





# **Systems Need Modularity**

- Increasing Complexity
- Diversity of Hardware
  - GPPs, DSPs, FPGAs
- Diversity of Software
  - Applications
  - Devices

Modularity can be Achieved through Partitioning



# **Partitioning Strategies**

#### Standard Middleware

- World Wide Web Consortium (W3C)
  - Web Services
- Object Management Group (OMG)
  - Data Distribution Service (DDS)
  - Common Object Request Broker Architecture (CORBA)

#### Non-Standard Middleware

- Role Your Own
  - C/C++ APIs
  - Berkeley Sockets



### C/C++ APIs

- Advantages:
  - Good performance
  - Ease of use
- Disadvantages
  - Less modular
  - Client and server must be co-located
  - Potential side effects
  - Can be difficult to mix computer languages



### **Berkeley Sockets**

### Advantages:

Available on most operating systems

### Disadvantages:

- Usually requires Ethernet
- Programmers may need to write code to accommodate different Endian architectures
- Programmers may need to write code to forward inbound messages to correct destination
- Programmers may need to write code to serialize/deserialize some of the data types
  - Need to be aware of how data types are serialized
  - Different computer languages may serialize differently



#### **CORBA**

- Example of the Object Request Broker Pattern
  - An architecture pattern
- Defines:
  - Serialization
  - Transport Mechanism
  - Other possibilities include things such as threading, message prioritization, etc.
- Advantages:
  - Language independent
  - Platform independent
  - Location independent
- Disadvantages:
  - Size
  - Performance



# **OMG Extensible Transport Framework (ETF)**

- Document number: ptc/04-01-04
- Provides a way for users to supply a transport
  - Examples include shared memory and message queues
  - Could role-your-own with custom hardware
- The ETF Standard defines IDL and the expected behavior
  - Users implement the IDL methods
  - CORBA implementation calls the methods



### Linux





### **VxWorks**





# Mini-Trade Study (a little subjective)

|                        | C/C++ APIs                        |    | Sockets                           |    | Shared<br>Memory                  |    | CORBA                             |    |
|------------------------|-----------------------------------|----|-----------------------------------|----|-----------------------------------|----|-----------------------------------|----|
| Modularity             | Requires co-location              | 5  | Endian                            | 8  | Requires co-location              | 6  | Maximized                         | 10 |
| User<br>code/debugging | Initialization<br>done by<br>hand | 7  | Initialization<br>done by<br>hand | 7  | Initialization<br>done by<br>hand | 6  | Initialization done with policies | 10 |
| Sub-Total              |                                   | 12 |                                   | 15 |                                   | 12 |                                   | 20 |
| Size                   | Build only<br>what you<br>need    | 10 | Requires<br>message<br>forwarding | 9  | Requires<br>message<br>forwarding | 8  | Thread and priority management    | 6  |
| Performance            | Function call                     | 10 | Kernel/user<br>switching          | 6  | Kernel/user switching             | 9  | Buffer copies                     | 7  |
| Total                  |                                   | 32 |                                   | 31 |                                   | 32 |                                   | 33 |



## **Summary**

- Increasing complexity makes partitioning necessary
- Partitioning can be done with middleware
  - Standard
  - Non-standard
- CORBA
  - Clearly superior if size and performance are not critical
  - Otherwise can be inferior



### **Contact**

Roy\_M\_Bell@Raytheon.com 260.429.7628