SCA 2.2.2 

AP0603 requirement is highlighted. Once the plug-in is 

enabled, the developer sees the report and listed errors only a 

few seconds after the file is saved. 

 

Figure 3. AP0603 description linked from HTML report. 

 

In R-Check SCA, violations can be linked directly to source 

reference material. This accelerates the knowledge transfer 

process, especially useful for new or evolving specifications 

such as SCA Next, and leads to fewer bugs in submitted code.  
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