Porting of an FPGA Based High Data Rate DVB-S2 Modulator

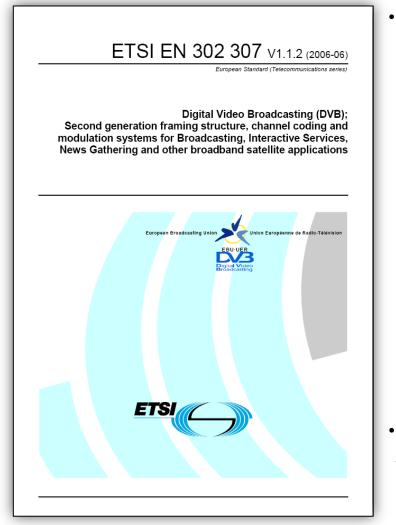
Chayil Timmerman Andrew Miller MIT Lincoln Laboratory Ivan Corretjer John Glancy Michael Rupar

The Naval Research Laboratory

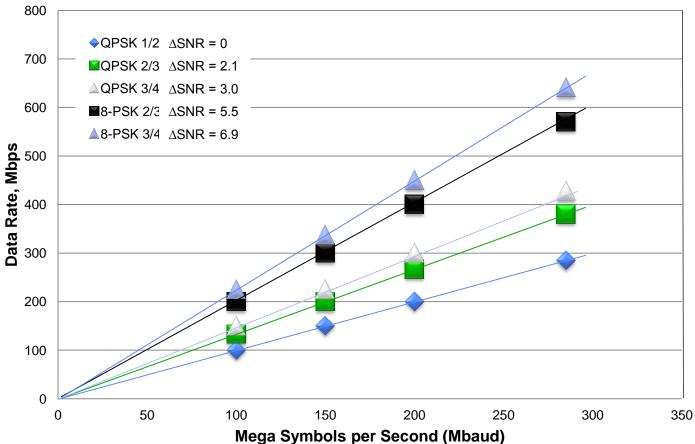
SDR'11 WInnComm

This work is sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002 and the Office of Naval Research. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

6C Comp., SW, & Tools-1 CST 12/1/2011

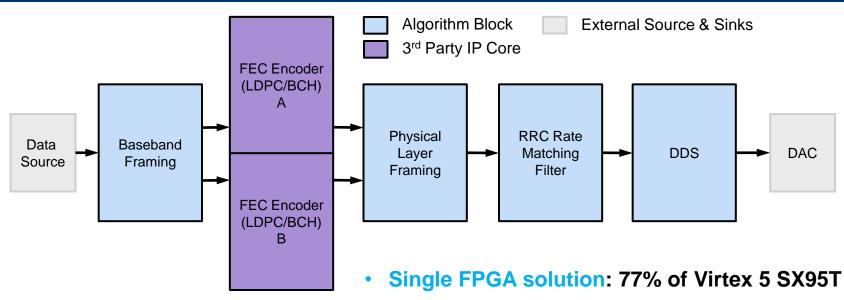


- High Data Rate DVB-S2
- Waveform Description
- BDR-1 and the Porting Effort
- Over-the-Air Testing
- Conclusion



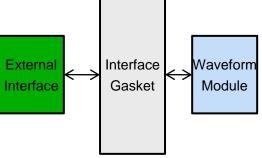
- DVB-S2 is the second generation digital video broadcasting standard from the ETSI (European Standard Telecommunications Series)
 - Flexible input stream adapter, suitable for operation with single and multiple input streams of various formats (packetized or continuous)
 - Powerful FEC system based on LDPC (Low-Density Parity Check) codes concatenated with BCH codes, operating 0.7 – 1 dB dB from the Shannon limit
 - Wide range of code rates (from 1/4 up to 9/10);
 allows "tunable" power- and spectral-efficiency
 - Broad industry base with successful commercially, available, implementations which support data rates up to ~50 Msymbols/s
- HDR DVB-S2 Implementation supports a subset of the standard at much higher symbol rates
 - QPSK, 8PSK
 - 1 to 280 Msymbols/s

HDR Waveform Capacity



- High Data Rate DVB-S2
- Waveform Description
- BDR-1 and the Porting Effort
- Over-the-Air Testing
- Conclusion

HDR Modulator Architecture


Extensive capabilities, leveraging modern technology to deliver a portable SWaP-compliant system

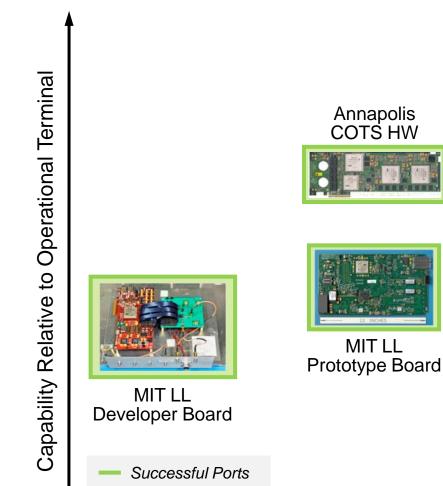
- Consumes < 40 Watts at full rate
 - Includes: Gigabit Ethernet, FPGA, and high-speed DAC
- Dual SRRC real filters on I and Q channels
 - Supports rate matching from 1 to 280 Msps, in 2³²-1 steps
- Direct digital synthesis of L-band IF
- Architecture independent FEC Encoder pending

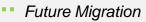
- To enable easier porting the waveform interfaces are generalized
 - System interface Clocks, resets, etc.
 - Host interface
 - Data interface Input data, DAC signals
- The original development platform design is provided as an example to the porting team
- Porting team is required to develop Gaskets to bridge between their hardware platform and the waveform module

- The modulator components were successfully targeted to various FPGAs ranging from a Virtex 5 SX240T to a Virtex II Pro 100
- The Virtex 5 SX240T resource utilization is as follows:

Module Name and Path	Registers	6-input LUTs	BRAM (32kb)	DSP48s
Tx Core, direct conversion DAC, Xilinx FEC /modules/tx_core	21k	20k	111	20
Tx Core, direct conversion DAC, AHA FEC /modules/tx_core	38k	39k	225	16
Tx Core, I/Q DAC, Xilinx FEC /modules/tx_core_no_cm	20k	19k	92	4
Tx Core, I/Q DAC, AHA FEC /modules/tx_core_no_cm	37k	38k	209	0

Multiple versions, using the same code base, to support a wide variety of possible platforms.


Waveform Implementations of the High Data Rate Modulator



Future Operational

Specific

Modem

Suitability for Operational Platform

Bittware COTS HW Altera Chipset

Multiple

Small Form

Factor Boards

MITRE

NRL BDR-1

User Application	This illustrates how the WaCoM library is typically situated with respect to other software layers.
WaCoM Library	The user application (or GUI/CLI) relies on the WaCoM library which in turn relies on the user-supplied platform-specific driver implementation.
Driver	The "driver" either communicates directly with the hardware, or indirectly through additional software or operating system layers.
Hardware	

WaCoM is a layered approach which aims for maximum software reuse.

Abstracts and encapsulates the software/hardware interface

- C++ library that provides a modulator controller object
- Programmer does not require knowledge of modulator internals
- Below is a simplified example of setting the center frequency

Instead of this:

// Disable everything
prev = ReadReg32(ENABLES_REG);
WriteReg32(ENABLES_REG, 0x0);

```
// Write center frequency register
center = ReadReg32(CENTER_FREQ_REG);
center &= 0xffff0000;
center |= freq * multiplier;
WriteReg32(CENTER_FREQ_REG, center);
```

// Restore previous state
WriteReg32(ENABLES_REG, prev);

WaCoM library allows this:

// Set center frequency
controller.setCenterFrequency(freq);

User Interface

da21392@pacifico		
Hello, this is the H Press '?' for help v hdrcli()> ? possibilities are: load - Load rx - Demoo save - Save show - Show	configuration settings from a file Wilator commands configuration settings to a file accommandsmation ator commandsmation the screen this program	
Stream type SIS/MIS CCM/ACM Sync indicator Null packet deletior Roll-off factor Input stream ID User packet length durcli()> tx start Modulator is transmi Modulator ix stans	1: 0ff 35% 2 0 0x47 1: 1504	
Stream type SIS/MIS CCM/ACM Sync indicator Null packet deletior Roll-off factor Input stream ID User pkt. sync byte User packet length hdrcli()>	: Transport stream : Single : Off : Off : Off : Off : 055 : 055 : 05 : 05	

Initialize	< State Idle	
Modulation / FEC Rate QPSK 1/2	Data Type 🔻	Generic Continuous
Pilot Insertion Off	-BaseBand Header	
FEC Frame Type Normal	MATYPE	
AC Rate (MHz) 2160	Stream Type 🔻	Generic Continuous
ymbol Rate (MBd) 45	Input Stream 👻	Single
enter Frequency (MHz) 1620	Coding, Modulation 👻	Constant
nterface Bit Rate (Mbit/sec)	Sync Indicator 👻	Off
	Null Packet Deletion 👻	Off
	Roll Off 👻	alpha = 0.35
	Input Stream Id	0
	User Packet Length (in b	its)
0		
	-User Packet Sync Byte -	
	0	

- WaCoM library contains no UI code
- Reusable GUI and CLI exist
 - Designed to be used with WaCoM library
 - Usually require adaptation for platformspecifics

Loading FPGA images Connecting to modem e.g. over a network

 Can be used as example code or as starting point

	Indolo	Patering of
Waveform Description	Waveform Implementation	Waveform Test
Description 💭	VHDL/H₩ ⇒D-	Test & Support [11010]
Waveform Functional Specification ESC-HDRAT-MIT-LL_Waveform-Functional-Spec_25Jan11_Rel1.pdf	→ VHDL Waveform_VHDL_25Jan11_Rel1.tar.gz	(11010) Test Vectors Included in Waveform_VHDL_25Jan11_Rel1.tar.gz
Waveform Design Specification Waveform-Design-Specification_25Jan11_Rel1.pdf	VHDL Modulator Firmware Description VHDL-Modulator-Firmware-Description_25Jan11_Rel1.pdf	Modulator Test Plan Modulator-Test-Plan_25Jan11_Rel1.pdf
Waveform Development Environment Waveform-Development Environment_25Jan11_Rel1.pdf	VHDL Modulator Implementation Quick Start VHDL-Modulator-Implementation-QuickRef_CKT_25Jan11_Rel1.pdf	Laboratory Test Platforms Laboratory-Test-Platforms_JTD_25Jan11_Rel1.pdf
Models 💣	Modulator Example Implementation Modulator-Example-Implementation_CKT_25Jan11_Rel1.pdf	Release and Support Plan Release-and-Support-Plan_TAB_25Jan11_Rel1.pdf
C++ Model Waveform_Model-C++_25Jan11_Rel1.zip	HW/SW Interface → ←	
Waveform_Model-Mathworks_25Jan11_Rel1.zip	Modulator Hardware-Software Interface Spec Modulator-Hardware-Software-Interface-Spec_25Jan11_Rel1.pdf	
Modulator Model Overview Modulator-Model-Overview_HY-JH_25Jan11_Rel1.pdf	Modulator Hardware-Software Interface Quick Start Modulator-Hardware-Software-Interface-QuickRef_CKT_25Jan11_Rel1.pdf	It takes more than
	Open Core Protocol (OCP) Profiles Open-Core-Protocol-Profiles_CKT_25Jan11_Rel1.pdf	just good coding to
	Software 🖃	make a waveform
Document	WaCoM Software Waveform_Software_25Jan11_Rel1.zip	portable.
Presentation	WaCoM Modulator Library Programmer's Guide WaCoM-Modulator-Library-Programmers-Guide_25Jan11_Rel1.pdf	
Actual filenames include the prefix "ESC-HDRAT-MIT-LL_" which has	WaCoM Modulator Library Reference WaCoM-Modulator-Library-Reference_25Jan11_Rel1.pdf	
been removed from the filenames listed here for ease of reference.	WaCom Software Overview WaCoM-Software-Overview TAB 25Jan11 Rel1.pdf	

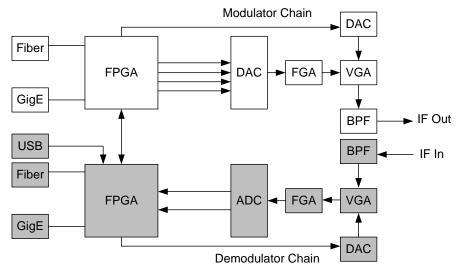
WaCoM-Software-Overview_TAB_25Jan11_Rel1.pdf

Outline

- High Data Rate DVB-S2
- Waveform Description

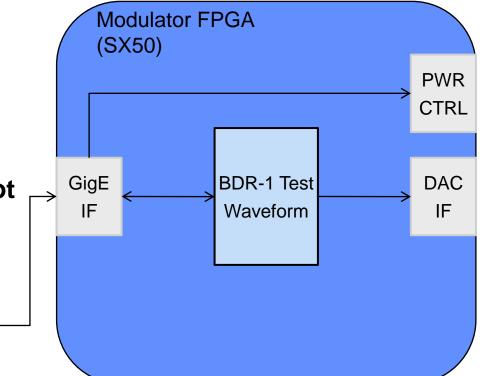
BDR-1 and the Porting Effort

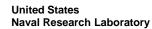
- Over-the-Air Testing
- Conclusion


NRL's Basic Digital Radio

FPGAs	2 Virtex 5 SX50T
Bandwidth	~300 MHz
Sample Rate	1.75 GHz
Supported Waveforms	•NRL Test WF •HDR DVB-S2 Mod.
Dimensions	4"x7"

- Small form factor SDR platform
- Low jitter VCOs for precision signal sampling/generation
- Preexisting GigE control and data plane, with drivers
- Direct L-band output elliminates need for analog additional up/down conversion stages

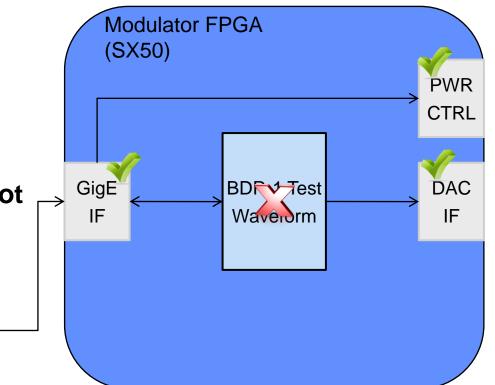




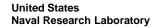
- Ascertain the control structure of the BDR-1 platform
- Identify the FPGA specific components required for operation
- Identify the components not required for operation

Test Waveform Software

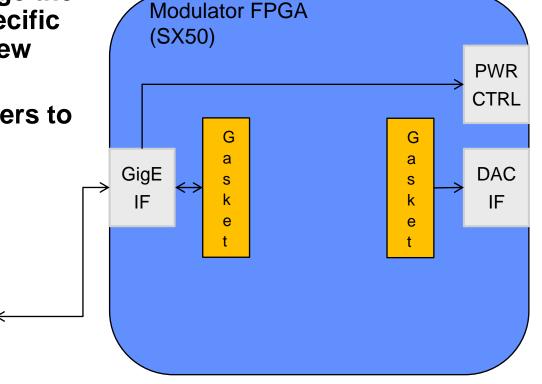
It is easier to reuse platform specific modules.



HDR DVB-S2 Port to the BDR-1 Step 1


- Ascertain the control structure of the BDR-1 platform
- Identify the FPGA specific components required for operation
- Identify the components not required for operation

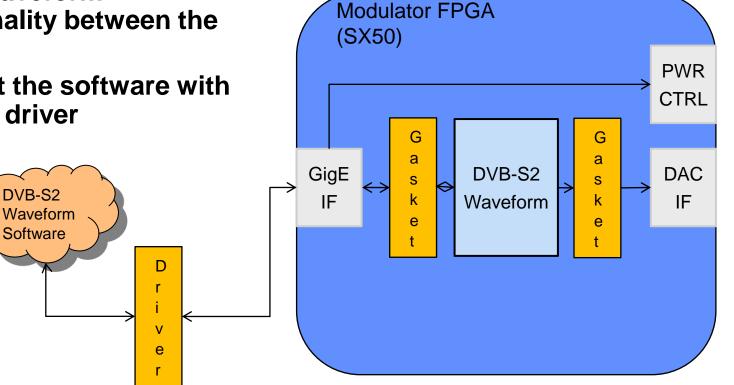
Vavef Software



- Create Gaskets to bridge the gap between FPGA specific components and the new waveform modules
- Generate software drivers to interface with the new platform

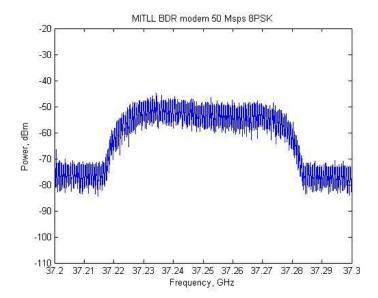
D r

v e



Gaskets reduce configuration management issues by not changing the platform specific and or waveform specific features during a porting effort.

- Insert waveform functionality between the gaskets
- Connect the software with • the new driver



The modulator core VHDL was not modified to support the BDR-1 platform. All new code was limited to the gaskets.

- 1st Successful port of HDR DVB-S2 modulator
- BDR-1 FPGA is ~1/2 the size of original development FPGA
- Demonstrated compatibility with multiple commercial DVB-S2 modems (Newtec, ECC's HI-BEAM, Avtec's HDRM, etc.)

Modem	Symbol Rate
Newtec AZ410	45 Msym/s
HIBEAM Phase 1	50 Msym/s
HIBEAM Phase 2	200 Msym/s
HDRM	218 Msym/s

Platform	BDR-1	Reference
Registers	26k	21k
LUTs	22k	20k
BRAMs	122	111
DSP48s	20	20

- High Data Rate DVB-S2
- Waveform Description
- BDR-1 and the Porting Effort
- Over-the-Air Testing
- Conclusion

- During the weeks of June 6, 2011 & June 13, 2011 the Naval Research Laboratory (NRL) conducted experiments with their Tactical Reach-back Extended Communications (TREC) system.
 - Air to ground line-of-sight (LOS) mobile system
 - Included the use of the HDR DVB-S2 waveform on the BDR-1
 - Used low power small apertures to demonstration 100's of Mbps over 10's of nautical miles @ Ka-Band

Airborne Terminal

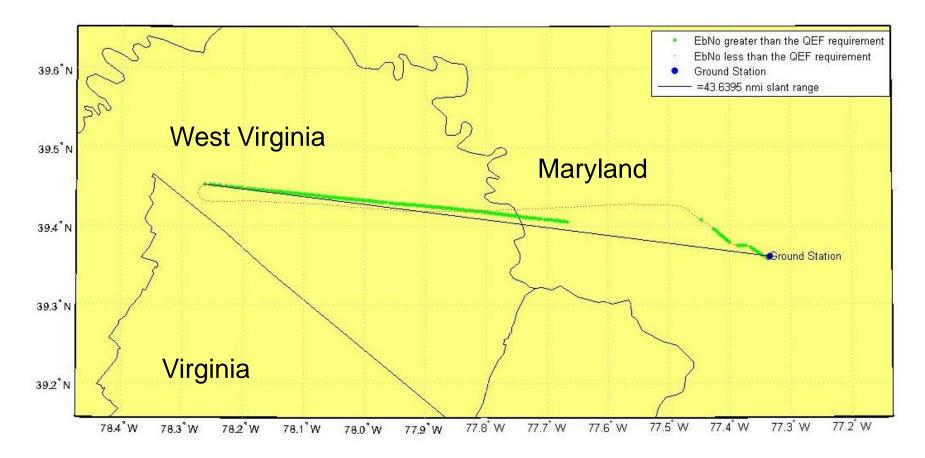
Aircraft	Cessna 210
Antenna	Risley Prism (<6.7" Height & < 5.5 lbs)
Power Amplifier	0.5 Watts @ 37.0 to 38.5 GHz
Transceiver	L-band block conversion
Modems	BDR-1 (HDR Waveform) HI-BEAM Phase 2 (DVB-S2) STD-CDL

- Aircraft altitude for testing was ~15k feet MSL
- UHF LOS used to pass telemetry data for antenna pointing
- Flight path logged via GPS for further analysis

Ground Terminal

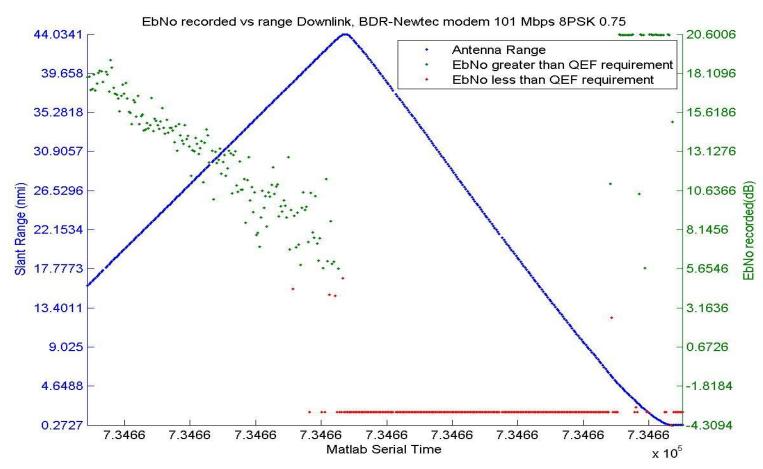
Vehicle	HMWV (stationary)
Antenna	15" Cassegrain Antenna
Power Amplifier	0.5 Watts @ 37.0 to 38.5 GHz
Transceiver	L-band block conversion
Modems	Newtec AZ410 (DVB-S2) HI-BEAM Phase 2 (DVB-S2) STD-CDL

- Ground terminal was stationary for the testing
- UHF LOS used to pass telemetry data for antenna pointing
- Instrumented to collect data from the modems and GPS


•BDR-1 in the air, Newtec Azimuth on the ground

- •Modulation settings:
 - •45 Mbaud, 101 Mbps, 8PSK, 3/4
 - PRBS enabled
 - •Pilots off
 - •Downlink: 37.1 GHz, Uplink: 38.0 GHz
- Atmospheric conditions
 - •Temperature 93 degrees F
 - •Humidity 30 %

Map of E_b/N₀ Recorded during Test 1

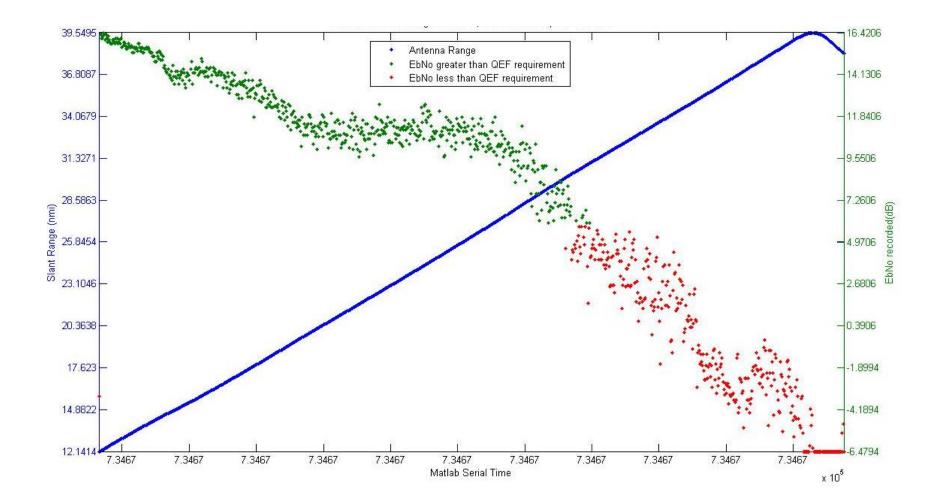


*This slant range listed in the legend is the longest slant range at which the EbNo recorded was great enough to demodulate Quasi Error Free (QEF)

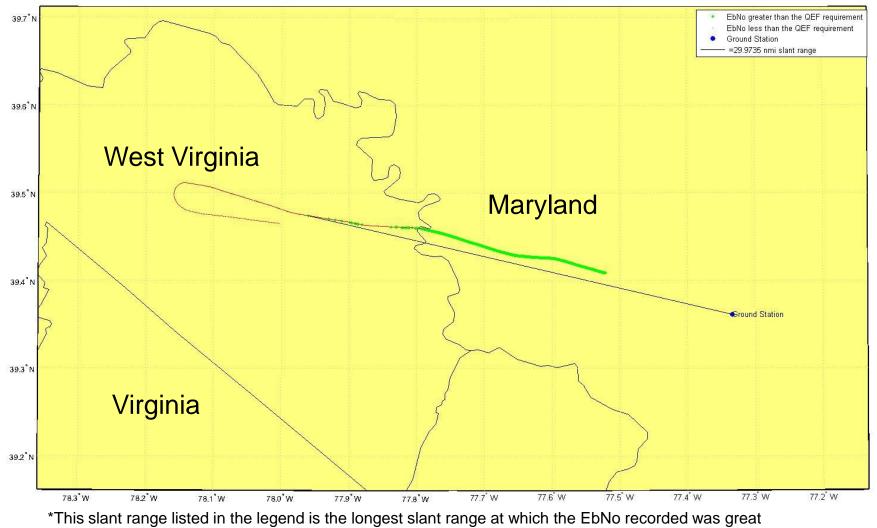
*Note this was the final test of the day and on the inbound leg the aircraft was descending in preparation to land

•BDR-1 in the air, ECC P2 HIBEAM modem on the ground

- •Modulation settings:
 - •134 Mbaud, 300 Mbps, 8PSK, 3/4
 - PRBS enabled
 - Pilots on
 - •Downlink: 37.1 GHz, Uplink: 38.0 GHz
- Atmospheric conditions
 - •Temperature 75 degrees F
 - •Humidity 38 %

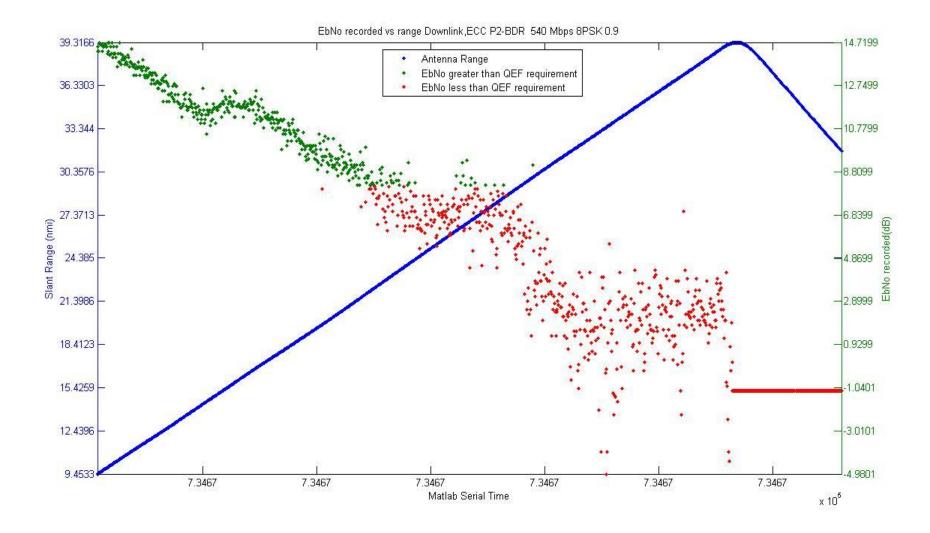


*This slant range listed in the legend is the longest slant range at which the EbNo recorded was great enough to demodulate Quasi Error Free (QEF)



•BDR-1 in the air, ECC P2 HIBEAM modem on the ground

- •Modulation settings:
 - •200 Mbaud, 540 Mbps, 8PSK, 9/10
 - PRBS enabled
 - Pilots on
 - •Downlink: 37.1 GHz, Uplink: 38.0 GHz
- Atmospheric conditions
 - •Temperature 75 degrees F
 - •Humidity 38 %



enough to demodulate Quasi Error Free (QEF)

Mode	Symbol Rate (Mbaud)	Data Rate (Mbps)	Slant Range (nmi)*	Receiver
8PSK, 3/4	45	101	35	Newtec AZ410
8PSK, 3/4	134	300	30	HI-BEAM P2
8PSK, 9/10	200	540	22	HI-BEAM P2

*This value corresponds to the furthest distance at which continuous communications were maintained.

- High Data Rate DVB-S2
- Waveform Description
- BDR-1 and the Porting Effort
- Over-the-Air Testing
 - Conclusion

- The porting effort was straight forward and successful
 Less than a one man month for VHDL port
- There was a high level of software reuse
- Line of sight testing showed robustness of the modulator design and platform
- Interoperability of the waveform demonstrated the level of maturity of the DVB-S2 standard in industry