

BRIDGING THE GAP BETWEEN THE COGNITIVE ENGINE AND THE SDR

Jakub Moskal (Northeastern University, Boston, MA, USA; jmoskal@ece.neu.edu);

Mieczysław M. Kokar (Northeastern University, Boston, MA, USA;
mkokar@ece.neu.edu); Shujun Li (Northeastern University, Boston, MA, USA;

shli@ece.neu.edu)

ABSTRACT

Regardless of the type of an inference engine that a
Cognitive Radio (CR) employs, each CR implementation
requires access to the SDR’s Knobs & Meters (K&M) in
order to achieve self-awareness. Due to the lack of a
standard K&M API, current CR architectures rely either on
APIs provided by concrete SDR platforms, or specify
arbitrary APIs that are not standardized by any standards
organization. This leads to the situation in which existing
CR architectures are rather tightly bound to a chosen SDR
platform supported by a (usually large) business unit.
Instead of relying on any specific SDR API, in our previous
work we proposed a thin and generic interface between a
reasoner and a SDR. In this approach the reasoner could
access K&M of an SDR using only abstract, ontological
terms. In this paper we show how the ontological terms are
mapped to SDR-specific method invocations and show how
the ontology-based interface could be used in different
Cognitive Engine implementations and lead to CR
architectures that are less dependent on the underlying
software interfaces.

1. INTRODUCTION

In our previous work [1,2] we conducted a review of
existing CR architectures with the focus on the interface that
is employed between the reasoner and the SDR. Virtually all
of the existing CR designs rely on non-standard domain-
specific interfaces. In this approach (shown in Figure 1) a
dedicated piece of code (controller) is responsible for
invoking the radio’s API and supplying the reasoner with
facts representing the current state of the radio’s operational
behavior. Optionally, the API is available via CORBA to
achieve platform-independence. Design of such controller
requires design-time knowledge about the ontology, for the
values returned by the API methods must be correlated with
specific ontological terms. Moreover, the reasoner itself
must be extended with API-specific procedural attachments
that allow it to dynamically change the values of radio’s
parameters from within the rules.

 The domain-specific API approach suffers from several
issues, most importantly 1) it requires maintenance of the
API-dedicated code each time the API changes, 2) it
requires implementation and maintenance of adapters for
radios that don’t implement the API expected by the
controller and the procedural attachments, 3) the API may
become a bottleneck of the design when API changes are
avoided to maintain compatibility with legacy components.
Because there is no standard way for accessing radio’s
parameters, existing architectures that rely on radio-specific
interfaces ultimately support only a few SDRs, or are tied to
a single specific platform.
 While CR architectures still lack industry support, SDR
community has made use of well-defined standards,
primarily the Software Communications Architecture (SCA)
[3], which has been widely supported by both industry and
the academia. The SCA itself does not define architecture
for software radio; rather it provides hardware abstraction
layer and the software infrastructure to develop waveform
software on top of a radio system. The SCA design provides
a great deal of independence for the waveform developers.
Not only waveform applications once written can be

ReasonerProcedural
Attachments

SDR Software

Domain-Specific
Controller

createABox()
get_V1, get_V2...get_Vn

Reasoner API

set_V1...set_Vn

Domain API

CORBA

Figure 1 Domain-Specific API approach

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

298

theoretically ported to any SCA-compliant hardware, but the
developers can also develop software in many programming
languages, as long as the languages support CORBA.
 Unfortunately, the SCA does not provide any support
for the CR out of the box — there is no dedicated API for
the cognitive software, thus there is no standard–supported
way to realize the CR architecture on top of the SCA-based
SDRs. Instead, one must treat every SCA-compliant SDR as
a separate SDR, with its own specific API. One solution to
this problem is to include cognitive capabilities in the
application layer along with the waveform software.
However, such a solution would be most likely proprietary
and constrained by the existing APIs, available to the
waveform developers, probably too generic to be used for
this purpose [4]. Wellington suggests [4] that the cognitive
software be implemented as a SCA-compliant component
and interact with the waveform components by the means of
a set of new interfaces.
 However, the problems mentioned above would persist
even if the current set of APIs provided by the SCA was
augmented by a new interface dedicated to the cognitive
engine functionality. In fact, the SCA–based CR
architecture would resemble that of the aforementioned
Domain API (c.f. Figure 1), facing the same issues
described above. While this design would be superior to the
one of the Domain API, because it would have the industry
support behind it, it would only add the platform-
independence. In addition, it would make major changes to
the API even more expensive, because not only they would
require updating the implementation, but also a new SCA
compliance certification.
 In our previous work we introduced the concept of a
generic API that uses a LiveKB component and addresses
the issues associated with the Domain API. In this paper, we
discuss the details of how the LiveKB provides a generic
access to a virtually unbounded number of radios and thus
bridges the gap between the reasoner and the SDR.

2. NEED FOR A GENERIC API

The original idea behind designing the LiveKB component
was to allow the reasoner to express its requests to read and
write radio’s parameters exclusively in ontological terms.
These terms are shared by all radios through a standard
ontology and do not pertain to any specific API. Instead of
having a number of methods that correspond to different
parameters, we would like to be able to use only two of
them:
 get(propertyName)
 set(propertyName, newValue)

For instance, if hasTxAmplitude and
hasCarrierFrequency are datatype properties
defined in the CR ontology, in order to get or set a value of

these parameters in a radio, instead of invoking radio API-
specific methods like get_txAmplitude() and
setCarrierFrequency(2400) we could invoke the
following: get(“hasTxAmplitude”) and
set(“hasCarrierFrequency”,2400), respectively.
 In a sense, the CR ontology becomes the standard in
this scenario. However, because it represents domain
knowledge, rather than a programming interface, it is far
less likely to change in the future than API. What is more
important is the fact that the generic API allows for writing
rules (policies) that are reusable, because the procedural
attachments corresponding to get and set methods, used
within the rules, are independent of the SDR software
structure. Moreover, changes made to the ontology would
only require changes in the rules, leaving the
implementation of API intact.
 The generic API requests could be processed in at least
two ways: 1) directly invoked on the radio, or 2) first
translated to radio-specific methods and then invoked on
the radio. The first approach would impose a substantial
requirement on each radio, because the ontology would have
to be known at design time and become part of the
implementation. This defeats the purpose of a generic API,
because radios would need to recode their interface each
time ontology changes. The second approach allows the
radio to provide its own API, yet keep the rules reusable.
The crucial part of this design is translation, or mapping,
from generic to radio-specific methods. A straightforward
solution, similar to the ones used in most of the reviewed
architectures, would be to define a standard API for all
radios, then implement a layer of code that translates
between get/set to the standard. As we indicated in the
previous work, there are multiple problems with a standard
API, such as a lack of consensus, a slow rate of changes,
and problems with backwards compatibility. This is where
the LiveKB component comes into play – instead of
translating generic requests using a radio API, it does so
dynamically at run-time using reflection, regardless of what
API the radio provides.
 The difference between invoking radio methods using
its API and invoking them via LiveKB is shown graphically
in Figure 2. Note that when using LiveKB, there is no need
to know anything about the radio’s API on the reasoner side,
and at the same time the radio can implement its own API.
The benefits of this design are twofold – the reasoner can
theoretically access any radio, and the radios do not have to
implement any standard API. In the next section we provide
details of how the LiveKB is designed in order to support
the dynamic mapping between the generic and SDR-specific
API.

3. ONTOLOGY MATCHING

299

The primary goal of LiveKB is to dynamically translate
requests that come from the reasoner to method invocations
that are specific for the radio. The fundamental concept for
implementing this goal is ontology matching.
 Ontology matching is defined as “the process of finding
relationships or correspondences between entities of
different ontologies”. The output of matching, called
alignment, is a set of correspondences that express the
relationship between two ontologies. Alignments include,
but are not limited to, statements such as entity equivalence,
sub-super relationship between entities, class intersection, or
inverse relation. Alignment can be used to generate tools
used for further automated processing, such as a translator
for translating data instances between two different
ontologies, or a mediator that can translate queries
expressed in one ontology to another, and translate answers
in the opposite direction.
 Despite the use of sophisticated methods from AI,
ontology matching can rarely be fully automated beyond
relatively simple syntactic correspondences. When complex
conceptual relationships come into play, matching
algorithms often have difficulties identifying any
correspondences at all, or find ones that are irrelevant.
When the matching is incomplete, finishing the alignment
manually is necessary, although even this task can be
cumbersome. The manual alignment can be facilitated with
the use of ontology alignment design patterns [5], which
stem from the observation that different sets of ontologies,
even from completely different domains, exhibit similar
types of complex relationships. Design patterns are
particularly useful for finding solutions to complex
relationships, e.g. a property in one ontology has the same
intention as a relation in the second ontology, which
requires transforming data values into specific class
individuals.
 Expressive and Declarative Ontology Alignment
Language (EDOAL) [6] is a language designed by the

ontology matching community specifically to address the
problem of expressing complex relationships between
ontologies. The semantics of EDOAL is independent from
any ontology language, which has two benefits – it can be
used to match ontologies grounded in different syntax, and
it allows for expressing design patterns at an abstract level.
 EDOAL would certainly be of lower value if it was not
accompanied by Alignment API [7], a comprehensive Java
API for manipulating alignments. Alignment API was
created around the time the first predecessor of EDOAL was
designed. It aims to cover functionality related to the
ontology matching process as a whole by providing
abstractions for matchers, evaluators, renderers and parsers.
Using the API, alignment documents can be parsed and then
rendered to generate XSLT scripts, OWL axioms, etc. In its
most recent version [8], support for processing EDOAL was
added, although included renderers are fairly limited at this
moment, e.g. the OWL axioms renderer does not take
advantage of any of the features added in OWL 2 [9]. This
limitation can be addressed by implementing custom
renderers.
 Although complete automatization of the ontology
matching process still has a long way to go – and perhaps
can never be fully realized – EDOAL and Alignment API
form a solid platform for realizing matching use cases.

4. LIVEKB DESIGN

LiveKB uses methods and tools from the ontology matching
research area in order to map the generic API requests to
SDR-specific invocations. Figure 3 shows the ideal design
of LiveKB. SDR, accessible via CORBA, provides its API
as an IDL, which is automatically translated into its
equivalent IDL ontology expressed in OWL. The Matcher
matches the generated IDL ontology with the CR ontology
and produces alignment. The alignment is passed to
Generator to generate a mediator. At runtime, the mediator

SDR ASDR A
API

get_txAmplitude()

set_carrierFrequency(2400)

get("hasTxAmplitude")

set("hasCarrierFrequency", 2400) LiveKB

invoke("get_txAmplitude")

invoke("set_carrierFrequency", 2400) SDR ASDR A
API

Reasoning
Component

Reasoning
Component

R
efl
ec
tio
n

Figure 2 Accessing SDR using the LiveKB component

300

translates the requests coming from the reasoner to requests
expressed in the IDL ontology. The axioms in the IDL
ontology provide sufficient information to reflectively
invoke the requested method on the SDR. Once an
invocation is complete, the mediator translates the result of
the invocation into terms of the CR ontology and sends it
back to the reasoner.
 The first three steps – generation of the IDL ontology,
matching it with the CR ontology and generation of the
mediator from the alignment, need to be done only once, at
startup. After that, LiveKB can translate reasoner’s requests
by utilizing the artifacts produced earlier, and mostly
performs reflective invocations.
 The realization of the ideal design of LiveKB is very
challenging since it depends on automatization of the three
somewhat complex tasks: 1) translation of an IDL model
into an OWL ontology, 2) ontology matching between IDL
and CR ontologies, and 3) generation of a mediator from the
alignment. The first task can be automated, as long as the
IDL respects some constraints (we will discuss this later).
However, as explained above, ontology matching is not
ready to be fully automated for complex correspondences.
As a consequence, manual or semi-manual matching is
necessary to be done for each radio. Furthermore, since this
field is relatively young, the tool generators for EDOAL
alignments are still immature and thus this process also
cannot be fully automated. Consequently, at this point we
cannot fully realize the LiveKB design as depicted in Figure
3. Nonetheless, given the progress done each year in the
field of ontology matching, it is anticipated that an
automatic ontology matching will be realizable to a higher
degree in the near future.

4.1. Feasible design of LiveKB

Since the matching cannot be fully automated yet, it needs
to be done manually, or somehow assisted to produce a full
alignment. In order to facilitate this process, we altered the
LiveKB design and made it feasible for implementation. It
allows for dynamic translation between generic and radio-
specific API, but requires more input from the SDR vendor.
The revised, more feasible LiveKB design is shown in
Figure 5. In this design, not only SDR must be available via
CORBA and provide its IDL, but the IDL must also be
annotated to aid the matching process. The annotated IDL
provides enough information for the Assisted Matcher to
create a full alignment between the given CR ontology and
the IDL ontology generated within LiveKB from the SDR
IDL model. The matcher also generates an Invoker, which
can execute SDR methods represented as properties in the
IDL ontology with the use of the reflection mechanism.
 Since the generation of tools solely based on alignment
is still limited, we use alignment only to generate bridge
axioms [10], which merge the two ontologies together.
Bridge axioms can be easily generated, because they
correspond to the alignment almost in a one-to-one fashion.
Using rules and bridge axioms, requests formulated by the
reasoner in terms of the CR ontology can be automatically
translated into terms of the IDL ontology. A request
expressed in the IDL ontology provides sufficient
information for the Invoker to locate an object in the SDR
runtime and execute an appropriate method. Invoker can
also read all the parameters and represent a radio’s current
state as a collection of CR ontology ABox assertions.
 If we look at LiveKB as a black box, it needs to be
provided with (1) an annotated IDL model of the SDR and
(2) the CR ontology. At bootstrap, it produces (1) an IDL
ontology and (2) bridge axioms that need to be loaded into
the reasoner’s Knowledge Base. At runtime, it can produce
a CR ontology ABox, which represents the SDR’s current

LiveKB

Matcher

Generator

Alignment

mediator

IDL Ontology
(TBox)

Answer

SDR IDL
Model

SDR Runtime

IDL2OWL

Request

CR Ontology
(TBox)

Request

Answer

Reasoning
Component

R
efl

ec
tio

n

Figure 3 Ideal design of LiveKB

301

state and can respond to get/set requests invoked from
within the reasoner’s rules. A simple rule that invokes a
setter to change a value of a parameter, given that some
condition is met, is shown below using pseudocode:

if k > k_max then
 setter <- find a setter property in IDL ontology that is
equivalent to k in the CR ontology
 INVOKE(setter, newValue)
end if

Note that the rule writer is not required to know the name of
the setter property in the IDL ontology – it is found by the
reasoner using the bridge axioms.
 The feasible design of LiveKB involves generation of
three artifacts: an IDL ontology, alignment axioms and an
Invoker tool. Since the explanation of how these artifacts
are generated goes beyond the scope of this paper, we refer
the reader to [11] for more details.
 Using the LiveKB component, one can design a CR
architecture in a way that does not depend on SDR-specific
API and such is far less vulnerable to changes and can
support numerous radio platforms. Figure 4 shows how
LiveKB can be utilized within a CR architecture. Note that
both the controller and procedural attachments no longer
depend on SDR-specific method invocations, and as such
remain intact regardless of changes made in the SDR API.
Another great benefit of this design is the fact that the rules
can be written once and executed on multiple platforms, as
long as they use LiveKB to access radio’s parameters.

4.2. LiveKB API

Since LiveKB is available via CORBA, we present its API
in IDL:
module livekb {

 interface LiveKB {

 string getAll();

 any get(in string property);

 void set(in string property, in any value);};

 interface LiveKBFactory {

 LiveKB getInstance(in string model,

 in string rootName, in string ontology);

 };};

LiveKB
CR Ontology

(TBox)

Reasoning
Component

Annotated
SDR IDL Model

SDR
Runtime

Assisted
Matcher

R
efl

ec
tio

n

IDL Ontology
(TBox)

Alignment

Invoker

Generator

CR Ontology
(ABox)

Bridge
Axioms

Request

IDL2OWL

Alignment
Annotations

Figure 5 Feasible design of LiveKB

ReasonerProcedural
Attachments

LiveKB

SDR Software

Generic Controller

bootstrap, getAll

Reasoner API

Reflection

LiveKB API

set

CORBA

Annotated
IDL

Figure 4 LiveKB-based CR design

302

 Before LiveKB can be used, it must be instantiated by
the LiveKBFactory. Reference to the LiveKBFactory
implementation can be found in the CORBA Naming
Service using a name specified in the LiveKB configuration
file. Once a reference to the object factory is obtained, it can
be used to create an instance of LiveKB by providing it with
the annotated IDL model, the name of the SDR’s root
object, and the CR ontology.
 This API does not contain any SDR-specific
information. In fact, it does not contain terms specific to any
domain. LiveKB API is more abstract than traditional APIs
because it does not constrain the reasoner to a fixed number
of radio-specific parameters selected during the design time.
This feature of the CRF architecture allows the rules to be
fully reusable. The hard-coded part of the interface is
oblivious to the name of parameters or methods used to
access them. The radio-specific information, instead, is used
when creating the LiveKB component.

4.3. LiveKB Implementation

LiveKB was implemented in Java since this language offers
a solid reflection mechanism, which is crucial for its
successful implementation. During bootstrap, LiveKB
generates Java stubs from the IDL description using an
external tool. Once generated, stubs are dynamically
compiled and loaded into the Java Virtual Machine (JVM).
The last step is necessary for the reflection mechanism to
work, because it requires class descriptions to be loaded in
the same JVM where LiveKB is located. Finally, the root
object reference is retrieved from the Naming Service.

4.4. Limitations

The generic nature of LiveKB does require that SDRs meet
certain requirements:
1. SDR parameters are accessible via CORBA
2. The runtime-objects form a tree-like structure and the

reference to the root is available via CORBA Naming
Service

3. SDR implements IDL that respects the following
constraints:
a. Operations that are used to access knobs and meters

have either (1) no parameters, or (2) one in parameter,
or (3) one out parameter. In case of (1), the return type
must be primitive. In cases (2) and (3), the return type
must be void.

b. Operations that are used to access knobs and meters are
properly annotated (beyond the scope of this paper).

c. IDL annotations combined together form a “proper”
ABox (beyond the scope of this paper).

Given such constraints, CRF may have no support for

some legacy SDRs, however, if an SDR is already available

via CORBA and it follows the above requirements, it can be
accessed by LiveKB out-of-the box. Note that LiveKB can
interface numerous SDRs without requiring them to
implement a specific API and without the need to
implement an interface-dedicated code. Moreover, when
radios change their APIs over time, as long as they still
support the above requirements, they can be interfaced by
LiveKB, even if the new version is not backwards-
compatible.

5. CONCLUSIONS AND FUTURE WORK

LiveKB has been successfully implemented and used to
access different radios built on top of the GNU Radio
framework and executed on the USRP1 platform. Changes
made to the ontology had to be reflected in the rules, but did
not require any recoding of the controller. Changes made to
the radio API required adjusting the IDL annotations, but
also did not require any recoding of the interface between
the reasoner and the radio.
 The benefits of using LiveKB interface to access
domain software’s parameters are: support for knowledge
reusability and exchange, significantly smaller effort
required to adapt to changes, inherent platform-
independence. The drawbacks of using LiveKB include the
requirement for using CORBA, increased number of triples
in the reasoner’s KB due to addition of the bridge axioms,
slightly longer rules and slower bootstrap. LiveKB offers
great benefits when the APIs are not well standardized and
are likely to change in the future. This certainly applies to
the wireless domain, which is a very active area of research
and new capabilities are likely to be reflected in new APIs.
 As part of the future work, we will aim to improve the
matching algorithm in order to support creating bridge
axioms without requiring IDL annotations, and remove or
decrease the limitations posed on the IDL models
implemented by the SDRs.

6. REFERENCES

[1] J. Moskal, and M.M. Kokar, “Interfacing a reasoner with an

SDR: A platform and domain API independent approach”,
SDR Technical Conference, Dec 2009

[2] J. Moskal, M.M. Kokar, and S. Li “Interfacing a reasoner with
an SDR Using a Thin, Generic API: A GNU Radio Example”,
SDR Technical Conference, Dec 2010

[3] JTRS, Software Communications Architecture Specification
Version 2.2.2. Joint Program Executive Office (JPEO), May
15, 2006. Available at http://sca. jpeojtrs.mil/.

[4] R. J. Wellington, “Cognitive policy engines,” in Cognitive
Radio Technology (B. A. Fette, ed.), ch. 6, pp. 195–222,
Elsevier, 2nd ed., 2009.

[5] F. Scharffe, Correspondence Patterns Representation. PhD
thesis, University of Insbruck, 2009.

[6] J. Euzenat, F. Scharffe, and A. Zimmermann, “Expressive
alignment language and implementation,” deliverable,

303

Knowledge Web NoE, 2007. Available at http://
ftp//ftp.inrialpes.fr/pub/exmo/reports/kweb-2210.pdf.

[7] J. Euzenat, “An api for ontology alignment,” in The Semantic
Web ISWC 2004 (S. A. McIlraith, D. Plexousakis, and F. van
Harmelen, eds.), vol. 3298 of Lecture Notes in Computer
Science, pp. 698–712–712, Springer Berlin / Heidelberg,
2004.

[8] J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos,
“The Alignment API 4.0,” Semantic Web, 2011.

[9] W3C, OWL 2 Web Ontology Language Primer. W3C
Recommendation, 2009. Avail- able at
http://www.w3.org/TR/owl2-primer/.

[10] J. Euzenat and P. Shvaiko, Ontology Matching. Springer,
2007.

[11] J. Moskal “Interfacing a Reasoner with Heterogeneous Self-
Controlling Software”, 2011.

304

