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ABSTRACT 
 
The Joint Program Executive Office (JPEO) Joint Tactical 
Radio System (JTRS) established a new paradigm for 
software definable radios with their release of the Software 
Communications Architecture (SCA) specification [1]. This 
specification details requirements and outlines a framework 
for software based radio platforms. The intentions of this 
specification are to foster portability of waveform 
applications between divergent radio platforms. However, 
beyond an initial historical draft, the JTRS program 
currently has no provisions for a publically available 
security API that the broader international community can 
use to develop portable waveforms. Recognizing a lack of 
an internationally available security API for SCA based 
radios, the Wireless Innovation Forum (WInnF) has 
developed a security API called the International Radio 
Security Services (IRSS) API to fill this gap. This paper 
introduces and presents a technical overview of the major 
interfaces supporting streaming waveforms and wideband 
networking waveforms. An example of typical usage by a 
streaming waveform is included.  Primary focus of the 
paper will center on the establishment of secure networking 
channels via network security protocols, including the 
application of asymmetric key management techniques. 
Additionally, examples of how radio manufactures can map 
the API to representative military and government radio 
architectures/topologies is presented. 
 
 

1. INTRODUCTION 
 
The JPEO JTRS released its initial version of the SCA with 
the basic goal of standardizing the operating environment 
(OE) for software definable radio systems.  As the standard 
gets more mature, the initial set of goals was refined to 
fulfill the market requirements, focusing on the facilitation 
of the portability of waveforms between different platforms.  
In order to achieve this set of goals, the earlier versions of 
the SCA included both an API supplement [3] and a 

security supplement [4] to define the applicable system 
APIs between waveform components and the OE and 
between OE components themselves.  However, later 
revisions of the SCA deprecated both these supplements to 
instead give preference to API standards being developed 
by an API standardization committee.  Unfortunately, today 
there does not exist an internationally available API 
standard that defines the security interfaces for SCA based 
radio systems.  Recognizing this gap, the WInnF has 
endeavored to create a security services API, applicable to 
the international community, for standardizing the interfaces 
of the radio security services (RSS) provided by an SCA 
based radio platform. 
 Following the aforementioned general SCA goals, the 
objective of this API, called the International Radio Security 
Service API, is to extend the waveform portability between 
different platforms to the security boundary.  By 
standardizing the security API, the WInnF’s IRSS API task 
group promotes portability of waveforms developed against 
those standards to platforms that provide those APIs. Figure 
1 provides a brief overview of how the inclusion of this API 
fills the missing piece in the portability puzzle: 

 
Figure 1 IRSS API Localization 

As shown in Figure 1, the IRSS API is a large service that 
not only has to support waveform components in their 
interaction with the platform, but also has to provide 
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support among the platform components.  It is essential to 
specify the interfaces used by the waveforms as those 
interfaces foster portability.  On the other hand, waveforms 
do not connect to and use the security interfaces provided 
for other platform components, and thus, specifying 
platform security interfaces only serves to constrain 
platform development without adding to waveform 
portability.  Taking into account these considerations, the 
IRSS API focuses on detailing security interfaces that are 
likely to be used by waveforms. 
 To develop this API, the IRSS API task group drew 
upon its experience with existing waveforms and on 
existing security APIs.  In particular, the working group 
considered use cases for legacy circuit-based waveforms 
and also newer networking waveforms.  Existing security 
APIs referenced include version 1.1 of the deprecated 
Security Supplement to the SCA [4], which defined the 
original RSS API for SCA based systems, and the Common 
Interface to Cryptographic Modules (CICM) [5], which is 
an IETF draft to standardize interfaces to cryptographic 
modules. 
 

2. API OVERVIEW 
 
These days, security requirements for radio systems 
encompass a broad range of services.  However, not all of 
these services are directly used by the waveforms running in 
these systems.  Typical waveform security needs include 
transformation of user traffic (i.e. encryption and decryption 
services), transmission security (TRANSEC) services, key 
management services, bypass services, integrity and 
authentication (I&A) services, and general security 
configuration and control services.  However, grouping 
security services into one large interface does not promote 
understandability, nor does it support least privileges 
principles (LPP) when connecting to those services.  
Instead, the IRSS API factors services into several logical 
groupings, denoted by modules in the Interface Definition 
Language (IDL), which themselves contain one or more 
IDL interfaces.  Today, these groupings include the Control 
module, the Infosec module, the Bypass module, the IandA 
module, and the Protocol module. 
 
2.1. The Control Module 
 
The Control module contains interfaces related to waveform 
configuration and control of the security services.    These 
include the three interfaces shown in Figure 2: the 
ChannelMgmt interface, the CertificateMgmt interface, and 
the KeyMgmt interface.   
 The ChannelMgmt interface allows waveforms to 
create and configure various communications channels with 
the security subsystem.  When created, the system allocates 
cryptographic resources for use with that channel.  The 

interface provides a unique method for each channel type.  
When a channel is created, the methods return a channel 
identifier to the client for subsequent use of the channel.  
Waveforms use channels to exchange information with the 
security subsystem as part of accessing the security services.  
Many channel interfaces have a corresponding consumer 
interface.  The security subsystem uses the various 
consumer interfaces to send data to the waveform. 
 The CertificateMgmt interface provides services that 
allow waveforms to validate, and retrieve certificates used 
by many asymmetric key protocols.  The KeyMgmt interface 
allows waveforms to update and selectively zeroize keys. 

 
Figure 2 Control Module Interfaces 

 
2.2. The Infosec Module 
 
The Infosec module contains interfaces that waveforms use 
to access the information security services of the radio.  
These services fall into two categories: transformation 
services and TRANSEC services.   
 Waveforms use transformation services to encrypt and 
decrypt user traffic.  Transformation services are supported 
through three interfaces (shown in Figure 3), one provided 
by the platform and two provided by the waveform.  The 
IRSS provides the former interface, called the 
CryptographicChannel interface, which a waveform uses 
for encryption and decryption.  This interface supports two 
modes of operation: one for circuit-based legacy 
waveforms, which waveforms use to stream data to the 
security subsystem, and one for packet-based networking 
waveforms, which waveforms use to send individual 
packets of data for transformation processing.  Both modes 
provide flow control that allows the security subsystem to 
manage the flow of information into itself.  Waveforms 
provide the latter two interfaces, called the 
CryptographicConsumer interface, which defines a standard 
interface for the security subsystem to push data to the 
waveform, and the ControlSignals interface, which defines 
a control interface that the security subsystem uses to 
resume flow after pausing a waveform.  Like the 
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CrypotgraphicChannel interface, the 
CryptographicConsumer interface supports both streaming 
modes and packet modes.  However, the 
CryptograhicConsumer interface differs in that flow control 
is not employed when passing data to the waveform – it is 
assumed that the waveform can accept the data, or that out-
of-band techniques are employed to prevent data overflow 
scenarios.  

 
Figure 3 - Transformation Interfaces 

 Waveforms use TRANSEC services to provide 
TRANSEC cover to their transmissions.  The IRSS supports 
this through the TransecChannel interface shown in Figure 
4.  This interface provides two modes of TRANSEC 
support.  The first mode allows a waveform to send 
transmission information in to be encrypted or decrypted as 
part of TRANSEC cover processing.  Alternatively, 
waveforms can use the security subsystem to generate a 
TRANSEC keystream using the second mode.  In this 
mode, the waveform applies the keystream to its 
transmission information directly.  

 
Figure 4 - TRANSEC Interface 

 
2.3. The Bypass Module 
 
The Bypass module contains interfaces that waveforms 
utilize to bypass control messages through the cryptographic 
subsystem.  This type of bypass mechanism is needed in 
high assurance radio systems with physically separate 
security domains.  The IRSS provides bypass support 
through a pair of interfaces, one provided by the security 
subsystem and one provided by the waveform.  The former 
interface, called the Channel interface1, allows a waveform 
to push control messages to the security subsystem for 
bypass through the crypto.  The latter interface, called the 
                                                 
1 The fully qualified name for these interfaces is 
IRSS::Bypass::Channel and IRSS::Bypass::Consumer. 

Consumer interface1, provides a standard interface for the 
security subsystem to send bypassed control messages back 
to the waveform.  The Bypass module interfaces are shown 
in Figure 5. 

 
Figure 5 - Bypass Module Interfaces 

 
2.4. The IandA Module 
 
The IandA module defines interfaces that waveforms use to 
access the I&A features of the security subsystem.  These 
features include generating hashes, generating and 
validating message authentication codes (MAC’s), 
generating and validating signatures, and generating random 
numbers.   
 Waveforms access the hash, signature, and MAC I&A 
features through channel interfaces called HashChannel, 
SignatureChannel, SignatureVerificationChannel, and 
MacChannel as shown in Figure 6.  Each of these interfaces 
inherits from a common Channel interface2 that defines the 
mechanism for pushing relevant data to the security service.  
The derived interfaces themselves define the unique 
methods for retrieving the results of the requested operation. 

 
Figure 6 - IandA Channel Interfaces 

 Waveforms can use the RSS to generate random 
numbers through the Random interface as shown in Figure 

                                                 
2 The fully qualified name for this interface is 
IRSS::IandA::Channel. 
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7.  This interface supports both true random number 
generation and pseudo random number generation using a 
seed. 

 
Figure 7 The Random Interface 

 
2.5. The Protocol Module 
 
The Protocol module defines interfaces that waveforms use 
to exchange protocol messages with the security subsystem 
(for example, as part of an asymmetric key protocol).  These 
interfaces define a generic messaging protocol that supports 
the various message exchanges needed by different 
protocols.  Appendices to the IRSS API will standardize the 
specific message details needed by each protocol.  As in 
other modules, the IRSS provides protocol support through 
a pair of interfaces, the Channel interface and the Consumer 
interface3 as shown in Figure 8. 

 
Figure 8 - Protocol Module Interfaces 

 
3. OPAQUE ALGORITHM USAGE 

 
One challenge facing an international security API is in 
providing an interface that is suitably generic across an 
expected multitude of cryptographic algorithms, protocols 
and implementations, while still fulfilling the need to 
standardize interface and semantics.  Security by nature is a 
moving target, as evolving threats are addressed, and future 
waveforms will need new or modified services and 
protocols.  Additionally, the international nature of the API 
requires that, in addition to public algorithms, the API must 
support coalition or sovereign national algorithms.  Some 
details of these algorithms cannot be openly published, but 
must still be supported in the context of the IRSS.  
 To address this challenge, the IRSS employs a pattern 
utilizing opaque algorithms.  When clients create channels 
(be they Cryptographic, Transec, Bypass, Hash, Mac, 
Signature, Signature Verification or Protocol), they select 
associated algorithms by Id.  The IRSS standard does not 
                                                 
3 The fully qualified name for these interfaces is 
IRSS::Protocol::Channel and IRSS::Protocol::Consumer. 

bind a specific algorithm to an Id – this is left to the 
platform implementation.  Clients access these algorithms 
(e.g. TransformStream) by requesting a combination of 
fully-specified parameters and generic parameters (usually 
in the form of OctetSequences).  These are handled 
generically by the overall IRSS and then interpreted in an 
algorithm-specific way by a given algorithm.  This defers 
full specification to a separate algorithm usage 
specification, which not only could be changed 
independently from the IRSS specification, but is also 
subject to limited access as required. 
 
4. API MAPPING TO REAL WORLD TOPOLOGIES 

 
Security domains are logically separated elements of the 
system whose only connection is through a cryptographic 
subsystem (CSS).  A CSS contains one or more functional 
crypto modules and a single cryptographic control module.  
These modules are functionally separate and not necessarily 
physically separate.  The crypto modules perform 
encryption/decryption, TRANSEC processing, 
cryptographic bypass, asymmetric key negotiation, etc.  The 
cryptographic control module handles overall key 
management, policy management, certificate management, 
channel management, etc.   
 The IRSS API was designed to be applicable for radio 
systems that could be implemented in multiple physical 
topologies.  The simplest topology, typical for a commercial 
radio, is a single waveform module connected to a single 
CSS as shown in Figure 9.   

Figure 9 - Single Security Domain 
 A typical single channel military radio would contain a 
secure waveform security domain connected to an unsecure 
waveform security domain through a CSS as shown in 
Figure 10.  

Secure 
WF 

Module

CSS
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Control
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Crypto 
Module
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WF 

Module

 
Figure 10 - Military Radio Topology 

 Multichannel radios could have a single CSS with 
multiple crypto modules that have connections to multiple 
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waveform security domains as shown in Figure 11.  The 
IRSS API supports these example topologies as well as 
others. 

 
Figure 11 - Multichannel Rado Topology 

 
4.1. Channels 
 
Channels, managed via the ChannelMgmt interface, are 
communications paths with the security subsystem that 
share several characteristics.  Since a CSS may contain 
multiple crypto modules (as shown in Figure 11), clients 
create channels on a specific crypto module that will 
provide the service.  These crypto modules may contain 
multiple access points in their interfaces that define the 
inputs and outputs to the module.  For example, in a system 
with multiple security domains, the crypto module will 
likely have one or more secure access points and one or 
more unsecure access points.  Therefore, channels are 
communication paths that can be characterized by the crypto 
module providing the service and the access points, called 
endpoints, which a client uses to interface with the module. 
 The IRSS API makes no assumptions about where the 
inputs and outputs of a channel exist.  This allows the 
definition for an endpoint to be platform defined.  For 
example, one could choose to use endpoints for each HW 
interface.  Alternatively, one could choose to use endpoints 
for each API instance.  In Figure 9, a 
CryptographicChannel would naturally have both the plain 
text (PT) and cipher text (CT) endpoints connected to the 
single WF module, while in Figure 10 and Figure 11 the PT 
and CT endpoints would be connected to the secure and 
unsecure WF modules respectively. 
 Although similar to other channels in their 
characteristics, cryptographic channels and TRANSEC 
channels have some behavioral differences that distinguish 
them from other channels.  In particular, cryptographic and 
TRANSEC channels allow clients to use the channel with 
different configurations.  Upon creation, a waveform 
specifies all the potential cryptographic applications 
(discussed in the following section) that could be used on 

the channel.  The security subsystem uses this 
Cryptographic Applications (CA) list to allocate 
cryptographic resources for the channel.  Waveforms then 
add one or more detailed configurations to the channel after 
channel creation.  Prior to using the channel, a waveform 
activates a specific configuration on that channel.  If a 
waveform desires a different configuration, the waveform 
only needs to activate the new configuration.  This allows a 
waveform to swap between configuration on the fly without 
having to create and destroy channels.  There are some 
caveats to this process though.  Since a single set of 
cryptographic resources are allocated to the channel upon 
creation, changing a configuration for the channel will 
cause the CSS to loss any cryptographic state for the 
previous configuration.  If a waveform wants to swap 
between two different configurations without losing state 
(for example, to resume a previously started 
transformation), it must create two separate channels, each 
allocated with its own set of cryptographic resources. 
 
4.2 Cryptographic Applications 
 
While this IRSS strives to provide a standardized 
framework for security-based operations, being an open 
international standard, it is impractical to standardize 
specific cryptographic manipulation and protocols. To 
address this, the concept of cryptographic applications was 
created. From an IRSS specification standpoint, CAs are 
responsible for the specific algorithms and/or protocols for 
Cryptographic, Transec and Protocol channels.  A CA is 
generically specified by ID only, and accessed by a 
waveform through a set of standard operations which 
themselves employ a combination of standard and generic 
(opaque) parameters. In this way, the overall flow, 
management and use of algorithms and data handling is 
done in a common way, while allowing specialized use and 
configuration. 
 

5. STREAMING WAVEFORM APPLICATIONS 
 
The CryptographicChannel abstraction supports two distinct 
protocols – one for streaming and one for packets. 
Streaming operation is supported using the 
TransformStream() operation.   Streams have traditionally 
been employed by non-networking, circuit-switched legacy 
waveforms, but are also used to encrypt / decrypt files and 
other non-packet traffic. In a generalized stream, a message 
is processed across multiple calls to the IRSS, yet handled 
as an overall entity with intermediate state preserved in the 
cryptographic application.  Typically such streams flow in 
real-time, with overall message length not being known by 
the IRSS in advance. 
 When processing a message within the context of a 
stream, a given call to TransformStream() can represent a 
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start-of-message (SOM), middle, or end-of-message (EOM) 
packet4, as indicated by passed SOM and EOM  boolean 
parameters.  In the typical case, the CSS cryptographic 
application will, after encrypting the payload, prepend a 
cryptographic preamble to the first (SOM) packet in a 
stream.  Additionally, it may optionally add a postamble to 
the EOM packet, and/or intersperse additional framing 
information in mid-message, as required per the specifics of 
the employed cryptographic algorithm configured for the 
channel.  When a message is active, the cryptographic 
algorithm usually needs to maintain a “context” between 
calls so that subsequent packets can continue advancing the 
crypto state. 

Data flow, either for encryption or decryption, flows 
from one endpoint to another per the configuration made 
when the CryptographicChannel was created. Simple, non-
simultaneous use of streams is straightforward, as 
exemplified by the following transmit scenario: 
a) The plaintext-side waveform (or platform) creates a 

channel using CreateCryptographicChannel(). This 
includes the specification of the plaintext and ciphertext 
endpoints. 

b) One or more configurations are added to the channel 
using AddCryptographicConfiguration(). This selects a 
specific CA, key and configuration to be used. 

c) A configuration is activated using 
ActivateConfiguration().  This selects a specific 
configuration for use. 

d) A sequence of calls to TransformPacket() is made, with 
the first call in a message marked with SOM, and the 
last marked with EOM. 

e) Subsequent messages can be passed without need to 
destroy / create a channel by repeating step d for each 
new message. 

f) Finally DestroyChannel() is called when the channel is 
no longer required. 

Packets passed from the waveform consist of a pair of 
payload data and associated in-band bypass information.  In 
keeping with the opaque handling of cryptographic 
algorithms, the content and handling of these fields is not 
specified in the IRSS API, but rather deferred to a separate 
algorithm usage specification.  In this way, any combination 
of initialization information, live data, bypass data or 
algorithm control data can be passed to the CA, and can be 
interpreted in a context sensitive fashion.  Furthermore, as 
the data is processed by the CA and sent back to the 
waveform (using the CryptographicConsumer interface), the 
usage of these fields is similarly unspecified.  To be used in 
a portable fashion, the CA-specific field usage will need to 
be specified by the entity specifying the CA, but this is done 
outside of the IRSS API. 
                                                 
4 In this context, packet refers to a collection of information 
presented in an API call, not a networking packet. 

 In some cases, such as when TDMA waveforms such as 
Mil-Std-188-183 [6] are used, it is necessary to process 
multiple streams of traffic in parallel, often with 
overlapping message lifetimes.  As a given channel only has 
a single cryptographic context (contexts are not stored as 
part of a CryptographicConfiguration), to do this a 
waveform must create multiple channels, with each channel 
dedicated to a given stream. Furthermore, due to the 
dynamic nature of these waveforms, the stream 
characteristics, or even the number of required simultaneous 
steams cannot always be known in advance.  To support 
this, the IRSS API supports dynamic creation and 
destruction of such channels, as usage scenarios are 
typically not known a priori, and cryptographic resources 
are limited in some implementations. An example is shown 
in Figure 12 illustrating such dynamic usage.  

 
Figure 12 Managing Simultaneous Channels 
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6. NETWORKING WAVEFORM APPLICATIONS 

 
Unlike legacy waveforms, modern waveforms typically 
support wireless networking protocols.  These waveforms 
are characterized by passing packets of data (i.e. TCP/IP 
traffic) over-the-air as part of a larger networked system.  
Transformations of user data in these waveforms will likely 
involve asymmetric key protocols that establish a key pair 
for each destination of the network.  Since waveforms could 
define their own key generation protocols, the IRSS API 
needs to define a generic set of interfaces to support these 
protocols.  In addition, networking waveforms are 
characterized by high throughput rates.  Defining efficient 
APIs is essential to meeting throughput requirements, 
especially in size, weight, and power (SWAP) constrained 
systems.   
 To develop APIs that support these networking 
waveforms, the IRSS API working group analyzed two 
common networking use cases, IPsec ([7] and [8]) and 
Transport Layer Security (TLS) ([9]).  The IPsec protocol is 
integrated with, or sits below, the IP layer of the networking 
stacks, whereas the TLS protocol sits above the TCP/UDP 
layer of the networking stacks.  When analyzed, these 
protocols employ some common security capabilities, but 
then each protocol also has its own needs for interacting 
with the security subsystem.  Common needs include I&A 
capabilities such as generating hashes or MACs and using 
certificates to sign data and verify the signature of signed 
data.  Protocol unique needs include command and response 
messaging for key derivation functions and other support 
messaging.  The IRSS API working group recognized these 
common traits and differences and factored this into the 
definition of the security APIs. 
 
6.1. Integrity and Authentication Support 
 
The common traits exhibited by the networking protocols 
generally revolved around the I&A services required by the 
protocols.  When analyzing the I&A needs, the IRSS API 
working group identified an aspect of these capabilities that 
they all shared.  In general the capabilities required that the 
waveform pass data to the security subsystem (for example, 
to generate a hash, or to compute a signature) and then 
retrieve the result of the operation from the security 
subsystem.  This led to the development of I&A channels.  
Like other security channels, clients create and configure 
I&A channels using the ChannelMgmt interface.  The 
common support needed by all the I&A channels is factored 
out into the I&A Channel base interface.  This interface 
defines a generic mechanism for passing data to the security 
subsystem using octet sequences.  The interfaces derived 
from the I&A Channel interface extend the base interface 
by adding the service unique mechanism for retrieving the 

result of the I&A operation.  For example the HashChannel 
interface extends the base I&A Channel interface by adding 
support for retrieving the results of the hash operation.  
 Basic usage of the I&A channels involves several steps 
as detailed in the following text and shown in Figure 13 (for 
hash channels): 
a) A client first creates an I&A channel (e.g. a hash 

channel) using the ChannelMgmt interface.  The create 
operation returns a channel ID for the client to use for 
future requests on that channel. 

b) Using the specific I&A channel interface (e.g. 
HashChannel), the client determines the maximum data 
size for the channel.  This data size allows for platform 
specific customizations of their underlying transport 
layer to the CSS.  

c) The client then pushes the data to be processed, using 
the I&A channel interface, to the IRSS in octet 
sequences.  These octet sequences should not exceed 
the maximum data size as determined in the previous 
step. 

d) Once all the data has been pushed, the client can obtain 
the results of the operation using the specific methods 
found in the derived I&A classes (e.g. GetHash). 

Note that channel creation allows the client to configure the 
I&A channel and allows the CSS to allocate cryptographic 
resources for the channel. 
 In addition to the I&A channel interfaces, some of the 
I&A services require certificate management support.  In 
particular, networking security protocol require access to 
certificates, stored within the cryptographic subsystem, and 
validation of certificates received from a peer system.  The 
CertificateMgmt interface defines an interface that allows 
the security subsystem to provide these services.  In 
particular, it provides methods for retrieving and validating 
certificates. 

 
Figure 13 Example I&A Channel Usage 
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6.2. Protocol Message Exchange Support 
 
Unlike the common traits, each networking security 
protocol will likely contain command and response 
messaging with the security subsystem that is unique to the 
protocol.  The IRSS API has to allow for this uniqueness 
and also has to provide generic methods that allow growth 
for future networking security protocols.  To do this, the 
IRSS API defines the Channel and Consumer interfaces 
within the Protocol module.  These interfaces define generic 
mechanisms that allow a waveform to exchange messages 
with the security subsystem.  As with other channels, clients 
create protocol channels using the ChannelMgmt interface, 
which returns the channel identifier that the client uses to 
access the protocol.  Clients send commands to the security 
subsystem using the Channel interface, and receive 
responses from the security subsystem by providing the 
Consumer interface.  These interfaces define methods that 
pass an opaque octet sequence that encapsulates the 
command or response and their associated parameters.  
Appendices to the IRSS API specification will define the 
unique command and response messages needed by each 
protocol. 
 To demonstrate the usage of the protocol interfaces, the 
following steps, and the accompanying Figure 14, depict 
how the Channel and Consumer interfaces might be used to 
request an IKE key exchange as part of the IPSec protocol: 
a) A client first creates a protocol channel using the 

ChannelMgmt interface.  Channel creation allows the 
CSS to initialize the protocol (e.g. IPSec) for that 
channel.  The create operation returns a channel ID for 
the client and the IRSS to use for future exchanges on 
that channel. 

b) The client requests the initiation of an IKE session by 
sending a StartIkeSession message to the IRSS.  This 
message establishes the Diffie-Hellman group number 
to use for the session. 

c) The IRSS computes the Diffie-Hellman value to use in 
the key exchange with the IKE peer and returns it to the 
client, along with the initiator’s nonce and a session Id, 
in a status message.  The session Id allows multiple 
IKE sessions to be in progress simultaneously. 

d) The client then exchanges key parameters with the 
remote IKE peer. 

e) The client sends the key parameters it received from the 
remote IKE peer to the IRSS using a SetKeyParameters 
message.  The session ID identifies that this message 
applies to the session started in step b above. 

f) The client then requests that the IRSS derive the keys 
using the previously generated and configured key 
parameters. 

g) Lastly, the IRSS sends the IDs for the generated keys to 
the client using a status message. 

 
Figure 14 Example Protocol Interface Usage for IPSec 

Note that the messages exchanged with the IRSS, as well as 
the semantics of using those exchanges, are protocol 
specific and will be different for each protocol that the 
security system supports. 
 
6.3. Information Security Support 
 
With I&A interfaces and generic messaging protocol 
interfaces, the last pieces needed by networking waveforms 
are the information security interfaces defined in the Infosec 
module.  Critical to these is an efficient API that supports 
the transformation needs of the waveform.  This API must 
be efficient to support the high throughput requirements of 
the waveforms.  Waveforms utilize the transformation 
interfaces to encrypt and decrypt packets en route to a 
destination.  As required by the SCA, waveforms utilize this 
API through a Common Object Request Broker 
Architecture (CORBA) interface.  However, CORBA adds 
overhead with each invocation of the methods defined by an 
interface.  To minimize this overhead, the 
CryptographicChannel interface allows waveforms to 
bundle multiple packets with each transformation request 
into a PacketSequence.  Through smart management of 
packets, waveforms can minimize the CORBA overhead 
incurred when utilizing the transformation interfaces.  Since 
the CryptographicChannel interface is another channel to 
the security subsystem, waveforms create and configure it 
through the ChannelMgmt interface. 
 As previously discussed, CryptographicChannels are 
managed slightly differently from other channels.  When 
created, they do not have a complete configuration to use 
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them yet.  Instead, waveforms add and activate 
configurations after channel creation.  The following steps, 
and the diagram shown in Figure 15, demonstrate how 
CryptographicChannels are utilized: 
a) A client creates a cryptographic channel by specifying 

the potential cryptographic algorithms that might be 
used on that channel.  This allocates the cryptographic 
resources for that channel and returns a channel Id to 
associate with that channel. 

b) The client adds one or more specific configurations to 
the channel.  Each configuration is associated with a 
unique configuration Id. 

c) The client activates a specific configuration using the 
unique configuration Id obtained in the previous step. 

d) The client retrieves the max packet and payload sizes.  
This allows for platform specific differences in the 
transport layer to the CSS. 

e) The client requests the IRSS to transform a payload.  A 
payload consists of multiple packets.  Each packet in 
the payload cannot exceed the max packet size.  In 
addition, the entire payload cannot exceed the max 
payload size.  The IRSS returns a flag to the client to 
indicate whether or not more space is available for 
another payload. 

f) After transforming the data using the current active 
configuration, the IRSS pushes the transformed payload 
back to the waveform. 

Note that the type of transformation (encryption vs. 
decryption) depends on the API instance used to request the 
transformation. 

 
Figure 15 Example CryptographicChannel Usage 

 The last service that a networking waveform might 
require is support for TRANSEC operations.  The 
TransecChannel interface defines the methods that provide 
this support.  In particular, it defines methods for applying 
and removing TRANSEC cover, and methods for 
generating keystream that allows a waveform to manage its 
own TRANSEC cover.  As with all channels, TRANSEC 
channels are created and configured using the 
ChannelMgmt interface.  Like CryptographicChannels, 
TransecChannels require the client to add and activate 
configurations prior to use. 
 

7. CONCLUSIONS 
 
The SCA establishes a new paradigm for software definable 
radio systems by defining a framework for the system 
operating environment.  However, to promote portability, 
waveform developers need standardized interfaces to the 
platform components that they utilize.  After identifying a 
lack of a standardized interface for the radio security 
service, WInnF has endeavored to create a standard API for 
the security service called the International Radio Security 
Service API.  They based development of this API on 
existing needs for streaming and networking waveforms.  
Due to the size of the security services required, and to 
promote LPP practices, WInnF has defined this API in 
several function grouping found in several IDL modules.  
Additionally, WInnF used opaque algorithm techniques to 
allow for adaptation of the API to future protocols and 
algorithms.  Lastly, WInnF understands the need to support 
different platform topologies and accounted for this in the 
definition of the interfaces.  With these considerations, 
WInnF has produced a viable security service API 
applicable to the broader international software definable 
radio community. 
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