
Bridging the Gap Between the

Cognitive Engine and the SDR

Jakub Moskal

Mieczysław Kokar

Shujun Li

CR Architecture

Cognitive Engine:

• Genetic algorithms

• Case-Based Reasoning

• Knowledge-Based reasoning

CR operational behavior can be
altered by modifying its
parameters:

• observable Meters, perceptions,
.e.g.:

• bit error rate

• Doppler spread

• noise power

• controllable Knobs, actions, e.g.:
• transmitter power

• modulation type

• bandwidth

• carrier frequency

RF HardwareS
D

R

SDR
Flow diagram

Waveform SoftwareCognitive Engine

Environment

Knobs

Applications

Data

Meters

CR Rules

CR
Ontology

RF HardwareS
D

R

SDR
Flow diagram

Waveform Software
General-purpose

Reasoner

Environment

metersknobs

Applications

Data

Procedural
attachments

Knowledge-based CR

Main components:

1. General-purpose reasoner

(inference engine)

2. Ontology - domain knowledge

described with common terms

and concepts

3. Rules

• declarative form

• out of order execution

• extended with procedural

attachments – imperative

functions (used for accessing

knobs and meters)

Cognitive Engine

• Web Ontology
Language (OWL)
– TBox

– Abox

• OWL and CR:
– TBox – axioms shared

by all radios

– ABox – axioms
pertaining to particular
individual radios

Knowledge Representation: OWL

• Domain experts are not required to know the
SDR implementation details (programming
language, architecture) to write rules

• Rules are declarative, not executed in a
prescribed order – they can be modified
without the need to recompile

• Easier certification and accreditation – once
rules and reasoner are accredited, rules
(policies) can be reused

Knowledge-based CR: Benefits

CR Rules

CR
Ontology

?Procedural
attachments

General-purpose
Reasoner SDRSDRSDR

?

set knobs, i.e.
invoke methods

read meters & represent
them in the KB

multiple &
heterogeneous

Problem Formulation

• Different radios provide different Knobs & Meters (K&M) that need to be accessed by the reasoner

• Lack of standard SDR Application Programming Interface (API)

• Lack of standard CR architecture

Domain-specific API
Reasoner

Procedural

Attachments

SDR Software

Domain-Specific
Controller

createABox()

get_V1, get_V2...get_Vn

Reasoner API

set_V1...set_Vn

Domain API

CORBA

Current CR designs interface SDR

via specific APIs: set_V1, set_V2…

get_V1, get_V2…

Consequences:

• (get) Design-time knowledge

about the ontology is required to

produce appropriate Abox

• (set) Reasoner must be

extended with API-specific

procedural attachments

• The same functionality must be

coded for each radio API

• API-dedicated code must be

maintained as API changes

• API may become a bottleneck

to support compatibility with

legacy components

LiveKB - Motivation

SDR A
SDR A

API

get_txAmplitude()

set_carrierFrequency(2400)

SDR A

Procedural

Attachments

Reasoning

Component

Ontological terms
SDR-specific

method names

get("hasTxAmplitude")

set("hasCarrierFrequency", 2400) LiveKB

invoke("get_txAmplitude")

invoke("set_carrierFrequency", 2400) SDR A
SDR A

API

Generic

Procedural

Attachments

R
e
fl

e
c
ti

o
n

Reasoning

Component

Ontology Matching

• Ontology Matching - the process of finding relationships between entities of
different ontologies

• Alignment – result of matching, includes statements like entity equivalence, sub-
super relationship, class intersection, inverse relation, etc.

• Numerous applications, e.g. data integration, semantic web services
• Different ontology heterogeneity: syntactic, terminological, conceptual, semiotic
• Alignment representation: EDOAL, manipulation: Alignment API
• Fully automated only for rather simple correspondences

LiveKB

Matcher

Generator

Alignment

mediator

IDL Ontology

(TBox)

Answer

SDR IDL

Model

SDR Runtime

IDL2OWL

Request

CR Ontology

(TBox)

Request

Answer

Reasoning

Component

R
e
fl

e
c
ti

o
n

LiveKB – Ideal Design

LiveKB – Feasible Design

condition
find a setter property in the IDL ontology that is equivalent to a knob in the CR ontology

invoke(setter, newValue)

LiveKB

CR Ontology

(TBox)

Reasoning

Component

Annotated

SDR IDL Model

SDR
Runtime

Assisted
Matcher

R
e
fl

e
c
ti

o
n

IDL Ontology

(TBox)

Alignment

Invoker

Generator

CR Ontology

(ABox)

Bridge

Axioms

Request

IDL2OWL

Alignment

Annotations

CR Rules

module api {

 interface SignalDetector {

 attribute float sampleRate;

 };

 interface Transmitter {

 float getNominalRFPower();

 long getTransmitCycle();

 void setTansmitCycle(in long

newTransmitCycle);

 };

 interface TestRadio {

 readonly attribute Transmitter transmitter;

 readonly attribute SignalDetector

signalDetector;

 float getTxAmplitude();

 };

};

Generating IDL Ontology

Bridge Axioms
• An IDL ontology property needs to be maped to a chain of CR ontology properties

• Example of a Bridge Axiom:

 participatesIn ◦ carrierFrequency ◦ hasValue ◦ hasFloat ⊑ Transmitter@carrierFreq

• Chains can be ambiguous:

• hasSubComponent ◦ componentName ⊑ IDLProperty1
• hasSubComponent ◦ componentName ⊑ IDLProperty2

• We add self-restrictions to disambiguate chains:
• hasSubComponent ◦ is_SignalDetector ◦ componentName ⊑ IDLProperty1

• hasSubComponent ◦ is_PowerAmplifier ◦ componentName ⊑ IDLProperty2

• Each getter and setter in IDL must be annotated according to the following pattern:

– Class1.(objectProperty.Class)n.datatypeProperty

• Annotations explicitly indicate the alignment with the CR ontology

• Assisted Matcher generates self-restrictions and creates bridge axioms

Assisted Matcher – IDL annotations

EXAMPLE

module api {
 interface TestRadio {
 // Radio.hasSubComponent.PowerAmplifier.txAmplitude
 float getTxAmplitude();
 };
};

hasSubComponent ◦ is_PowerAmplifier ◦ txAmplitude ⊑ TestRadio@getTxAmplitude

Invoker and Object Tree

module api {
 interface SignalDetector { };
 interface Power { };

 interface Transmitter {
 readonly attribute Power myPower;
 };

 interface TestRadio {
 readonly attribute Transmitter aTransmitter;
 SignalDetector getDetector();
 };
};

Available in CORBA
Naming Service

• IDL interfaces provided by SDR are assumed to form a tree-like structure:
• Vertices – implementations of interfaces
• Edges – interface type attributes or methods with interface return type

• Implementation of the root must be available via CORBA Naming Service
• Could be extended to a forest

• CORBA
– Robust and reliable technology

– Already used in SCA-based radios

– Very efficient (implementations of ORBs in DSPs and
FPGAs

• Alternative: Web Services

– IDL WSDL

– GIOP SOAP

– Naming Service UDDI

– Potential problems: additional middleware for SCA radios,
serialization of binary data, convincing the SDR community

Choice of middleware

module livekb {

 interface LiveKB {

 string getAll();

 any get(in string property);

 void set(in string property, in any value);

 };

 interface LiveKBFactory {

 LiveKB getInstance(in string model,

 in string rootName, in string ontology);

 };

};

LiveKB API – Simple & Generic

• SDR parameters accessible via CORBA

• Run-time objects form a tree-like structure and the root is available via

CORBA Naming Service

• The IDL respects the following constraints:

– Getters have one of the following forms:

• Operations that have no parameters and return primitive value

• Operations that have a single parameter of primitive type, return void and use out

passing direction

• Attributes of primitive types

– Setters have one of the following forms:

• Operations that have a single parameter of primitive type, return void and use in

passing direction

• Attributes of primitive types that are not readonly

– Annotations follow the pattern:

 Class1.(objectProperty.Class[*])n.datatypeProperty

– All annotations allow the Invoker to generate a proper Abox

Requirements

Reasoner
Procedural

Attachments
Reasoner

Procedural

Attachments

LiveKBDomain Software

Domain Software

Domain Controller
createABox()

get_V1, get_V2...get_Vn

Reasoner API

Generic Controller

bootstrap, getAll

Reasoner API

Reflection

set_V1...set_Vn

Domain API LiveKB API

set

CORBA

CORBA

Annotated

IDL

Domain API vs. LiveKB

• Four different scenarios:

1. Ontology has been redesigned – hierarchy changed, available K&M remained the same

2. Ontology has been augmented to include new parameters

3. Switch to a new domain – ontology, rules, domain software replaced

4. Domain software API has changed to a new version, not backwards compatible

Comparison: adaptability

Scenari
o

Domain-API LiveKB

1 Rewrite code that creates Abox Adjust IDL annotations

2
Develop new procedural attachments, add code that
creates new ABox axioms

Add IDL annotations to the new
methods

3
Implemented new domain API, develop new procedural
attachments, implement code that creates Abox

Annotate IDL for the domain ontology

4
Either implement adapter, or re-implement domain API,
update procedural attachments, rewrite code that
generates Abox

Move annotations to the new IDL

• Using LiveKB bootstrap operation is more complex, because LiveKB generates artifacts specific

to the domain software. This operation is performed only once.

• LiveKB also produces additional triples that need to be loaded to reasoner’s KB, it is in the order

of O(i*m*c), where I is the number of IDL interfaces with annotated getters or setters, m is the

number of getters and setters per interface, and c is the length of the annotations

Comparison: complexity
Operation Domain API LiveKB

Bootstrap O(1) O(i*m*c)
i – number of IDL interfaces,
m – number of methods and attributes per interface,
c – length of the annotation related to the method/attribute

getAll Θ(n), n – number of getters Θ(n), n – number of getters

get O(1) O(1)

set O(1) O(1)

Conclusions

• Benefits of using LiveKB:
• Support for knowledge reusability and exchange
• Relatively small effort to adapt to changes
• Inherent domain and platform-independence

• Drawbacks of using LiveKB:

• Requirement to use CORBA
• Increased number of facts in the KB (bridge axioms)
• Slower bootstrap

• Use of LiveKB is recommended in domains that lack standards, and where

changes are likely to happen in the future – Cognitive Radio is a good match

SDR’10 Demo
• LiveKB was successfully showcased at the SDR’10 Technical Conference
• An image was sent pixel-by-pixel to generate data traffic
• Radios performed collaborative link optimization, exchanged facts and rules
• Meters were accessed and knobs modified using LiveKB

Thank You

