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ABSTRACT 
 
Regardless of the type of an inference engine that a 
Cognitive Radio (CR) employs, each CR implementation 
requires access to the SDR’s Knobs & Meters (K&M) in 
order to achieve self-awareness. Due to the lack of a 
standard K&M API, current CR architectures rely either on 
APIs provided by concrete SDR platforms, or specify 
arbitrary APIs that are not standardized by any standards 
organization. This leads to the situation in which existing 
CR architectures are rather tightly bound to a chosen SDR 
platform supported by a (usually large) business unit. 
Instead of relying on any specific SDR API, in our previous 
work we proposed a thin and generic interface between a 
reasoner and a SDR. In this approach the reasoner could 
access K&M of an SDR using only abstract, ontological 
terms. In this paper we show how the ontological terms are 
mapped to SDR-specific method invocations and show how 
the ontology-based interface could be used in different 
Cognitive Engine implementations and lead to CR 
architectures that are less dependent on the underlying 
software interfaces. 
 

1. INTRODUCTION 
 
In our previous work [1,2] we conducted a review of 
existing CR architectures with the focus on the interface that 
is employed between the reasoner and the SDR. Virtually all 
of the existing CR designs rely on non-standard domain-
specific interfaces. In this approach (shown in Figure 1) a 
dedicated piece of code (controller) is responsible for 
invoking the radio’s API and supplying the reasoner with 
facts representing the current state of the radio’s operational 
behavior. Optionally, the API is available via CORBA to 
achieve platform-independence. Design of such controller 
requires design-time knowledge about the ontology, for the 
values returned by the API methods must be correlated with 
specific ontological terms. Moreover, the reasoner itself 
must be extended with API-specific procedural attachments 
that allow it to dynamically change the values of radio’s 
parameters from within the rules. 

 The domain-specific API approach suffers from several 
issues, most importantly 1) it requires maintenance of the 
API-dedicated code each time the API changes, 2) it 
requires implementation and maintenance of adapters for 
radios that don’t implement the API expected by the 
controller and the procedural attachments, 3) the API may 
become a bottleneck of the design when API changes are 
avoided to maintain compatibility with legacy components. 
Because there is no standard way for accessing radio’s 
parameters, existing architectures that rely on radio-specific 
interfaces ultimately support only a few SDRs, or are tied to 
a single specific platform. 
 While CR architectures still lack industry support, SDR 
community has made use of well-defined standards, 
primarily the Software Communications Architecture (SCA) 
[3], which has been widely supported by both industry and 
the academia. The SCA itself does not define architecture 
for software radio; rather it provides hardware abstraction 
layer and the software infrastructure to develop waveform 
software on top of a radio system. The SCA design provides 
a great deal of independence for the waveform developers. 
Not only waveform applications once written can be 
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theoretically ported to any SCA-compliant hardware, but the 
developers can also develop software in many programming 
languages, as long as the languages support CORBA.  
 Unfortunately, the SCA does not provide any support 
for the CR out of the box — there is no dedicated API for 
the cognitive software, thus there is no standard–supported 
way to realize the CR architecture on top of the SCA-based 
SDRs. Instead, one must treat every SCA-compliant SDR as 
a separate SDR, with its own specific API. One solution to 
this problem is to include cognitive capabilities in the 
application layer along with the waveform software. 
However, such a solution would be most likely proprietary 
and constrained by the existing APIs, available to the 
waveform developers, probably too generic to be used for 
this purpose [4]. Wellington suggests [4] that the cognitive 
software be implemented as a SCA-compliant component 
and interact with the waveform components by the means of 
a set of new interfaces. 
 However, the problems mentioned above would persist 
even if the current set of APIs provided by the SCA was 
augmented by a new interface dedicated to the cognitive 
engine functionality. In fact, the SCA–based CR 
architecture would resemble that of the aforementioned 
Domain API (c.f. Figure 1), facing the same issues 
described above. While this design would be superior to the 
one of the Domain API, because it would have the industry 
support behind it, it would only add the platform-
independence. In addition, it would make major changes to 
the API even more expensive, because not only they would 
require updating the implementation, but also a new SCA 
compliance certification. 
 In our previous work we introduced the concept of a 
generic API that uses a LiveKB component and addresses 
the issues associated with the Domain API. In this paper, we 
discuss the details of how the LiveKB provides a generic 
access to a virtually unbounded number of radios and thus 
bridges the gap between the reasoner and the SDR.  
 

2. NEED FOR A GENERIC API 
 
The original idea behind designing the LiveKB component 
was to allow the reasoner to express its requests to read and 
write radio’s parameters exclusively in ontological terms. 
These terms are shared by all radios through a standard 
ontology and do not pertain to any specific API. Instead of 
having a number of methods that correspond to different 
parameters, we would like to be able to use only two of 
them: 
 get(propertyName) 
 set(propertyName, newValue) 
 
For instance, if hasTxAmplitude and 
hasCarrierFrequency are datatype properties 
defined in the CR ontology, in order to get or set a value of 

these parameters in a radio, instead of invoking radio API-
specific methods like get_txAmplitude() and 
setCarrierFrequency(2400) we could invoke the 
following: get(“hasTxAmplitude”) and 
set(“hasCarrierFrequency”,2400), respectively. 
 In a sense, the CR ontology becomes the standard in 
this scenario. However, because it represents domain 
knowledge, rather than a programming interface, it is far 
less likely to change in the future than API. What is more 
important is the fact that the generic API allows for writing 
rules (policies) that are reusable, because the procedural 
attachments corresponding to get and set methods, used 
within the rules, are independent of the SDR software 
structure. Moreover, changes made to the ontology would 
only require changes in the rules, leaving the 
implementation of API intact. 
 The generic API requests could be processed in at least 
two ways: 1) directly invoked on the radio, or 2) first 
translated to radio-specific methods and then invoked on 
the radio. The first approach would impose a substantial 
requirement on each radio, because the ontology would have 
to be known at design time and become part of the 
implementation. This defeats the purpose of a generic API, 
because radios would need to recode their interface each 
time ontology changes. The second approach allows the 
radio to provide its own API, yet keep the rules reusable. 
The crucial part of this design is translation, or mapping, 
from generic to radio-specific methods. A straightforward 
solution, similar to the ones used in most of the reviewed 
architectures, would be to define a standard API for all 
radios, then implement a layer of code that translates 
between get/set to the standard. As we indicated in the 
previous work, there are multiple problems with a standard 
API, such as a lack of consensus, a slow rate of changes, 
and problems with backwards compatibility. This is where 
the LiveKB component comes into play – instead of 
translating generic requests using a radio API, it does so 
dynamically at run-time using reflection, regardless of what 
API the radio provides. 
 The difference between invoking radio methods using 
its API and invoking them via LiveKB is shown graphically 
in Figure 2. Note that when using LiveKB, there is no need 
to know anything about the radio’s API on the reasoner side, 
and at the same time the radio can implement its own API. 
The benefits of this design are twofold – the reasoner can 
theoretically access any radio, and the radios do not have to 
implement any standard API. In the next section we provide 
details of how the LiveKB is designed in order to support 
the dynamic mapping between the generic and SDR-specific 
API. 
 

3. ONTOLOGY MATCHING 
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The primary goal of LiveKB is to dynamically translate 
requests that come from the reasoner to method invocations 
that are specific for the radio. The fundamental concept for 
implementing this goal is ontology matching.  
 Ontology matching is defined as “the process of finding 
relationships or correspondences between entities of 
different ontologies”. The output of matching, called 
alignment, is a set of correspondences that express the 
relationship between two ontologies. Alignments include, 
but are not limited to, statements such as entity equivalence, 
sub-super relationship between entities, class intersection, or 
inverse relation. Alignment can be used to generate tools 
used for further automated processing, such as a translator 
for translating data instances between two different 
ontologies, or a mediator that can translate queries 
expressed in one ontology to another, and translate answers 
in the opposite direction. 
 Despite the use of sophisticated methods from AI, 
ontology matching can rarely be fully automated beyond 
relatively simple syntactic correspondences. When complex 
conceptual relationships come into play, matching 
algorithms often have difficulties identifying any 
correspondences at all, or find ones that are irrelevant. 
When the matching is incomplete, finishing the alignment 
manually is necessary, although even this task can be 
cumbersome. The manual alignment can be facilitated with 
the use of ontology alignment design patterns [5], which 
stem from the observation that different sets of ontologies, 
even from completely different domains, exhibit similar 
types of complex relationships. Design patterns are 
particularly useful for finding solutions to complex 
relationships, e.g. a property in one ontology has the same 
intention as a relation in the second ontology, which 
requires transforming data values into specific class 
individuals. 
 Expressive and Declarative Ontology Alignment 
Language (EDOAL) [6] is a language designed by the 

ontology matching community specifically to address the 
problem of expressing complex relationships between 
ontologies. The semantics of EDOAL is independent from 
any ontology language, which has two benefits – it can be 
used to match ontologies grounded in different syntax, and 
it allows for expressing design patterns at an abstract level.  
 EDOAL would certainly be of lower value if it was not 
accompanied by Alignment API [7], a comprehensive Java 
API for manipulating alignments. Alignment API was 
created around the time the first predecessor of EDOAL was 
designed. It aims to cover functionality related to the 
ontology matching process as a whole by providing 
abstractions for matchers, evaluators, renderers and parsers. 
Using the API, alignment documents can be parsed and then 
rendered to generate XSLT scripts, OWL axioms, etc. In its 
most recent version [8], support for processing EDOAL was 
added, although included renderers are fairly limited at this 
moment, e.g. the OWL axioms renderer does not take 
advantage of any of the features added in OWL 2 [9]. This 
limitation can be addressed by implementing custom 
renderers. 
 Although complete automatization of the ontology 
matching process still has a long way to go – and perhaps 
can never be fully realized – EDOAL and Alignment API 
form a solid platform for realizing matching use cases. 
 

4. LIVEKB DESIGN 
 
LiveKB uses methods and tools from the ontology matching 
research area in order to map the generic API requests to 
SDR-specific invocations. Figure 3 shows the ideal design 
of LiveKB. SDR, accessible via CORBA, provides its API 
as an IDL, which is automatically translated into its 
equivalent IDL ontology expressed in OWL. The Matcher 
matches the generated IDL ontology with the CR ontology 
and produces alignment. The alignment is passed to 
Generator to generate a mediator. At runtime, the mediator 
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translates the requests coming from the reasoner to requests 
expressed in the IDL ontology. The axioms in the IDL 
ontology provide sufficient information to reflectively 
invoke the requested method on the SDR. Once an 
invocation is complete, the mediator translates the result of 
the invocation into terms of the CR ontology and sends it 
back to the reasoner. 
 The first three steps – generation of the IDL ontology, 
matching it with the CR ontology and generation of the 
mediator from the alignment, need to be done only once, at 
startup. After that, LiveKB can translate reasoner’s requests 
by utilizing the artifacts produced earlier, and mostly 
performs reflective invocations.  
 The realization of the ideal design of LiveKB is very 
challenging since it depends on automatization of the three 
somewhat complex tasks: 1) translation of an IDL model 
into an OWL ontology, 2) ontology matching between IDL 
and CR ontologies, and 3) generation of a mediator from the 
alignment. The first task can be automated, as long as the 
IDL respects some constraints (we will discuss this later). 
However, as explained above, ontology matching is not 
ready to be fully automated for complex correspondences. 
As a consequence, manual or semi-manual matching is 
necessary to be done for each radio. Furthermore, since this 
field is relatively young, the tool generators for EDOAL 
alignments are still immature and thus this process also 
cannot be fully automated. Consequently, at this point we 
cannot fully realize the LiveKB design as depicted in Figure 
3. Nonetheless, given the progress done each year in the 
field of ontology matching, it is anticipated that an 
automatic ontology matching will be realizable to a higher 
degree in the near future. 
 
4.1. Feasible design of LiveKB 

Since the matching cannot be fully automated yet, it needs 
to be done manually, or somehow assisted to produce a full 
alignment. In order to facilitate this process, we altered the 
LiveKB design and made it feasible for implementation. It 
allows for dynamic translation between generic and radio-
specific API, but requires more input from the SDR vendor. 
The revised, more feasible LiveKB design is shown in 
Figure 5. In this design, not only SDR must be available via 
CORBA and provide its IDL, but the IDL must also be 
annotated to aid the matching process. The annotated IDL 
provides enough information for the Assisted Matcher to 
create a full alignment between the given CR ontology and 
the IDL ontology generated within LiveKB from the SDR 
IDL model. The matcher also generates an Invoker, which 
can execute SDR methods represented as properties in the 
IDL ontology with the use of the reflection mechanism. 
 Since the generation of tools solely based on alignment 
is still limited, we use alignment only to generate bridge 
axioms [10], which merge the two ontologies together. 
Bridge axioms can be easily generated, because they 
correspond to the alignment almost in a one-to-one fashion. 
Using rules and bridge axioms, requests formulated by the 
reasoner in terms of the CR ontology can be automatically 
translated into terms of the IDL ontology. A request 
expressed in the IDL ontology provides sufficient 
information for the Invoker to locate an object in the SDR 
runtime and execute an appropriate method. Invoker can 
also read all the parameters and represent a radio’s current 
state as a collection of CR ontology ABox assertions. 
 If we look at LiveKB as a black box, it needs to be 
provided with (1) an annotated IDL model of the SDR and 
(2) the CR ontology. At bootstrap, it produces (1) an IDL 
ontology and (2) bridge axioms that need to be loaded into 
the reasoner’s Knowledge Base. At runtime, it can produce 
a CR ontology ABox, which represents the SDR’s current 
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state and can respond to get/set requests invoked from 
within the reasoner’s rules. A simple rule that invokes a 
setter to change a value of a parameter, given that some 
condition is met, is shown below using pseudocode:  
 
if k > k_max then 
 setter <- find a setter property in IDL ontology that is 
equivalent to k in the CR ontology 
 INVOKE(setter, newValue) 
end if 
 
Note that the rule writer is not required to know the name of 
the setter property in the IDL ontology – it is found by the 
reasoner using the bridge axioms. 
 The feasible design of LiveKB involves generation of 
three artifacts: an IDL ontology, alignment axioms and an 
Invoker tool. Since the explanation of how these artifacts 
are generated goes beyond the scope of this paper, we refer 
the reader to [11] for more details. 
 Using the LiveKB component, one can design a CR 
architecture in a way that does not depend on SDR-specific 
API and such is far less vulnerable to changes and can 
support numerous radio platforms. Figure 4 shows how 
LiveKB can be utilized within a CR architecture. Note that 
both the controller and procedural attachments no longer 
depend on SDR-specific method invocations, and as such 
remain intact regardless of changes made in the SDR API. 
Another great benefit of this design is the fact that the rules 
can be written once and executed on multiple platforms, as 
long as they use LiveKB to access radio’s parameters. 

 
4.2. LiveKB API 
 

Since LiveKB is available via CORBA, we present its API 
in IDL: 
module livekb {  

 interface LiveKB {  

  string getAll();  

  any get(in string property);  

  void set(in string property, in any value);};  

  

 interface LiveKBFactory {  

  LiveKB getInstance(in string model,  

 in string rootName, in string ontology);  

 };}; 
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 Before LiveKB can be used, it must be instantiated by 
the LiveKBFactory. Reference to the LiveKBFactory 
implementation can be found in the CORBA Naming 
Service using a name specified in the LiveKB configuration 
file. Once a reference to the object factory is obtained, it can 
be used to create an instance of LiveKB by providing it with 
the annotated IDL model, the name of the SDR’s root 
object, and the CR ontology. 
 This API does not contain any SDR-specific 
information. In fact, it does not contain terms specific to any 
domain. LiveKB API is more abstract than traditional APIs 
because it does not constrain the reasoner to a fixed number 
of radio-specific parameters selected during the design time. 
This feature of the CRF architecture allows the rules to be 
fully reusable. The hard-coded part of the interface is 
oblivious to the name of parameters or methods used to 
access them. The radio-specific information, instead, is used 
when creating the LiveKB component. 
 
4.3. LiveKB Implementation 
 
LiveKB was implemented in Java since this language offers 
a solid reflection mechanism, which is crucial for its 
successful implementation. During bootstrap, LiveKB 
generates Java stubs from the IDL description using an 
external tool. Once generated, stubs are dynamically 
compiled and loaded into the Java Virtual Machine (JVM). 
The last step is necessary for the reflection mechanism to 
work, because it requires class descriptions to be loaded in 
the same JVM where LiveKB is located. Finally, the root 
object reference is retrieved from the Naming Service.  
 
4.4. Limitations 
 
The generic nature of LiveKB does require that SDRs meet 
certain requirements: 
1. SDR parameters are accessible via CORBA 
2. The runtime-objects form a tree-like structure and the 

reference to the root is available via CORBA Naming 
Service 

3. SDR implements IDL that respects the following 
constraints: 
a. Operations that are used to access knobs and meters 

have either (1) no parameters, or (2) one in parameter, 
or (3) one out parameter. In case of (1), the return type 
must be primitive. In cases (2) and (3), the return type 
must be void. 

b. Operations that are used to access knobs and meters are 
properly annotated (beyond the scope of this paper). 

c. IDL annotations combined together form a “proper” 
ABox (beyond the scope of this paper). 

 
Given such constraints, CRF may have no support for 

some legacy SDRs, however, if an SDR is already available 

via CORBA and it follows the above requirements, it can be 
accessed by LiveKB out-of-the box. Note that LiveKB can 
interface numerous SDRs without requiring them to 
implement a specific API and without the need to 
implement an interface-dedicated code. Moreover, when 
radios change their APIs over time, as long as they still 
support the above requirements, they can be interfaced by 
LiveKB, even if the new version is not backwards-
compatible. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
LiveKB has been successfully implemented and used to 
access different radios built on top of the GNU Radio 
framework and executed on the USRP1 platform. Changes 
made to the ontology had to be reflected in the rules, but did 
not require any recoding of the controller. Changes made to 
the radio API required adjusting the IDL annotations, but 
also did not require any recoding of the interface between 
the reasoner and the radio. 
 The benefits of using LiveKB interface to access 
domain software’s parameters are: support for knowledge 
reusability and exchange, significantly smaller effort 
required to adapt to changes, inherent platform-
independence. The drawbacks of using LiveKB include the 
requirement for using CORBA, increased number of triples 
in the reasoner’s KB due to addition of the bridge axioms, 
slightly longer rules and slower bootstrap. LiveKB offers 
great benefits when the APIs are not well standardized and 
are likely to change in the future. This certainly applies to 
the wireless domain, which is a very active area of research 
and new capabilities are likely to be reflected in new APIs. 
 As part of the future work, we will aim to improve the 
matching algorithm in order to support creating bridge 
axioms without requiring IDL annotations, and remove or 
decrease the limitations posed on the IDL models 
implemented by the SDRs.  
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