Predictive scheduling of job
combinations in SDR systems

David Guevorkian
Tampere University of Technology, Finland
and
Jan Westmeijer
mimoOn GmbH, Duisburg, Germany

Presented by Jarmo Takala
Tampere University of Technology, Finland



Outline

Introduction

SDR as a piece-wise stationary application
Timing policies in scheduler design
Predictive scheduling approach

Analysis

Conclusion



Introduction

» In SDR systems, different combinations of radios must
be implemented on top of a shared computational
platform.

» Each radio (job) consists of a number of algorithms
(tasks) having strict real-time constraints.

» Computational platform typically consists of several
types of processing elements and HW accelerators.

» Efficient scheduler design is essential for the SDR
system.

» Our target is not only schedulability of different radio
combinations but also efficiency in terms of HW and
power utilization



SDR: a piece-wise stationary application

» There are relatively small number of jobs (radios) to
support in an SDR system.

» Each job is more or less stationary with approximately
fixed sequence of tasks (algorithms) with predictable
WOors-case execution times.

» However, the overall system is far not stationary due to
unpredictable sequence of switching radios On/Off.

» We shall call “piece-wise stationary” those applications
where several stationary jobs may be initiated or
terminated at arbitrary time instances.

» Relatively long periods of static states but with
unpredictable changes between these states.



SDR: other specific features

» Because radios should run smoothly when radio
combinations are changed, different schedules for the
same job combination may be the most suitable depending
on the histoty of job combinations:

» Off-line (complile time) pre-design of schedules for all possible job
combinations is infeasible.

» Execution times of radio algorithms (tasks) are very short:

» Loading times of the programs for tasks are comparable to their
execution times.

» Real-time constraints are very hard and strict:

» In run-time, there is really short time to create schedules and
optimize them in the sense of HW or power utilization;



Timing policies in scheduler design

Schedule creation implies three main steps:

processor assignment where a decision is made on
allocating tasks to processors or hardware accelerators;

decision on the order of execution of tasks on each
processor or hardware accelerator;

decision on the firing (or, equivalently, execution) times of
each actor (task).

Each of these steps can be implemented either on
compile time (static approach) or on run-time
(dynamic approach):

We call the decision on when to implement each of
these steps, the timing policy of scheduler design.



Conventional timing policies

Fully dynamic: run-time decision on processor assignment, task ordering and task

firing times.

Static assignment: compile time decision on processor assignment; run-time
decision on task ordering and on firing instances.

Quasi-static: compile time decision on processor assignment and partially on task
ordering and firing instances; partially run-time decision on task ordering and firing
instances (for data dependent tasks)

Self-timed: compile time decision on processor allocation (but not on processor
communication) and on task ordering; run-time decision on task firing instances.

Ordered transaction: compile time decision on processor assignment, and
processor communication as well as on task ordering; run-time decision on task
firing instances.

Fully static: compile time decision on processor assignment, task ordering and task

firing times



In partially dynamic scheduling approach, the schedules are created at
reconfiguration time according to the change in the set of currently running
radios and according to previous state.

Real-time constraint significantly limits such approach:

— Even if a valid schedule may be created in an acceptable time, no sophisticated
optimization technique may be applied.
One possibility is to pre-create all schedules for all changes in radio
combinations. In an SDR system with M radios 22(22M) schedules must be
created and stored. Obviously infeasible.

The idea of predictive scheduling approach is to create and store all possible
radio combinations that may arise from current set of running radios by
switch on/off of a single radio.

This allows of optimizing the schedules until the change (switch-on/off)
OCCurs;

Once the change occurs, the corresponding schedule is loaded and schedules
for all potential radio combinations are created.

In an SDR system with M radios, M (instead of 24(22M) ) schedules have to be
created each time




" Predictive scheduling

Supported jobs are

Ji: 5, dp The system is idle

A job reconfiguration is requested, i.e. a job J, is activated

\4

Download the schedule for the
Current Set of Jobs CSJ={J, }

Schedules for all n individual jobs

A

are predefined at compile time.

Run the system for the Current Set of
Jobs until a job reconfiguration request.

\ 4

v

Create and store schedules for all
possible sets of jobs that may occur
after the Current Set of Jobs CSJ.

activated or a job is terminated.

A job reconfiguration is requested, i.e. a job is

!

Download thevschedule for
the new Current Set of Jobs




Example

Set of supported radios:
R1, R2, R3.

Current radio Combination:
(R1, R3)

R1 switched off

R2 switched on

Download and run schedule for
(R1, R3).
In parallel create and store schedules for
(R1), (R3), (R1,R2,R3)

Download and run schedule for
(R3).
In parallel create and store schedules for
(No radio), (R1,R3), (R2,R3)

Download and run schedule for
(R2, R3).
In parallel create and store schedules for
(R2), (R3), (R1,R2,R3)




Analysis

4

Applicable to piece-
wise stationary
applications

The proposed | Prior art
pro

Fully dynamic

Applicable

to any

Static assignment

applicatio

Quasi-static

Self-timed

Predictive

]

Generality

Ordered transaction

Fully static

N

Applicable to stationary
applications

v

Run-time overhead



Conclusion

New timing policy for schedule creation is proposed.

Schedules are dynamically created every time when system’s
steady state is changed.

The proposed method suits well to scheduler design for SDR
systems because it requires minimal overhead and allows dynamic
creation of optimized schedules with respect to the history of the
system evolution.

The proposed method considers only the timing policy.

It may be combined to any actual scheduling rule such as fixed-
priority or Round Robin scheduling rules.

To evaluate the impact of the proposed method quantitatively,
several actual scheduling policies could be implemented in
combination with the proposed timing policy and experimented.



