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ABSTRACT 

 

Wireless Access Points (WAP) remain one of the top 10 

network security threats.  This research is part of an effort to 

develop a physical (PHY) layer aware Radio Frequency 

(RF) air monitoring system with multi-factor authentication 

to provide a first-line of defense for network security--

stopping attackers before they can gain access to critical 

infrastructure networks through vulnerable WAPs.  This 

paper presents early results on the identification of OFDM-

based 802.11a WiFi devices using RF Distinct Native 

Attribute (RF-DNA) fingerprints produced by the Fractional 

Fourier Transform (FRFT).   These fingerprints are input to 

a "Learning from Signals" (LFS) classifier which uses 

hybrid Differential Evolution/Conjugate Gradient (DECG) 

optimization to determine the optimal features for a low-

rank model to be used for future predictions.  Results are 

presented for devices under the most challenging conditions 

of intra-manufacturer classification, i.e., same-manufacturer, 

same-model, differing only in serial number.  The results of 

Fractional Fourier Domain (FRFD) RF-DNA fingerprints 

demonstrate significant improvement over results based on 

Time Domain (TD), Spectral Domain (SD) and even 

Wavelet Domain (WD) fingerprints. 

 

1. INTRODUCTION 

 

With the rapid expansion and pervasiveness of wireless 

communication systems the threat of cyber attacks on 

critical infrastructure by way of Wireless Access Points 

(WAP) becomes increasingly likely.  Using cloud computing 

for brute force attacks such as cracking passwords and 

cryptographic keys ―an attacker can now achieve in minutes 

or hours what would have taken years.‖[1] The only thing 

standing between a malevolent ―hacker‖ and the nation‘s 

critical infrastructure may be a WAP–recognized as one of 

the top 10 network security threats [2]. 

 WAP vulnerability is traditionally addressed through 

bit-level security mechanisms in layer 2 or above in the 

Open Systems Interconnection (OSI) model.  For example 

the majority of intrusion detection systems operate at Layer 

3, the Network (NET) layer, or higher [3].  While providing 

a measure of security, these methods ignore information 

inherent to a device‘s Radio Frequency (RF) emissions.  

Thus, potential security benefits could be realized from a 

PHY-layer aware multi-factor authentication approach to 

wireless network security based on RF Distinct Native 

Attributes (RF-DNA).  

 Multi-factor authentication (MFA) is a proven, reliable 

approach to network and computer security and is advised 

by the U.S. Federal Financial Institutions Examination 

Council for high-risk situations [4].  MFA uses  three 

common categories of factors: (1) something you know, e.g., 

PIN, password, answer to a challenge question, (2) 

something you have, e.g., magnetic card, token, smartcard, 

contact memory button, and (3) something you are, e.g., 

biometric factors such as fingerprint, voiceprint, or iris scan.  

Our ultimate goal is to develop a PHY-layer aware multi-

factor authentication solution where the device's "biometric 

factor" is derived from its RF-DNA.  

 Initial work has focused on augmenting bit-level 

protection mechanisms via RF air monitoring devices 

located at network access points [5]–[9].  Given the 

envisioned computational power required for air monitoring, 

typical WAP locations seem ideal given that the necessary 

resources (physical space, prime power, etc.) are generally 

available. These previous works demonstrated the potential 

for using RF-DNA fingerprints for identifying specific 

wireless devices [5]–[10] based on Time Domain (TD) [6], 

Spectral Domain (SD) [8] and Wavelet Domain (WD) [5] 

features.  The system described in [6] and [7] was for GSM 

signals though it is believed a similar approach is directly 

applicable for similarly configured WiMAX, LTE and WiFi 

systems. 

 The Wavelet transform is a joint Time-Frequency (T-F) 

transform which exploits the localization of T-F phenomena 

inherent in a devices Electromagnetic (EM) signal structure 

[11].  The Fractional Fourier Transform (FRFT) an 

alternative T-F technique is investigated in this paper and 

demonstrates similar benefits as wavelets when applied to 

experimentally collected OFDM-based 802.11a WiFi signals 

under intra-manufacturer conditions (same manufacturer, 
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same model, different serial numbers).   Relative to 

inter-manufacturer conditions (inter-operable devices from 

different manufacturers), intra-manufacturer classification 

poses the greatest classification challenge [5]–[8].   

 A new hybrid Differential Evolution/Conjugate 

Gradient (DECG) variant of the Learning-from-Signals 

(LFS) ―classification engine‖ described in [9] is only briefly 

introduced.  A detailed description will be provided in a 

future publication.  Classification accuracy of the DECG-

LFS using Fractional Fourier Domain (FRFD) RF-DNA 

fingerprints is compared to a Fisher-based Multiple 

Discriminant Analysis/Maximum Likelihood (MDA/ML) 

classifier using TD, SD, and WD fingerprints. 

 RF-DNA and LFS are also being used as part of a 

cognitive engine to rapidly classify waveforms for a 

Cognitive Radio and identification of unique electrical 

devices on commercial power lines. 

 The remaining sections of the paper are: Section 2 

Technical Background; Section 3 Methodology; Section 4 

Results; and Section 5 Summary and Conclusions. 

 

2. TECHNICAL BACKGROUND 

 

The following subsections provide a summary of the key 

technical concepts behind the results presented in Section4.  

This includes a description of RF-DNA Fingerprinting in 

Section 2.1, Fractional Fourier Transform in Section 2.2 and 

the hybrid DECG-LFS algorithm in Section 2.3. 

 

2.1. RF-DNA Fingerprinting 

 

RF-DNA fingerprinting is a technique for identifying 

devices based on unique characteristics in their PHY-layer 

(EM/RF) emissions.  RF-DNA fingerprints are exploitable 

because they are: (1) distinct, enabling make, model and 

even serial number level identification device; and (2) native 

to the device from the time of manufacture, due to 

component tolerances and variability in manufacturing 

processes. The RF-DNA fingerprinting process is depicted 

in Figure 1.   

 Prior research has shown that specific serial-numbered 

devices possess unique RF-DNA characteristics attributable 

to subtle differences in manufacturing (component 

tolerances, part type, part lot number, assembly processes, 

etc.). This fact has been confirmed for multiple 

communication waveforms, including: 802.11 WiFi signals 

[5], [9], [12]–[15], GSM cell phone signals [7], [10], 802.16 

WiMAX signals [8], 802.15 Bluetooth signals [16], and 

RFID signals [17], [18] using multiple RF fingerprinting 

techniques. 

 Even though the techniques used to produce the RF-

DNA fingerprints varied, they generally followed these 

steps: (1) Signal Collection and Post-Collection Processing, 

(2) Fingerprint Generation, and (3) Signal/Device 

Classification. 

  

2.1.1. Signal Collection and Post-Collection Processing 

The single collection and post-collection processing used in 

[6] has been adopted for this work. All signals were 

collected with an RF Signal Intercept and Collection System 

(RFSICS) based on Agilent‘s E3238 system [19]. The 

OFDM-based 802.11a WiFi devices were isolated from the 

RFSICS to minimize the introduction of unrepeatable 

environmental and interference effects by placing (1) some 

devices in an RF anechoic chamber, (2) some in separate 

rooms—a typical office environment, (3) some RF 

absorbing material in strategic locations, and/or (4) 

combinations of 1-3. The post-filtered collected SNR for the 

collected signals is on the order of SNRC ∈ [30, 40] dB. 

This enables direct scaling (GN in Figure. 1) and addition of 

like-filtered Additive White Gaussian Noise (AWGN) to 

generate analysis signals at the desired SNRA. These signals 

are used for RF-DNA fingerprinting and device 

classification. 

 

2.1.2. Fingerprint/Feature Generation 

The RF-DNA fingerprints for TD [6], SD [8], and WD [5] 

were generated as described in previous work and used here 

for comparison. 

 

2.1.3 Signal/Device Classification 

Previously classification was performed using a Fisher-

based MDA/ML process [5], [7], [10]. The MDA/ML 

classifier is an extension of Fisher‘s Linear Discriminant that 

is used when more than two input devices are to be 

classified.  MDA uses a projection matrix (W) to reduce the 

input dimensionality. The MDA/ML process is that of 

finding W such that projected inter-class separation is 

maximized and intra-class spread is minimized [20]. Given 

ND devices (input classes), the MDA/ML process projects 

the input features into an ND − 1 decision space.  

 Device classification is performed using a ML classifier 

derived from Bayesian Decision Theory, with the 

multidimensional input data classified as belonging to one of 

ND possible classes. A Bayesian-based decision uses known 

prior probabilities, probability densities, and relevant costs 

associated with making a decision. The decision process 

relies on an accurate representation of the class distribution 

and its parameters in order to define the likelihood. A 

sample is assigned the label of the class with the maximum 

likelihood response. For ML classification, the prior 

probabilities are assumed to be equal and the costs uniform.  

 We now describe how RF-DNA fingerprints are 

generated using the joint T-F Fractional Fourier Transform. 
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2.2. Fractional Fourier Transform 

 

The Fractional Fourier Transform (FRFT) is a generalization 

of the conventional Fourier Transform (FT) defined as  

 

 (1) 

 

where  is the order of the transform, and 

 is the generalized transform kernel defined by 

 

 

 

 (2) 

 

 
The transform order (a) determines the rotation angle 

(α) of the time-frequency plane.  It takes values of a = [0 4] 

with corresponding rotation angles of α = [0 to 2π].  Table 1 

shows the kernels for several typical values for a. 

 For a rotation angle of α = 0, FRFT gives the time-only 

representation of the signal and for the angle of α = π/2 the 

frequency-only representation.  For angles between [0 π/2] , 

the FRFT contains both time and frequency features which 

gives it a unique capability of looking at the time and 

frequency transitions simultaneously (similar to wavelets).   

  

Table 1. Fractional Fourier kernels for select transform order (a) 

and rotation angles (α). 

a  Kernel Description 

0, 4 0, 2π  Identity 

1 π/2 exp(-jut) FT 

2 π  Reflection 

3 3π/2 exp(jut) Inverse FT 

 

Several algorithms for approximate calculation of the FRFT 

have been published recently including Direct Form 

DFRFT, Improved Sampling DFRFT [21], Eigenvector 

Decomposition DFRFT [22], and Linear Combination 

DFRFT [23]. 

 

2.2.1. Signal Collection and Post-Collection Processing 

Each 802.11a OFDM packet has a preamble structure with 

two distinct regimes or training sequences, including one 

short and one long.  The results in this paper use only the 

short segment which contains ten short 0.8 μsec OFDM 

symbols and uses only 12 of the available 52 subcarriers.  

The preamble for each burst is autocorrelated and then the 

 

 

 
Figure 1. RF-DNA Fingerprint/Feature Generation Process. 
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normalized Fractional Fourier Power Spectral Density 

(FRPSD) is calculated for specified values of α.  Figure 2 

shows the time-domain capture of the preamble (top) and the 

autocorrelation of the short preamble segment (bottom).   

 

2.2.2. FRFD Fingerprint Generation 

 FRFD fingerprints are generated by dividing the 

FRPSD into 20 regions ( ) and calculating four, 

, statistical measures for each: standard deviation 

(σ), variance (σ2), skewness (γ), and kurtosis (κ).  Figure 3 

shows the normalized FRPSD of the autocorrelated 

preambles for α = [π/8, π/4, 3π/8, π/2] and the 20 regions for 

four different values of α.  The statistics form the fingerprint 

of FRPSD‘s ith
 region 

 

 (4) 

 

where . The fingerprints from each region are 

concatenated to form the FRFD composite statistical 

fingerprint given 

 

 (5) 

 

where  is the total number of fingerprint features 

(dimension), which for FRFD is 80, 

 

 (6) 

 
2.3. DECG-LFS 

 

LFS is an adaption of ―Learning From Data‖ (LFD) 

techniques where the input training data is derived from 

samples of a sensor response [9], [24], [28].  A DE-only 

version LFS is described in [9].  DE is a population-based, 

direct search, evolutionary strategy.  While DE is similar to 

other population based search algorithms, like Genetic 

Algorithms (GA), it differs in both its self-referential 

mutation scheme and its selection process [9], [28], [29].  

The version of LFS described in this section, which 

combines DE with Conjugate-Gradient/Line-Search (CGLS) 

[26], [27] was first introduced in [24] as a Method of 

Detecting Local Minima in Multidimensional data 

(ModelM).  While providing a detailed description of the 

DECG internals is beyond the scope of this paper, it will be 

described in a future publication.           

 DECG-LFS constructs a model of an unknown input-

output relationship from a set of labeled training data and 

uses it to predict or classify previously unseen data [25].   

DECG-LFS can be viewed as a method of low rank model 

estimation or feature selection.  It does this by using a 

modified version of multivariate kernel regression or 

localized kernel regression (LKR) described by the 

equation:  

 

 (7) 

 

 

where x is the m-dimensional input vector and 

 is the squared Euclidian 

distance  parameterized , a positive semi-definite, 

symmetric square matrix and the inverse of the bandwidth 

matrix: .  While the squared 

 

 

 

 

 
Figure 2. Time domain and preamble autocorrelation of a 

captured 802.11a signal. 

 

 

 

 
Figure 3. FRFD Fingerprint Regions: Normalized FRPSD 

magnitude response of the preamble for α = [π/8, π/4, 3π/8, π/2] 

as indicated. 
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Euclidian distance is used here, the general methodology 

could use any meaningful distance measure.  Consistent with 

[25], [26] we refer to  as a smoothing parameter and   

as a metric parameter.   

 Many different kernel functions are supported in 

DECG-LFS but for this work we focus on the Gaussian 

kernel, 
 
 (8) 

 

where  and  is the metric 

parameter for the i
th

 feature in FC. 

  

2.3.3. Simple Device Classification 

The DECG-LFS classification process shown in Figure 4 

―learns‖ the optimal LKR model from a set of training data, 

, by minimizing a k-fold Cross-Validation Error 

(CVE), which is an estimator of generalization error.  The 

input  is an  matrix of RF-DNA fingerprints and the 

output  is an  vector of integer corresponding to the 

class labels of the devices—if we have  devices we assign 

the first device as ‗1‘, the second as ‗2‘, …, and device  

as ‗ ‘.  The output  of the LKR model is a continuous 

real-valued number.  Since what we are interested in is 

classification accuracy we simply round  to produce an 

integer ―label‖ corresponding to the class of the predicted 

device. This is then used to compute other statistics and 

values of interest such as % Correct Classification, and 

Confusion Matrix.  

 As demonstrated in [9], [24] and used here, DE-based 

LKR optimization effectively ―learns‖ the best bandwidth 

parameter (metric parameter) to use for each dimension 

which can be used to improve LFS classifier performance.   

 

3. METHODOLOGY 

 

OFDM-based 802.11a WiFi signals were collected from 

four like-model Cisco Aironet wireless PCMCIA adapters 

using a pair of laptops configured as a point-to-point (P2P) 

network in an RF anechoic chamber. The start of the 

preamble in each collected burst was detected using a simple 

amplitude detection method with a threshold − 6 dB. The 

detected bursts were post-collection filtered using a 6th-

order Butterworth filter having a − 3 dB bandwidth of WPC 

= 7.7 MHz. This same filter was used for generating the 

like-filtered AWGN used for SNR scaling of 3, 6, 9, 12, and 

15 dB.  The full data set   contains 4000 bursts 

(1000 for each device).  RF-DNA fingerprints for all burst at 

each of the SNR levels were generated for TD [6], SD [8], 

and WD [5] features, as described in previous work, and for 

FRFD as described in Section 2.2.1. Each set of RF-DNA 

fingerprints ( ) is normalized using mean centering and 

variance 1.  The outputs ( ) are not modified.  

 The full data set  was split into 2 groups, with one 

used for design (learning/training)  (1000 bursts, 250 per 

device) and the other used for testing  (3000 bursts, 750 

per device). This first split we call the design/test split.  The 

'design' set  is used to develop a model that accurately 

predicts a new output  when presented with an unseen 

fingerprint .  To do this we need a model that generalizes 

well. The test set  is used evaluate how well.  We use the 

k-fold CVE as an estimate of the generalization error.   

 Results for TD, SD, WD fingerprints were generated 

using MDA/ML. The version of MDA/ML used here only 

handles three devices so to estimate the 4-device 

classification results, four permutations (Perm123, Perm124, 

Perm134, Perm234) were trained and the models with the 

best CVE for each were averaged to approximate the total % 

Correct Classification over all devices. 

 Separate models were trained using DECG-LFS for 

FRFD fingerprints for all SNR levels and time-frequency 

order (angle) combinations of a=0.6 (α=0.9452), a=0.8 

(α=1.2566) a=1 (α=1.5708) and a=1.2 (α=1.8850) – (20 

models in all).  CVE, design (training) Mean Squared Error 

(MSED) and test MSE (MSET) results were computed.  CVE 

is obtained from k-fold CV results, which is an estimate of 

generalization error. The training MSED is obtained by 

applying the trained model and applying it to the complete 

training set .  The testing MSET is obtained by applying 

the trained model to the unseen test set .  All results 

 
Figure 4.  DECG-LFS Process. 
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represent training a separate model for each combination of 

SNR and rotation α.  

 A version of DECG-LFS is under development that 

jointly optimizes the metric parameters and transform 

parameters , e.g., α for FRFD, or wavelet coefficients. 

 

4. RESULTS 

 

A preliminary assessment of the effectiveness of the FRPSD 

is made by calculating the Euclidian distance between the 

normalized FRPSD for each capture and the mean FRPSD 

of 1000 captures of each device.  We use four devices of the 

same model, from the same manufacturer and have 1000 

captures of each device. For the simple Euclidean 

comparison the signal samples are denoted by 

 where i represents the index 

of the unit and n the index of the unit signal samples.  The 

device means are calculated by  

    
      (9) 

 

 

 The in-device distances  

are calculated as the MSE between the signal samples for 

the device and the device‘s mean.  The cross-device 

distances  are calculated 

as the MSE between the signal samples and other device 

means. If  the 

device clusters are completely separable. Figure 5 shows the 

probability of the percent classification error for different 

values of the rotation angle α and different SNR ratios, when 

 classification criterion is used.  Next we 

describe how the Fractional Fourier Domain (FRFD) 

fingerprints are generated.  

 Next, classifier performance is assessed using average 

% Correct Classification on training data versus SNR, for 

TD, SD, and WD based fingerprints using MDA/ML.  This 

is compared to the results of FRFD fingerprints optimized 

with DECG-LFS.  Figure 6 compares the % Correct 

Classification results of the training CVE at all SNR levels 

for TD, SD, WD fingerprints (based on MDA/ML) and 

FRFD fingerprints (based on DECG-LFS).   

 Figure 7 shows the % Correct Classification for the 

FRFD fingerprints optimized with DECG-LFS on the test set 

 for all SNR levels and time-frequency order (angle) 

combinations of a=0.6 (α=0.9452), a=0.8 (α=1.2566) a=1 

(α=1.5708) and a=1.2 (α=1.8850). 

 Figure 8 is a zoomed in view of the % Correct 

Classification for the FRFD fingerprints optimized with 

DECG-LFS on the test set  for all SNR levels and order 

(angle) combinations of a=0.8 (α=1.2566) a=1 (α =1.5708) 

and a=1.2 (α=1.8850).  Notice that angle a=1 represents the 

frequency only plane and angles a=0.8 and a=1.2 represent 

symmetric rotations on either side of it (identity and 

 
Figure 5. % Correct Classification versus rotation angle α at 

SNR levels of 3, 6, 9, 12, 15, 18, 21, and 24dB as indicated. 

 
Figure 7. Testing results: % Correct Classification versus 

SNR for a=0.6 (α=0.9452), a=0.8 (α=1.2566) a=1 

(α=1.5708) and a=1.2 (α=1.8850). 

 
Figure 6. Training results: % Correct Classification versus 

SNR for MDA/ML with Spectral Doman features and LFS 

with FRPSD features.  
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reflection respectively). 

 Figures 9 and 10 show the metric parameter obtained by 

DECG-LFS for FRFD fingerprints arranged by regions for 

SNR levels of 3, 6, 9, and 12 dB and order (angle) 

combinations of a=0.8 (α=1.2566) and a= 1 (α=1.5708) 

respectively.  

 One can infer the relative importance of a given feature 

based on the metric parameter  – small  values indicate 

irrelevant features, large values indicate relevant features.  

Using this knowledge one can create a low-rank model by 

eliminating irrelevant features.     

 

5. SUMMARY AND CONCLUSSIONS 

 

This work addresses the use of the joint time-frequency 

Fractional Fourier Transform based RF-DNA fingerprints 

for classifying intra-manufacture WiFi devices, i.e., identical 

model devices from a given manufacturer. It also introduces 

a DECG-LFS classifier which is envisioned for use in RF air 

monitors located at Wireless Access Points (WAPs).  As one 

of the most vulnerable points in an Information Technology 

(IT) network, the goal is to provide a Physical (PHY) layer-

aware multi-factor authentication approach to wireless 

network security at WAPs to augment bit-level mechanisms. 

 Classification performance was compared to TD, SD, 

and WD based fingerprints using an MDA/ML classifier for 

experimentally collected 802.11a WiFi signals.

 Relative to MDA/ML classification using TD, SD and 

WD fingerprints LFS classification using FRFT was 

superior at all SNR levels.  With the single exception of WD 

at the SNR=15 dB which was comparable probably because 

both the WD and FRFD features capture the TF 

characteristics of the particular OFDM 802.11a signal.  

The performance of the FRFD fingerprints is likely 

attributable to the ability of the FRFT to capture the TF 

characteristics and the power of DECG-LFS to learn a 

robust model. 

From these results we conclude that FRFD RF-DNA 

 
Figure 8. Close-up of testing results in Figure 7: % Correct 

Classification versus SNR for a=0.8 (α=1.2566) a=1 

(α=1.5708) and a=1.2 (α=1.8850). 

 

 
Figure 9. Metric Parameters (inverse bandwidth parameters) 

of the statistical features for each Region of the FRPSD for 

a=0.8 (α=1.2566) at SNR levels of 3, 6, 9 and 12 db. 

 

 

 

 

 
Figure 10.  Metric Parameters (inverse bandwidth parameters) 

of the statistical features for each Region of the FRPSD for 

a=1.0 (α=1.5708) at SNR levels of 3, 6, 9 and 12 db. 
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fingerprints are viable candidates for PHY-layer-aware 

multi-factor authentication and warrant further investigation.  
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