
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

DEVELOPMENT OF LOW-COST PUBLIC SAFETY P25 WAVEFORM

IN AN OSSIE ENVIRONMENT WITH USRP

Zhongren Cao, Jeff Cuenco, Anthony Nwokafor, Per Johansson, William Hodgkiss
(California Institute for Telecommunications and Information Technology – Calit2, University of Cali-
fornia San Diego, La Jolla, CA 92093; zcao@soe.ucsd.edu, jcuenco@ucsd.edu, aanwokafor@ucsd.edu,

pjohansson@soe.ucsd.edu, whodgkiss@ucsd.edu)

ABSTRACT

Low-cost software communications architecture (SCA)
based waveform implementation and porting is a much
sought-after feature in the software-defined radio (SDR)
community. It not only reduces the acquisition cost to pur-
chase systems and equipment, but also lowers the entry bar-
rier, thus enabling a broader range of organizations to carry
out SCA-based SDR research, development and training.
This paper describes the development and implementation
of a low-cost public safety Project 25 (P25) waveform that
has been ported from the SDR-4000, a high-end surrogate
JTRS SDR platform, to a low-cost PC and Universal Soft-
ware Radio Peripheral (USRP) platform. The ported P25
waveform is implemented in an OSSIE environment, which
is an open-source SDR core framework based on the JTRS
SCA, using Linux as the operating system (OS). The choic-
es of the SDR platform, the core framework and the OS
enable a low-cost porting and implementation of the P25
waveform. In this paper, the porting process is described in
detail and lessons learned are discussed.

1. INTRODUCTION

The Joint Tactical Radio System (JTRS) program was estab-
lished to provide next generation radio systems for US mili-
tary forces [1]. By adopting software defined radio (SDR)
technology and leveraging on the inherent programmability
using software, the JTRS program aims to provide afforda-
ble, high-capacity, and flexible waveforms for rapid field
deployment. The cornerstone for achieving this objective is
the use of a standardized open architecture – the software
communication architecture (SCA), which defines the
common interfaces of waveform components [2]. SCA
enables software reuse, hence, reduces the development
time and associated costs.
 The prices of many commercially available SDR plat-
forms and SCA software suites are prohibitively high for
entry level players. Therefore, low-cost SCA based wave-
form implementation and porting is a much sought-after
feature in the SDR community. It not only reduces the ac-

quisition cost to purchase systems and equipment, but also
lowers the entry barrier, thus enabling a broader range of
organizations to carry out SCA-based SDR research, devel-
opment and training.
 In this paper, we describe the porting of the public safe-
ty Project 25 (P25) waveform that has been implemented in
the SDR-4000, a high-end surrogate JTRS SDR platform, to
a low-cost PC and Universal Software Radio Peripheral
(USRP) platform [3]. The ported P25 waveform is imple-
mented in an OSSIE (Open Source SCA Implementation
Embedded) environment, which is an open-source SDR core
framework based on the JTRS SCA, using Linux as the op-
erating system (OS) [4]. This combination of a PC or laptop
running Linux and USRP is a low cost generic platform.
The USRP is the radio up-converter and down-converter for
the PC or laptop.
 The USRP family allows you to create SDR using any
computer with a USB 2.0 or Gigabit Ethernet port. Various
plug-on daughter boards allow the USRP and USRP2 SDRs
to be used on different radio frequency bands. Daughter
boards are available from DC to 5.9 GHz. The entire design
of the USRP family is open source. The USRP product fam-
ily works with GNU Radio, a free-software (open source)
framework for the creation of SDR. In addition to GNU
Radio, USRP family products can be driven by the universal
hardware driver (UHD) on all major platforms. The UHD
library contains a host driver and API for current and future
USRP family products. The UHD is particular useful for
SCA-based development as it can be simply encapsulated
into the SCA device driver.
 The OSSIE is developed by Wireless@VirginiaTech. It
goal is to enable research and education in SDR and wire-
less communications. The OSSIE package includes: an SDR
core framework based on the JTRS SCA; the Waveform
Workshop, a set of tools for rapid development of SDR
components and waveforms applications; and libraries of
waveform applications and components, etc. The OSSIE
uses the omniORB CORBA ORB, which is also openly
available.
 The choices of the SDR platform, the core framework
and the OS enable a low-cost porting and implementation of

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

342

mailto:zcao@soe.ucsd.edu
mailto:jcuenco@ucsd.edu
mailto:aanwokafor@ucsd.edu
mailto:pjohansson@soe.ucsd.edu
mailto:whodgkiss@ucsd.edu
http://gnuradio.org/trac

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

the P25 waveform. The rest of this paper is organized as
follows. In Section 2, we introduce the P25 waveform
common air interface relevant to this paper. The porting and
implementation of the P25 software on USRP are elaborated
in Section 3. Conclusions follow in Section 4.

2. P25 COMMON AIR INTERFACE

The common air interface (CAI) [5] is the main P25 element
ported in the project. It includes link level packetizing,
modulation, source and error correction coding. The P25
voice frame format is depicted in Fig. 1. A voice message
consists of a Header Data Unit (HDU) followed by pairs of
Logical Data Units (LDU1 and LDU2) that carry a mixture
of voice data, link control data, etc. The HDU has 792 bits
corresponding to a length of 82.5ms. Each LDU has 1728
bits spanning 180 ms in time. Every pair of LDU1 and
LDU2 forms a superframe with a time span of 360ms. A
144-bit Terminator Data Unit (TDU) is sent to signal the
end of a message, when a voice session is terminated. The
TDU can be 432 bits in length with link control information.

 The main contents of LDUs are voice code words. Each
superframe carries 18 voice code words (VC1-VC18), gen-
erated from the improved multi-band excitation (IMBE)
voice codec, adopted in the P25 standard. The IMBE vocod-
er is a patented technology of Digital Voice System Incor-
porated (DVSI). Besides voice code words, link control and
protocol information, such as the frame synchronization
(FS) sequence, network identifier (NID), message indica-
tors, talk-group ID, etc, are carried by the HDU, LDU and
TDU. To ensure that information is delivered correctly,
forward error correction (FEC) codes are used. Most link
control and protocol information are coded with Reed-
Solomon as the inner code and either Hamming or Golay as
the outer code, except that the NID has only one layer of

Golay coding and FS is a bit pattern without coding.
 The Phase 1 P25 CAI uses continuous 4-level FM
(C4FM) non-linear modulation and occupies 12.5 kHz
bandwidth for analog, digital or mixed mode transmission.
The P25 C4FM uses a 4-level pulse amplitude modulation
(PAM) to map bits into symbols and has a baseband baud
rate of 4800 symbols per second. The mapping of input bits
to 4PAM symbols and C4FM frequency deviations are
listed in Table 1. Every 4PAM symbol carries 2 input bits,
so the raw bit rate in P25 is 9.6 kbps.

Table 1 : C4FM Symbol Mapping

Bits 4PAM Symbol C4FM Frequency
Deviation (kHz)

01 +3 +1.8
00 +1 +0.6
10 -1 -0.6
11 -3 -1.8

 The implementation of the C4FM modem is illustrated
in Fig. 2. The 4-level PAM symbols pass through two filters
before the FM modulator. Those filters are defined by the
standard [5]. The first filter is a Nyquist raised cosine filter
for pulse shaping. If needed, this filer also can realize a
sampling rate change, which is common in SDR implemen-
tations. The second filter is a truncated inverse SINC filter.
The standard only defines the inverse SINC filter response
within the cut-off frequency of the first low pass raised co-
sine filter. In the end, the over-sampled, pulse shaped and
filtered 4PAM signals are used to modulate the phase of the
RF carrier signal. The reverse process takes places in the
receiver chain. The FM demodulator output is first filtered
with a rectangular window, i.e., an averaging filter, to com-
pensate for the inverse SINC filter at the transmitter. Then,
time synchronization is acquired by correlation of the FS
sequence. Down sampling is performed to extract 4PAM
symbols for detection, decoding and packet processing.

3. PORTING P25 TO LINUX/USRP

This section describes the porting of a P25 waveform im-
plementation to the Linux and USRP environment. The
original P25 waveform was implemented on SDR-4000. As
pointed out in [6], the porting process includes two steps.
First, the waveform software is migrated from the SDR-
4000 to the Linux/USRP environment without SCA. In this
step, the key targets are ensuring accurate operation of the
waveform in the new platform and maximizing the code
reuse. In the second step, the waveform is partitioned into
SCA-compatible resources and encapsulated into SCA
components. In the following, the setup of the Linux/USRP
platform is introduced first, following by the software archi-

Figure 1: P25 voice frame format.

Figure 2: The C4FM modem architecture.

343

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

tecture of the P25 implementation. The SCA partitioning is
described in the end of this section.

3.1 Using Linux/USRP as SDR Platform

The setup of the Linux/USRP platform we used for one P25
radio node is illustrated in Fig. 3. It consists of a laptop
running Linux OS and a USRP N210 kit. The laptop and the
USRP are connected with a Gigabit Ethernet cable.
 This is a genuine SDR platform in the sense that the
waveform is fully implemented using software in Linux, a
generic operating system, environment. The USRP is essen-
tially a radio frequency up-converter and down-converter
for the laptop. Complex baseband signal samples are trans-
ferred between the USRP and the laptop over the Gigabit
Ethernet cable. In additional, the laptop can control the be-
havior of the USRP, such as center frequency, power, sam-
pling rate, through the Ethernet.

3.2 Software Architecture

The P25 waveform was originally implemented in the SDR-
4000, a high-end surrogate JTRS SDR platform consisting
of devices such as GPP, DSP and FPGA. The P25 wave-
form implementation in the SDR-4000 is thus divided into
three parts, as shown in Fig. 4. Supporting waveform port-
ing to another SDR platform was one key requirement dur-
ing the development of the P25 waveform implement on
SDR-4000. As a result, the C code written for packet
processing in GPP and baseband processing in DSP can be
directly reused.

 Different from the implementation on the SDR-4000,
waveform developers for the Linux/USRP environment no
long need to handle different computing devices such as
GPP, DSP and FPGA, as well as the partition of waveform
among those devices.
 In order to speed up the porting process and maximize
code reuse, the initial software architecture of the P25 wave-

form in the Linux/USRP consists of three independent
processes. They are: 1) the packet processing process, cor-
responding to the software implemented in the SDR-4000
GPP; 2) baseband processing process, corresponding to the
software implemented in the SDR-4000 DSP; and 3) the FM
modem process, as shown in Fig. 6. These three processes
correspond to the P25 waveform partition in the SDR-4000,
as shown in Fig. 5. The three processes communicate with
each other using the Unix Domain Socket, which is a widely
used inter-process communication (IPC) scheme on the Li-
nux/UNIX platform. The FM modem process also interfaces
with the USRP through the UHD library.

Figure 3: Linux/USRP as SDR platform.

Figure 4: Partition of P25 waveform in SDR-4000.

Figure 6: Non-SCA P25 software architecture on Linux.

Figure 7: Software architecture for the P25 packet processing.

344

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

3.2.1 The Packet Processing Process

The packet processing process handles framing and de-
framing of P25 waveform. It interacts with the user interface
to accept commands and display waveform operational in-
formation. Besides, the packet processing process also inter-
faces the voice codec devices for voice encoding and decod-
ing. The software architecture for this process is illustrated
in Fig.7. It consists of following four threads.
• User interface thread (uiThread in Fig. 7) interacts

with the P25 java GUI through TCP/IP socket. It ac-
cepts user commands, such as “push to talk”, and dis-
plays information to P25 users, such as channel ID,
channel status.

• Voice codec thread (vcThread in Fig. 7) interfaces the
external voice codec device to accept coded voice to be
transmitted and send received voice code words.

• Receiving thread (rxThread in Fig. 7) extracts voice
code words from the received P25 frames.

• Transmitting thread (txThread in Fig. 7) packages
voice code words to be transmitted into P25 frames.

All four threads are controlled by the packet processing con-
troller, which creates the four threads when the P25 wave-
form is initialized. The receiving thread and transmitting
thread interact with the baseband process discussed in the
following through the UNIX domain socket.

3.2.2 The Baseband Process

The baseband process performs the 4PAM modulation and
demodulation. In the transmitter part, this process also
filters the generated 4PAM signal with the raised cosine
filter and the inverse SINC filter. In the receiver chain, the
baseband process first performs the averaging filtering first
and then correlates the received 4-PAM signal with

prestored FS sequence to synchronize the signal and demaps
the symbols to bits. The bandband process communicates
with both the packet process and the modem process
through the UNIX domain socket.

3.2.3 The FM Modem Process

The FM modem process performs the frequency modulation
and demodulation, as well as interfaces the USRP through
the UHD library. The software architecture of the modem
process is depicted in Fig. 9.
 The sampling rate of the USRP ADC/DAC is
configured to be 200 ksps (kilo sample per second), while
the sampling rate of the baseband processing is 48 ksps. In
order to match the sampling rate of the baseband processing
and that of the USRP ADC/DAC, the modem process also
re-samples the transmitted signal from the bandband process
and the received signal from the USRP.

3.2.4 Architecture Evolution

The software architecture described previously retains the
legacy of the SDR-4000 version of the P25 waveform im-
plementation. In particular, the two steps in the C4FM mod-
ulation, 4-level PAM and FM, are split into two different
processes, while the FM is combined with the re-sampling
operation and interfacing with the USRP device.
 A better division among multiple tasks is achieved if
the FM is moved from the modem process to the baseband
process. Thus, the generic P25 waveform implement will
only have two processes – the packet processing and the
baseband processing. The software of this architecture evo-
lution is more portable. If the radio front end is changed
from the USRP to another one, only the code in the modem
process needs to be changed in order to match the require-
ment of the new radio front end. The code of the packet
processing and baseband processing can be fully reused.
 Figure 8: Software architecture for the P25 baseband process.

Figure 9: Software architecture for the modem process.

345

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

3.3 P25 SCA Component Partitioning in Linux/OSSIE

After the software is migrated from the SDR-4000 to the
Linux/USRP environment without SCA and the P25 func-
tionalities are verified, the Linux P25 software implementa-
tion is partitioned into multiple SCA resources. Each SCA
resource is added with SCA ports and SCA properties to
formulate an SCA component.
 The strategy currently adopted is to partition the packet
process into SCA components while keep the baseband and
modem processes as an external device. This is another car-
rier over legacy from the SCA based P25 implementation on
the SDR-4000, since only the packet processing is imple-
mented in the GPP. A modem device is created, which inter-
faces SCA resources using CORBA and communicates with
the baseband process through TCP/IP.
 The packet processing is thus partitioned into 5 SCA
components, among them 3 are SCA devices. They are

• User Interface Device
• Vocoder Device
• Modem Device
• Transmitter
• Receiver.

SCA device is an SCA component that prescribes to the
SCA device state machine. Since each SCA component is
an independent executable, the four threads described in
Section 2.2.1 are converted into processes. The function of
packet processing controller is absorbed into the User Inter-
face Device for the OSSIE version, but was a separate com-
ponent in the SDR4000 version.

4. SUMMARY

In this paper, we implement the public safety P25 waveform
in a low cost SDR platform using Linux and USRP with

OSSIE environment. It demonstrates that it is feasible to use
Linux and USRP as the entry level system to enable a
broader range of organizations to carry out SCA-based SDR
research, development and training.

5. ACKNOWLEDGMENT

This work was supported by the Joint Program Executive
Office of the Joint Tactical Radio System (JPEO JTRS)
through SPAWAR Systems Center – Pacific under contract
no. N66001-08-D-0155/T.O.0001.

6. REFERENCES

[1] http://jpeojtrs.mil [Online].

[2] “Software Communication Architecture Specifications,”
Version 2.2.2., May16, 2006.

[3] http://www.ettus.com/ [Online].

[4] http://ossie.wireless.vt.edu/ [Online].

[5] “Project 25 FDMA Common Air Interface”, TIA Std.
TIA-102.BAAA-A, September 2003.

[6] P. Johansson, Z. Cao, and W. Hodgkiss, "Rapid Porting
of an SCA-compliant FM3TR waveform," in Proceed-
ings of the SDR Forum Technical Conference, Wash-
ington, DC, 2009.

[7] Z. Cao, and et. al., "SCA-compliant Public Safety P25-
FM3TR-VoIP Bridge," in Proceedings of the SDR Fo-
rum Technical Conference, Washington, DC, 2010

[8] Z. Cao, and et.al., “Rapid Development of a JTRA P25
Waveform,”, in Proceedings of the 2010 IEEE Military
Communication Conference, San Jose, CA, Oct. 2010.

346

http://jpeojtrs.mil/
http://www.ettus.com/
http://ossie.wireless.vt.edu/

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

347

	Development of Low-cost Public Safety P25 Waveform
	in an OSSIE Environment witH USRP
	Abstract
	1. Introduction
	2. P25 Common Air Interface
	3. Porting P25 To Linux/USRP
	4. Summary
	5. acknowledgment
	6. References

