
A TECHNICAL OVERVIEW OF THE INTERNATIONAL RADIO SECURITY
SERVICE API

Anthony DiBernardo (Harris Corporation, Rochester, NY; adiberna@harris.com);

Leonard Picone (Harris Corporation, Rochester, NY; lpicone@harris.com); Charles Linn
(Harris Corporation, Rochester, NY; clinn@harris.com); Scott Leubner (Harris

Corporation, Rochester, NY; sleubner@harris.com); Rafael Aguado Muñoz (Indra,
Aranjuez, Madrid, Spain; ramunoz@indra.es); Javier Fernandez Alonso (Indra, Aranjuez,

Madrid, Spain; jfalonso@indra.es); Alvaro Mayol Garrido (Indra, Aranjuez, Madrid,
Spain; amayol@indra.es)

ABSTRACT

The Joint Program Executive Office (JPEO) Joint Tactical
Radio System (JTRS) established a new paradigm for
software definable radios with their release of the Software
Communications Architecture (SCA) specification [1]. This
specification details requirements and outlines a framework
for software based radio platforms. The intentions of this
specification are to foster portability of waveform
applications between divergent radio platforms. However,
beyond an initial historical draft, the JTRS program
currently has no provisions for a publically available
security API that the broader international community can
use to develop portable waveforms. Recognizing a lack of
an internationally available security API for SCA based
radios, the Wireless Innovation Forum (WInnF) has
developed a security API called the International Radio
Security Services (IRSS) API to fill this gap. This paper
introduces and presents a technical overview of the major
interfaces supporting streaming waveforms and wideband
networking waveforms. An example of typical usage by a
streaming waveform is included. Primary focus of the
paper will center on the establishment of secure networking
channels via network security protocols, including the
application of asymmetric key management techniques.
Additionally, examples of how radio manufactures can map
the API to representative military and government radio
architectures/topologies is presented.

1. INTRODUCTION

The JPEO JTRS released its initial version of the SCA with
the basic goal of standardizing the operating environment
(OE) for software definable radio systems. As the standard
gets more mature, the initial set of goals was refined to
fulfill the market requirements, focusing on the facilitation
of the portability of waveforms between different platforms.
In order to achieve this set of goals, the earlier versions of
the SCA included both an API supplement [3] and a

security supplement [4] to define the applicable system
APIs between waveform components and the OE and
between OE components themselves. However, later
revisions of the SCA deprecated both these supplements to
instead give preference to API standards being developed
by an API standardization committee. Unfortunately, today
there does not exist an internationally available API
standard that defines the security interfaces for SCA based
radio systems. Recognizing this gap, the WInnF has
endeavored to create a security services API, applicable to
the international community, for standardizing the interfaces
of the radio security services (RSS) provided by an SCA
based radio platform.
 Following the aforementioned general SCA goals, the
objective of this API, called the International Radio Security
Service API, is to extend the waveform portability between
different platforms to the security boundary. By
standardizing the security API, the WInnF’s IRSS API task
group promotes portability of waveforms developed against
those standards to platforms that provide those APIs. Figure
1 provides a brief overview of how the inclusion of this API
fills the missing piece in the portability puzzle:

Figure 1 IRSS API Localization

As shown in Figure 1, the IRSS API is a large service that
not only has to support waveform components in their
interaction with the platform, but also has to provide

THIS INFORMATION WAS APPROVED FOR PUBLISHING PER THE ITAR AS “Fundamental Research”.

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

332

support among the platform components. It is essential to
specify the interfaces used by the waveforms as those
interfaces foster portability. On the other hand, waveforms
do not connect to and use the security interfaces provided
for other platform components, and thus, specifying
platform security interfaces only serves to constrain
platform development without adding to waveform
portability. Taking into account these considerations, the
IRSS API focuses on detailing security interfaces that are
likely to be used by waveforms.
 To develop this API, the IRSS API task group drew
upon its experience with existing waveforms and on
existing security APIs. In particular, the working group
considered use cases for legacy circuit-based waveforms
and also newer networking waveforms. Existing security
APIs referenced include version 1.1 of the deprecated
Security Supplement to the SCA [4], which defined the
original RSS API for SCA based systems, and the Common
Interface to Cryptographic Modules (CICM) [5], which is
an IETF draft to standardize interfaces to cryptographic
modules.

2. API OVERVIEW

These days, security requirements for radio systems
encompass a broad range of services. However, not all of
these services are directly used by the waveforms running in
these systems. Typical waveform security needs include
transformation of user traffic (i.e. encryption and decryption
services), transmission security (TRANSEC) services, key
management services, bypass services, integrity and
authentication (I&A) services, and general security
configuration and control services. However, grouping
security services into one large interface does not promote
understandability, nor does it support least privileges
principles (LPP) when connecting to those services.
Instead, the IRSS API factors services into several logical
groupings, denoted by modules in the Interface Definition
Language (IDL), which themselves contain one or more
IDL interfaces. Today, these groupings include the Control
module, the Infosec module, the Bypass module, the IandA
module, and the Protocol module.

2.1. The Control Module

The Control module contains interfaces related to waveform
configuration and control of the security services. These
include the three interfaces shown in Figure 2: the
ChannelMgmt interface, the CertificateMgmt interface, and
the KeyMgmt interface.
 The ChannelMgmt interface allows waveforms to
create and configure various communications channels with
the security subsystem. When created, the system allocates
cryptographic resources for use with that channel. The

interface provides a unique method for each channel type.
When a channel is created, the methods return a channel
identifier to the client for subsequent use of the channel.
Waveforms use channels to exchange information with the
security subsystem as part of accessing the security services.
Many channel interfaces have a corresponding consumer
interface. The security subsystem uses the various
consumer interfaces to send data to the waveform.
 The CertificateMgmt interface provides services that
allow waveforms to validate, and retrieve certificates used
by many asymmetric key protocols. The KeyMgmt interface
allows waveforms to update and selectively zeroize keys.

Figure 2 Control Module Interfaces

2.2. The Infosec Module

The Infosec module contains interfaces that waveforms use
to access the information security services of the radio.
These services fall into two categories: transformation
services and TRANSEC services.
 Waveforms use transformation services to encrypt and
decrypt user traffic. Transformation services are supported
through three interfaces (shown in Figure 3), one provided
by the platform and two provided by the waveform. The
IRSS provides the former interface, called the
CryptographicChannel interface, which a waveform uses
for encryption and decryption. This interface supports two
modes of operation: one for circuit-based legacy
waveforms, which waveforms use to stream data to the
security subsystem, and one for packet-based networking
waveforms, which waveforms use to send individual
packets of data for transformation processing. Both modes
provide flow control that allows the security subsystem to
manage the flow of information into itself. Waveforms
provide the latter two interfaces, called the
CryptographicConsumer interface, which defines a standard
interface for the security subsystem to push data to the
waveform, and the ControlSignals interface, which defines
a control interface that the security subsystem uses to
resume flow after pausing a waveform. Like the

333

CrypotgraphicChannel interface, the
CryptographicConsumer interface supports both streaming
modes and packet modes. However, the
CryptograhicConsumer interface differs in that flow control
is not employed when passing data to the waveform – it is
assumed that the waveform can accept the data, or that out-
of-band techniques are employed to prevent data overflow
scenarios.

Figure 3 - Transformation Interfaces

 Waveforms use TRANSEC services to provide
TRANSEC cover to their transmissions. The IRSS supports
this through the TransecChannel interface shown in Figure
4. This interface provides two modes of TRANSEC
support. The first mode allows a waveform to send
transmission information in to be encrypted or decrypted as
part of TRANSEC cover processing. Alternatively,
waveforms can use the security subsystem to generate a
TRANSEC keystream using the second mode. In this
mode, the waveform applies the keystream to its
transmission information directly.

Figure 4 - TRANSEC Interface

2.3. The Bypass Module

The Bypass module contains interfaces that waveforms
utilize to bypass control messages through the cryptographic
subsystem. This type of bypass mechanism is needed in
high assurance radio systems with physically separate
security domains. The IRSS provides bypass support
through a pair of interfaces, one provided by the security
subsystem and one provided by the waveform. The former
interface, called the Channel interface1, allows a waveform
to push control messages to the security subsystem for
bypass through the crypto. The latter interface, called the

1 The fully qualified name for these interfaces is
IRSS::Bypass::Channel and IRSS::Bypass::Consumer.

Consumer interface1, provides a standard interface for the
security subsystem to send bypassed control messages back
to the waveform. The Bypass module interfaces are shown
in Figure 5.

Figure 5 - Bypass Module Interfaces

2.4. The IandA Module

The IandA module defines interfaces that waveforms use to
access the I&A features of the security subsystem. These
features include generating hashes, generating and
validating message authentication codes (MAC’s),
generating and validating signatures, and generating random
numbers.
 Waveforms access the hash, signature, and MAC I&A
features through channel interfaces called HashChannel,
SignatureChannel, SignatureVerificationChannel, and
MacChannel as shown in Figure 6. Each of these interfaces
inherits from a common Channel interface2 that defines the
mechanism for pushing relevant data to the security service.
The derived interfaces themselves define the unique
methods for retrieving the results of the requested operation.

Figure 6 - IandA Channel Interfaces

 Waveforms can use the RSS to generate random
numbers through the Random interface as shown in Figure

2 The fully qualified name for this interface is
IRSS::IandA::Channel.

334

7. This interface supports both true random number
generation and pseudo random number generation using a
seed.

Figure 7 The Random Interface

2.5. The Protocol Module

The Protocol module defines interfaces that waveforms use
to exchange protocol messages with the security subsystem
(for example, as part of an asymmetric key protocol). These
interfaces define a generic messaging protocol that supports
the various message exchanges needed by different
protocols. Appendices to the IRSS API will standardize the
specific message details needed by each protocol. As in
other modules, the IRSS provides protocol support through
a pair of interfaces, the Channel interface and the Consumer
interface3 as shown in Figure 8.

Figure 8 - Protocol Module Interfaces

3. OPAQUE ALGORITHM USAGE

One challenge facing an international security API is in
providing an interface that is suitably generic across an
expected multitude of cryptographic algorithms, protocols
and implementations, while still fulfilling the need to
standardize interface and semantics. Security by nature is a
moving target, as evolving threats are addressed, and future
waveforms will need new or modified services and
protocols. Additionally, the international nature of the API
requires that, in addition to public algorithms, the API must
support coalition or sovereign national algorithms. Some
details of these algorithms cannot be openly published, but
must still be supported in the context of the IRSS.
 To address this challenge, the IRSS employs a pattern
utilizing opaque algorithms. When clients create channels
(be they Cryptographic, Transec, Bypass, Hash, Mac,
Signature, Signature Verification or Protocol), they select
associated algorithms by Id. The IRSS standard does not

3 The fully qualified name for these interfaces is
IRSS::Protocol::Channel and IRSS::Protocol::Consumer.

bind a specific algorithm to an Id – this is left to the
platform implementation. Clients access these algorithms
(e.g. TransformStream) by requesting a combination of
fully-specified parameters and generic parameters (usually
in the form of OctetSequences). These are handled
generically by the overall IRSS and then interpreted in an
algorithm-specific way by a given algorithm. This defers
full specification to a separate algorithm usage
specification, which not only could be changed
independently from the IRSS specification, but is also
subject to limited access as required.

4. API MAPPING TO REAL WORLD TOPOLOGIES

Security domains are logically separated elements of the
system whose only connection is through a cryptographic
subsystem (CSS). A CSS contains one or more functional
crypto modules and a single cryptographic control module.
These modules are functionally separate and not necessarily
physically separate. The crypto modules perform
encryption/decryption, TRANSEC processing,
cryptographic bypass, asymmetric key negotiation, etc. The
cryptographic control module handles overall key
management, policy management, certificate management,
channel management, etc.
 The IRSS API was designed to be applicable for radio
systems that could be implemented in multiple physical
topologies. The simplest topology, typical for a commercial
radio, is a single waveform module connected to a single
CSS as shown in Figure 9.

Figure 9 - Single Security Domain
 A typical single channel military radio would contain a
secure waveform security domain connected to an unsecure
waveform security domain through a CSS as shown in
Figure 10.

Secure
WF

Module

CSS
Crypto
Control
Module

Crypto
Module

Unsecure
WF

Module

Figure 10 - Military Radio Topology

 Multichannel radios could have a single CSS with
multiple crypto modules that have connections to multiple

335

waveform security domains as shown in Figure 11. The
IRSS API supports these example topologies as well as
others.

Figure 11 - Multichannel Rado Topology

4.1. Channels

Channels, managed via the ChannelMgmt interface, are
communications paths with the security subsystem that
share several characteristics. Since a CSS may contain
multiple crypto modules (as shown in Figure 11), clients
create channels on a specific crypto module that will
provide the service. These crypto modules may contain
multiple access points in their interfaces that define the
inputs and outputs to the module. For example, in a system
with multiple security domains, the crypto module will
likely have one or more secure access points and one or
more unsecure access points. Therefore, channels are
communication paths that can be characterized by the crypto
module providing the service and the access points, called
endpoints, which a client uses to interface with the module.
 The IRSS API makes no assumptions about where the
inputs and outputs of a channel exist. This allows the
definition for an endpoint to be platform defined. For
example, one could choose to use endpoints for each HW
interface. Alternatively, one could choose to use endpoints
for each API instance. In Figure 9, a
CryptographicChannel would naturally have both the plain
text (PT) and cipher text (CT) endpoints connected to the
single WF module, while in Figure 10 and Figure 11 the PT
and CT endpoints would be connected to the secure and
unsecure WF modules respectively.
 Although similar to other channels in their
characteristics, cryptographic channels and TRANSEC
channels have some behavioral differences that distinguish
them from other channels. In particular, cryptographic and
TRANSEC channels allow clients to use the channel with
different configurations. Upon creation, a waveform
specifies all the potential cryptographic applications
(discussed in the following section) that could be used on

the channel. The security subsystem uses this
Cryptographic Applications (CA) list to allocate
cryptographic resources for the channel. Waveforms then
add one or more detailed configurations to the channel after
channel creation. Prior to using the channel, a waveform
activates a specific configuration on that channel. If a
waveform desires a different configuration, the waveform
only needs to activate the new configuration. This allows a
waveform to swap between configuration on the fly without
having to create and destroy channels. There are some
caveats to this process though. Since a single set of
cryptographic resources are allocated to the channel upon
creation, changing a configuration for the channel will
cause the CSS to loss any cryptographic state for the
previous configuration. If a waveform wants to swap
between two different configurations without losing state
(for example, to resume a previously started
transformation), it must create two separate channels, each
allocated with its own set of cryptographic resources.

4.2 Cryptographic Applications

While this IRSS strives to provide a standardized
framework for security-based operations, being an open
international standard, it is impractical to standardize
specific cryptographic manipulation and protocols. To
address this, the concept of cryptographic applications was
created. From an IRSS specification standpoint, CAs are
responsible for the specific algorithms and/or protocols for
Cryptographic, Transec and Protocol channels. A CA is
generically specified by ID only, and accessed by a
waveform through a set of standard operations which
themselves employ a combination of standard and generic
(opaque) parameters. In this way, the overall flow,
management and use of algorithms and data handling is
done in a common way, while allowing specialized use and
configuration.

5. STREAMING WAVEFORM APPLICATIONS

The CryptographicChannel abstraction supports two distinct
protocols – one for streaming and one for packets.
Streaming operation is supported using the
TransformStream() operation. Streams have traditionally
been employed by non-networking, circuit-switched legacy
waveforms, but are also used to encrypt / decrypt files and
other non-packet traffic. In a generalized stream, a message
is processed across multiple calls to the IRSS, yet handled
as an overall entity with intermediate state preserved in the
cryptographic application. Typically such streams flow in
real-time, with overall message length not being known by
the IRSS in advance.
 When processing a message within the context of a
stream, a given call to TransformStream() can represent a

336

start-of-message (SOM), middle, or end-of-message (EOM)
packet4, as indicated by passed SOM and EOM boolean
parameters. In the typical case, the CSS cryptographic
application will, after encrypting the payload, prepend a
cryptographic preamble to the first (SOM) packet in a
stream. Additionally, it may optionally add a postamble to
the EOM packet, and/or intersperse additional framing
information in mid-message, as required per the specifics of
the employed cryptographic algorithm configured for the
channel. When a message is active, the cryptographic
algorithm usually needs to maintain a “context” between
calls so that subsequent packets can continue advancing the
crypto state.

Data flow, either for encryption or decryption, flows
from one endpoint to another per the configuration made
when the CryptographicChannel was created. Simple, non-
simultaneous use of streams is straightforward, as
exemplified by the following transmit scenario:
a) The plaintext-side waveform (or platform) creates a

channel using CreateCryptographicChannel(). This
includes the specification of the plaintext and ciphertext
endpoints.

b) One or more configurations are added to the channel
using AddCryptographicConfiguration(). This selects a
specific CA, key and configuration to be used.

c) A configuration is activated using
ActivateConfiguration(). This selects a specific
configuration for use.

d) A sequence of calls to TransformPacket() is made, with
the first call in a message marked with SOM, and the
last marked with EOM.

e) Subsequent messages can be passed without need to
destroy / create a channel by repeating step d for each
new message.

f) Finally DestroyChannel() is called when the channel is
no longer required.

Packets passed from the waveform consist of a pair of
payload data and associated in-band bypass information. In
keeping with the opaque handling of cryptographic
algorithms, the content and handling of these fields is not
specified in the IRSS API, but rather deferred to a separate
algorithm usage specification. In this way, any combination
of initialization information, live data, bypass data or
algorithm control data can be passed to the CA, and can be
interpreted in a context sensitive fashion. Furthermore, as
the data is processed by the CA and sent back to the
waveform (using the CryptographicConsumer interface), the
usage of these fields is similarly unspecified. To be used in
a portable fashion, the CA-specific field usage will need to
be specified by the entity specifying the CA, but this is done
outside of the IRSS API.

4 In this context, packet refers to a collection of information
presented in an API call, not a networking packet.

 In some cases, such as when TDMA waveforms such as
Mil-Std-188-183 [6] are used, it is necessary to process
multiple streams of traffic in parallel, often with
overlapping message lifetimes. As a given channel only has
a single cryptographic context (contexts are not stored as
part of a CryptographicConfiguration), to do this a
waveform must create multiple channels, with each channel
dedicated to a given stream. Furthermore, due to the
dynamic nature of these waveforms, the stream
characteristics, or even the number of required simultaneous
steams cannot always be known in advance. To support
this, the IRSS API supports dynamic creation and
destruction of such channels, as usage scenarios are
typically not known a priori, and cryptographic resources
are limited in some implementations. An example is shown
in Figure 12 illustrating such dynamic usage.

Figure 12 Managing Simultaneous Channels

337

6. NETWORKING WAVEFORM APPLICATIONS

Unlike legacy waveforms, modern waveforms typically
support wireless networking protocols. These waveforms
are characterized by passing packets of data (i.e. TCP/IP
traffic) over-the-air as part of a larger networked system.
Transformations of user data in these waveforms will likely
involve asymmetric key protocols that establish a key pair
for each destination of the network. Since waveforms could
define their own key generation protocols, the IRSS API
needs to define a generic set of interfaces to support these
protocols. In addition, networking waveforms are
characterized by high throughput rates. Defining efficient
APIs is essential to meeting throughput requirements,
especially in size, weight, and power (SWAP) constrained
systems.
 To develop APIs that support these networking
waveforms, the IRSS API working group analyzed two
common networking use cases, IPsec ([7] and [8]) and
Transport Layer Security (TLS) ([9]). The IPsec protocol is
integrated with, or sits below, the IP layer of the networking
stacks, whereas the TLS protocol sits above the TCP/UDP
layer of the networking stacks. When analyzed, these
protocols employ some common security capabilities, but
then each protocol also has its own needs for interacting
with the security subsystem. Common needs include I&A
capabilities such as generating hashes or MACs and using
certificates to sign data and verify the signature of signed
data. Protocol unique needs include command and response
messaging for key derivation functions and other support
messaging. The IRSS API working group recognized these
common traits and differences and factored this into the
definition of the security APIs.

6.1. Integrity and Authentication Support

The common traits exhibited by the networking protocols
generally revolved around the I&A services required by the
protocols. When analyzing the I&A needs, the IRSS API
working group identified an aspect of these capabilities that
they all shared. In general the capabilities required that the
waveform pass data to the security subsystem (for example,
to generate a hash, or to compute a signature) and then
retrieve the result of the operation from the security
subsystem. This led to the development of I&A channels.
Like other security channels, clients create and configure
I&A channels using the ChannelMgmt interface. The
common support needed by all the I&A channels is factored
out into the I&A Channel base interface. This interface
defines a generic mechanism for passing data to the security
subsystem using octet sequences. The interfaces derived
from the I&A Channel interface extend the base interface
by adding the service unique mechanism for retrieving the

result of the I&A operation. For example the HashChannel
interface extends the base I&A Channel interface by adding
support for retrieving the results of the hash operation.
 Basic usage of the I&A channels involves several steps
as detailed in the following text and shown in Figure 13 (for
hash channels):
a) A client first creates an I&A channel (e.g. a hash

channel) using the ChannelMgmt interface. The create
operation returns a channel ID for the client to use for
future requests on that channel.

b) Using the specific I&A channel interface (e.g.
HashChannel), the client determines the maximum data
size for the channel. This data size allows for platform
specific customizations of their underlying transport
layer to the CSS.

c) The client then pushes the data to be processed, using
the I&A channel interface, to the IRSS in octet
sequences. These octet sequences should not exceed
the maximum data size as determined in the previous
step.

d) Once all the data has been pushed, the client can obtain
the results of the operation using the specific methods
found in the derived I&A classes (e.g. GetHash).

Note that channel creation allows the client to configure the
I&A channel and allows the CSS to allocate cryptographic
resources for the channel.
 In addition to the I&A channel interfaces, some of the
I&A services require certificate management support. In
particular, networking security protocol require access to
certificates, stored within the cryptographic subsystem, and
validation of certificates received from a peer system. The
CertificateMgmt interface defines an interface that allows
the security subsystem to provide these services. In
particular, it provides methods for retrieving and validating
certificates.

Figure 13 Example I&A Channel Usage

338

6.2. Protocol Message Exchange Support

Unlike the common traits, each networking security
protocol will likely contain command and response
messaging with the security subsystem that is unique to the
protocol. The IRSS API has to allow for this uniqueness
and also has to provide generic methods that allow growth
for future networking security protocols. To do this, the
IRSS API defines the Channel and Consumer interfaces
within the Protocol module. These interfaces define generic
mechanisms that allow a waveform to exchange messages
with the security subsystem. As with other channels, clients
create protocol channels using the ChannelMgmt interface,
which returns the channel identifier that the client uses to
access the protocol. Clients send commands to the security
subsystem using the Channel interface, and receive
responses from the security subsystem by providing the
Consumer interface. These interfaces define methods that
pass an opaque octet sequence that encapsulates the
command or response and their associated parameters.
Appendices to the IRSS API specification will define the
unique command and response messages needed by each
protocol.
 To demonstrate the usage of the protocol interfaces, the
following steps, and the accompanying Figure 14, depict
how the Channel and Consumer interfaces might be used to
request an IKE key exchange as part of the IPSec protocol:
a) A client first creates a protocol channel using the

ChannelMgmt interface. Channel creation allows the
CSS to initialize the protocol (e.g. IPSec) for that
channel. The create operation returns a channel ID for
the client and the IRSS to use for future exchanges on
that channel.

b) The client requests the initiation of an IKE session by
sending a StartIkeSession message to the IRSS. This
message establishes the Diffie-Hellman group number
to use for the session.

c) The IRSS computes the Diffie-Hellman value to use in
the key exchange with the IKE peer and returns it to the
client, along with the initiator’s nonce and a session Id,
in a status message. The session Id allows multiple
IKE sessions to be in progress simultaneously.

d) The client then exchanges key parameters with the
remote IKE peer.

e) The client sends the key parameters it received from the
remote IKE peer to the IRSS using a SetKeyParameters
message. The session ID identifies that this message
applies to the session started in step b above.

f) The client then requests that the IRSS derive the keys
using the previously generated and configured key
parameters.

g) Lastly, the IRSS sends the IDs for the generated keys to
the client using a status message.

Figure 14 Example Protocol Interface Usage for IPSec

Note that the messages exchanged with the IRSS, as well as
the semantics of using those exchanges, are protocol
specific and will be different for each protocol that the
security system supports.

6.3. Information Security Support

With I&A interfaces and generic messaging protocol
interfaces, the last pieces needed by networking waveforms
are the information security interfaces defined in the Infosec
module. Critical to these is an efficient API that supports
the transformation needs of the waveform. This API must
be efficient to support the high throughput requirements of
the waveforms. Waveforms utilize the transformation
interfaces to encrypt and decrypt packets en route to a
destination. As required by the SCA, waveforms utilize this
API through a Common Object Request Broker
Architecture (CORBA) interface. However, CORBA adds
overhead with each invocation of the methods defined by an
interface. To minimize this overhead, the
CryptographicChannel interface allows waveforms to
bundle multiple packets with each transformation request
into a PacketSequence. Through smart management of
packets, waveforms can minimize the CORBA overhead
incurred when utilizing the transformation interfaces. Since
the CryptographicChannel interface is another channel to
the security subsystem, waveforms create and configure it
through the ChannelMgmt interface.
 As previously discussed, CryptographicChannels are
managed slightly differently from other channels. When
created, they do not have a complete configuration to use

339

them yet. Instead, waveforms add and activate
configurations after channel creation. The following steps,
and the diagram shown in Figure 15, demonstrate how
CryptographicChannels are utilized:
a) A client creates a cryptographic channel by specifying

the potential cryptographic algorithms that might be
used on that channel. This allocates the cryptographic
resources for that channel and returns a channel Id to
associate with that channel.

b) The client adds one or more specific configurations to
the channel. Each configuration is associated with a
unique configuration Id.

c) The client activates a specific configuration using the
unique configuration Id obtained in the previous step.

d) The client retrieves the max packet and payload sizes.
This allows for platform specific differences in the
transport layer to the CSS.

e) The client requests the IRSS to transform a payload. A
payload consists of multiple packets. Each packet in
the payload cannot exceed the max packet size. In
addition, the entire payload cannot exceed the max
payload size. The IRSS returns a flag to the client to
indicate whether or not more space is available for
another payload.

f) After transforming the data using the current active
configuration, the IRSS pushes the transformed payload
back to the waveform.

Note that the type of transformation (encryption vs.
decryption) depends on the API instance used to request the
transformation.

Figure 15 Example CryptographicChannel Usage

 The last service that a networking waveform might
require is support for TRANSEC operations. The
TransecChannel interface defines the methods that provide
this support. In particular, it defines methods for applying
and removing TRANSEC cover, and methods for
generating keystream that allows a waveform to manage its
own TRANSEC cover. As with all channels, TRANSEC
channels are created and configured using the
ChannelMgmt interface. Like CryptographicChannels,
TransecChannels require the client to add and activate
configurations prior to use.

7. CONCLUSIONS

The SCA establishes a new paradigm for software definable
radio systems by defining a framework for the system
operating environment. However, to promote portability,
waveform developers need standardized interfaces to the
platform components that they utilize. After identifying a
lack of a standardized interface for the radio security
service, WInnF has endeavored to create a standard API for
the security service called the International Radio Security
Service API. They based development of this API on
existing needs for streaming and networking waveforms.
Due to the size of the security services required, and to
promote LPP practices, WInnF has defined this API in
several function grouping found in several IDL modules.
Additionally, WInnF used opaque algorithm techniques to
allow for adaptation of the API to future protocols and
algorithms. Lastly, WInnF understands the need to support
different platform topologies and accounted for this in the
definition of the interfaces. With these considerations,
WInnF has produced a viable security service API
applicable to the broader international software definable
radio community.

REFERENCES

[1] Modular Software-programmable Radio Consortium,
Software Communications Architecture Specification, MSRC-
5000SCA, v1.0, May 17, 2000

[2] Modular Software-programmable Radio Consortium,
Software Communications Architecture Specification, MSRC-
5000SCA, v2.2, November 17, 2001

[3] Modular Software-programmable Radio Consortium,
Application Program Interface Supplement to the Software
Communications Architecture Specification, MSRC-5000API,
v1.1, November 17, 2001

[4] Modular Software-programmable Radio Consortium, Security
Supplement to the Software Communications Architecture
Specification, MSRC-5000SEC, v1.1, November 17, 2001

[5] D. Lanz, L. Novikov, Common Interface to Cryptographic
Modules (CICM), Internet Engineering Task Force, Internet-
Draft, January 7, 2011

[6] Department of Defense Interface Standard, Interoperability
Standard for 25-KHz TMDA/DAMA Terminal Waveform,
MIL-STD-188-183A, March 20, 1998

340

[7] S. Kent, K. Seo, Security Architecture for the Internet
Protocol, RFC 4301, December, 2005

[8] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, Internet Key
Exchange Protocol Version 2 (IKEv2), RFC 5996, September,
2010

[9] T. Dierks, K. Rescorla, The Transport Layer Security (TLS)
Protocol Version 1.2, RFC 5246, August, 2008

341

