
A Proposed API for the Information Plane of the

WSN Integrated Technical Reference Model (I-TRM)

Babak D. Beheshti

Electrical & Computer Engineering Technology

New York Institute of Technology

Old Westbury, New York, USA

bbehesht@nyit.edu

Howard E. Michel

Electrical & Computer Engineering Department

University of Massachusetts Dartmouth

North Dartmouth, MA, USA

hmichel@umassd.edu

Abstract— The Integrated Technical Reference Model (I-TRM)

for an autonomous Wireless Sensor Network (WSN) has been

developed to be used as a guideline to develop a unified and

standardized architecture for a diverse array of multi-platform

WSNs. Based on the I-TRM proposed by Michel and Fortier,

there are three planes to this reference model: The Information

Plane, the Control Plane and the Behavior Plane. This reference

model lays out a detailed layered model with functional

description of each layer described in general terms. The

Information Plane puts forward the information processing side

of the system. The main focus is on data collection, information

aggregation, knowledge generation and presentation. It shows

how data is transformed into knowledge.

This paper presents the follow up research performed on this I-

TRM, by providing a platform independent API to aid designers

of WSNs to develop a codified implementation of WSNs. The API

has been implemented using nesC in a TinyOS environment,

running on the Berkeley Motes.

Keywords-component; wireless sensor networks; reference

model; API

I. INTRODUCTION

WSNs are networks of tens, hundreds or thousands of
“Sensor Nodes”. Sensor Nodes are miniature size devices that
are equipped with one or more sensors, measuring
environmental elements such as temperature, light, vibration,
humidity etc. Integrated with low cost and low power wireless
communication modules, Sensor Nodes are designed to be
limited in storage, computational resources and total energy
available. A common sensor node platform used in the research
community is the Crossbow Mote, shown in Figure 1. These
low cost nodes can be strewn, or carefully placed in a
deployment zone, allowing for collection, aggregation and
communication of environmental data between themselves and
ultimately to a user station. Sample applications are
environmental monitoring in buildings, forest fires, volcanoes,
battlegrounds, storms, underwater and other hostile
environments.

WSNs are rapidly expanding in deployment in an
astounding variety of applications. The effort involved in
developing and productizing non-reusable code for WSNs that
are based on a multitude of hardware platforms, operating
systems and models is non-trivial and has lead researchers to

find solutions to standardize the design philosophy and the
design approach of WSNs.

Figure 1 - The MicaZ Crossbow Berkely Mote

The I-TRM proposed by Michel and Fortier attempts to
standardize the structure of applications running on a sensor
network based on a layered model. In this paper we specify the
information face of this model in further detail by augmenting
to its layer based definition, a set of API that can be used as a
programmer’s guideline for implementing these layers.

Figure 2 - A Possible WSN Hierarchy

II. PROBLEM DEFINITION

The concept of an integrated TRM for WSNs is a novel
idea introduced by [3]. No other comprehensive WSN
reference model has been proposed by others. This novel I-
TRM, however has been so far defined in terms of generic
responsibilities of individual layers and the overall relationship
of the three faces of the model. No work has been done to take

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

407

mailto:bbehesht@nyit.edu
mailto:hmichel@umassd.edu

the I-TRM to the next level of specifity and to propose a
reference API for all appropriate layers.

The research work proposed here is to build on the
foundations of the I-TRM, as laid out in [1] and [2], but to
bring the existing foundations to a complete framework, along
with a real system implementation of the framework. The
functional decomposition of each layer and the interlayer
interaction needs to be developed and specified. Based on the
current work published in the literature, an API for the layered
I-TRM model is to be developed, as well as inner workings of
each layer is to be sufficiently outlined. This API, while
generic and expandable, must contain sufficient level of
specification in order to make it directly implementable in a
test platform.

Once these technical specifications are complete, an
embodiment of them will be implemented in a sample WSN.
The current plan is to implement the layers 1 and 2 of the I-
TRM, in the Micaz motes by utilizing and expanding the
current TinyOS infrastructure and programming paradigm
already in place. These motes will constitute the “Sensor
Nodes”. Similarly, layers 3 through 6 are to be implemented in
a combination of a mote and a laptop. This would constitute the
“Root Node” of the WSN.

The main objectives of this research project are as follows:

1. Based on the current state of the art in the literature, define

an API definition for all relevant layers of the I-TRM. It is
understood that while this API might not address all
possible implementations of the I-TRM across the
spectrum of applications, it should provide for a guideline
for a programmer to be able to implement physical WSN
utilizing the I-TRM.

2. In order to validate the proposed API (in the context of the
I-TRM), develop a full WSN system, demonstrating a
significant subset of the API’s offerings. This WSN will
have the following components:

a. Sensor node source code developed for a sample
WSN system based on a commercially available
sensor node platform, implementing the proposed
I-TRM API.

b. Source code developed for the Root Node,
implementing the proposed I-TRM API.

c. Infra-structure code providing seamless
communication between all system components,
as well as to a Windows™ based graphical user
interface.

3. Collect performance data and statistics from the
implemented system (e.g. code and data size, energy
consumption, ease of programmability, …) to provide
direction for future work on the I-TRM.

This research is work in progress and in future papers we
will describe the API definition and implementation of other I-
TRM faces. Also experimental results of the overall system
implementation are part of future plans for this work.

III. API DEFINITION

Figure 3 below illustrates the six layers of the information

face of the I-TRM. As with any other layered model, the lower
layers act as service providers to upper layers and as we go up
in layers the level os generality of functionality increases. That
is the lowest layer (physical layer) deals with most concrete
physical level of data acquisition, where as layers above it deal
with increasingly more complex issues in transforming data
into information. In this section we will describe the function
of each layer and the API associate with it.

Figure 3 - Information Plane of the I-TRM

A. Physical Layer:

This layer constitutes sensors and mechanical units. It
gathers raw data in unformatted, unverified and transitory
format. It deals with the electrical, mechanical and procedural
characteristics. Metadata associated with the physical layer
would be the sensor type, serial number, location, and
calibration status. This meta-data would generally exist in a
stable form as part of the physical sensor.

Implementation of this layer would include the metadata
included in Table 1. The API for this layer would include
functions such as DataReady(), in the same split phase form as
in TinyOS. That is, whenever a data sample is available, the
event DataReady() will be created, signaling availability of an
A/D data sample. Furthermore specific sensors would have
been known at this point to the I-TRM and therefore
enumerated and identifiable. There would be also methods
available to provide the metadata alone, data with all or a select
subset of metadata and data alone. These events will be
generated in response to a family of API from the C-TRM
having the general form of GetData().

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

408

Metadata Description

Type Sensor type (e.g. temperature)

Manufacturer Sensor manufacturer

Model Sensor model name

Sample size

The size of the generated sample

Sample type The type of sample (e.g. integer)

AD resolution

A/D resolution (Number of bits)

Sample rate The sample rate (per second)

Sample rate divider 1 if per second, other int (10, 100…)

for slower rates

Location Location of sensor

Calibration Status Calibrated or not

Last Calibration Date Numeric form of "yyyy-mm-dd
hh:mm:ss"

Table 1 - IC-TRM Layer 1 Metadata

B. Data Layer:

This layer extracts and transforms data into digital forms
and checks the authenticity of the measurements. The voltage
from the physical layer is transformed into a byte or a word
using a proscribed (although possibly variable) process
involving amplifiers, filters and analog to digital converters.
Variable parameters could include sampling rate, digitization
accuracy, filter cutoff frequency, amplifier gain, etc. Meta-data
generated at this level could include these parameters, plus a
time tag, a verification bit to indicate that the sensor is
calibrated and operating properly, etc. Meta-data from the
physical layer and data layer would be bundled with the data to
form an informative data packet.

API of this layer would include the capability to have the
metadata included in

Table 2 be partially or fully sent with the sensor data.

Metadata Description

Measurement_ID Unique identified for this

measurement group (e.g.

temperature, humidity, pressure1,
pressure2, …)

Time Tag Time tag of sample taken:

Numerical form of "yyyy-mm-dd

hh:mm:ss:zzz"

Filter Cutoff Frequency Where applicable, the cut off
frequency of the low pass filter

Amplifier Gain Where applicable, the amplifier gain

of the amplifier after the ADC

Table 2 - IC-TRM Layer 2 Metadata

C. Information Layer:

The third layer correlates data with scaling, location, type
of measurement, etc, to produce information about the system
or environment. the data and metadata from the data layer
would be combined to produce information that reports, for
example, the temperature at the 12 O’clock position in the
combustion chamber of the number one engine was 1000

o
F at

T+1.0 seconds from test start, and that this measurement should
be believed with a high degree of confidence.

This layer will have two modes: Transparent Mode and
Report Mode. In Transparent Mode, it passes the layer 2 data
(and possibly metadata upon request) directly up to layer 4. On
the other hand, in Report Mode, this layer uses the data and
metadata from layer 2 to create an xml format report. The text
string associated with this report can be used directly to
generate a sequence of data reports used by applications.

In the Report Mode, the data reported from this layer would
have at the minimum, the information listed in

Table 3.

Information Description

Measurement ID Unique identified for this measurement group

(e.g. temperature, humidity, pressure1,

pressure2, …)

Sensor Data Actual sensor data obtained from layer 2

Layer 1 Metadata Optional Field

Layer 2 Metadata Optional Field

Confidence Level enum (High, Med, Low)

This is obtained by a sliding scale of date of

last calibration as well as other environmental

factors that may affect performance of the

sensor. Details of decision thresholds are

implementation specific.

Table 3 - IC-TRM Layer 3 Reported Sensor Data

D. Aggregation Layer:

The fourth layer is focused on goal-directed merging of
information from various sources, as directed by the
requirements of the system or subsystem. For example,
readings from multiple temperature sensors, with synchronized
time-tags, could be combined to give an instantaneous view of
the temperature gradients within the combustion chamber.
Additionally, a moving window of a time-sequenced series of
readings could be combined to provide the dynamic response to
changes in the system. Temperatures, pressures and fuel flows
could be combined to create a measure of engine efficiency.

The API for this layer is a set of reported outcomes, based
on the particular data fusion, estimation or aggregation method
specified in the C-TRM API to this layer. For example if the C-
TRM (control face of the I-TRM) layer had requested a data
aggregation by taking the moving average of the last N samples
and reporting only the average, this API would report the data
and the metadata which precisely identifies the meaning and
method of derivation of the reported data. Table 4 lists the
metadata associated with the data reported from this layer.

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

409

Metadata Description

Measurement_ID Unique identified for this measurement group (e.g.

temperature, humidity, pressure1, pressure2, …)

General Method General approach taken to reduce the data. This is from

an enumerated list.

Specific Method The specific method of data reduction employed. For

example, for aggregation we can have average, min,
max, …

Specific

Parameters
This field identifies the parameters and constraints of

each specific method used in data reduction in this

layer

Table 4 - IC-TRM Layer 4 Metadata

E. Knowledge Layer:

This later transforms aggregated information into
knowledge by processing against intrinsic and extrinsic
information and knowledge available. If the engine temperature
approached or exceeded this value, warnings could be issued,
or commands could be issued to lower layers in the T&E
system to increase sampling rate or accuracy of the engine
temperature sensors so a more accurate post-test analysis could
be conducted. It should be noted that the knowledge extracted
from the lower layers in the IC-TRM will be used to issue the
commands by the other TRM faces, and NOT the I-TRM.

The knowledge extraction can be in the form of any of the

following rules. Additional rules can be added to this layer per

specific application implementation.

 Average value for a subset of sensors has exceeded a

certain threshold (re-active)

 The variance (or standard deviation) for a subset of

sensors has exceeded a certain threshold – indicating an

unstable sensor or sensors (re-active)

 The trend in the last N samples is upwards/downwards,

towards an alarming threshold (pro-active)

 Data collected indicates detection of start of an “activity”

and thereby requiring change in measurement parameters

or engaging additional sensors/mechanisms (pro-active)

The API will comprise of a set of enabling conditions (as

listed above and an event report to the B-TRM indicating the

specified condition has been met.

Rule List Rule Types

IC_L5_Event_Report enum {

 Average_Exceeded,

 StdDev_Exceeded,
 Trend_Alarm,

 Activity_Start_Detected,

 Other
} ICTRM_L5_Rule_List_t;

Table 5 - IC-TRM Layer 5 Rules

API Argument C Data Type

IC_L5_Rule_Specify

(Specific Rule for a

measurement type

being monitored)

Measurement

ID

int

 Rule ID int

 Rule See Error! Reference source not found.

 Rule

Arguments

struct

{

 int threshold;

} Average_Exceeded_Params_ICTRM_L5_t;

 struct

{

 int threshold;

} StdDev_Exceeded_Params_ICTRM_L5_t;

 struct

{

 int threshold;

 int trend; //upward or downward

 int window_size; //num of samples back

 int percent_proximity; //how close

} Trend_Alarm_Params_ICTRM_L5_t;

 struct

{

 // an activity is simply a combination

 // of individual rules

 int rule_ID_1;

 int rule_ID_2;

 int rule_ID_3;

 int rule_ID_4;

 int rule_ID_5;

 int *additional_rules;

}

Activity_Start_Detected_Params_ICTRM_L

5_t;

Table 6 - IC-TRM Layer 5 API Arguments

F. Application/Presentation Layer:

The uppermost layer provides a means for the user to access

and use information from the system in a consistent format.

All event reports of layer 5 are made available to the

applications via this layer. This layer will provide a universal

and standard interface to all applications utilizing the I-TRM.

This interface is based on XML. Extensible Markup Language

(XML) is a way to apply structure to a web page. XML

provides a standard open format and mechanisms for

structuring a document so that it can be exchanged and

manipulated. XML offers a standard open format for

communities to develop structured mechanisms for marking

text and data to facilitate the exchange and manipulation of

documents among the community members.

A markup language is the set of rules. It declares what

constitutes markup in a document, and defines exactly what

the markup means. It also provides a description of document

layout and logical structure.

IV. IMPLEMENTATION

A. Software Organization

 The implementation of this platform is based on a

three tiered software architecture:

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

410

1. The sensor mote software: This tier of the software

resides in the sensor motes. As can be seen in

2. Figure 4, this tier in itself is composed of two sub-tiers:

2.1. Layers 1 and 2 that reside in the sensor motes. These

motes are the components responsible for ALL data

collection in the WSN.

2.2. Layers 3 and 4 that reside in Cluster Heads. Cluster

Heads are essentially sensor motes with perhaps

additional computing and storage resources. In a test

environment, Cluster Heads can be nothing more

than a sensor mote attached to a portable/embedded

PC.

Figure 4 - Location of Software Layers in the WSN Components

3. The user interface: This tier runs as a Windows™ or

Linux based application that through its graphical user

interface provides the end user visibility into the WSN

information collection, and control of the WSN’s

behavior. Figure 5 illustrates a prototype user interface

written in Microsoft Visual Basic™ Express 2008. This

tier communicates to the Cluster Heads through the USB

interface of the PC on one side, and to the backend server

tier through a TCP/IP socket interface on the other. This

tier does not contain any decision making intelligence. It

acts as a conduit and data format converter, gluing the

field deployed portions of the WSN to the user as well as

the analysis engine.

Figure 5 - User Interface Screen Capture

4. The backend server: This program contains the layers 5

and 6 of all faces of the I-TRM (Control, Information and

Behavioral). It communicates to the user interface tier

through a socket interface. This tier therefore can run

remotely from the WSN deployment field, away from

potential physical hazards.

The infrastructure software for the sensor motes are as

follows:

Operating System: TinyOS is an open source, BSD-
licensed operating system designed for low-power wireless
devices, such as those used in sensor networks, ubiquitous
computing, personal area networks, smart buildings, and smart
meters. A worldwide community from academia and industry
use, develop, and support the operating system as well as its
associated tools, averaging 35,000 downloads a year.

Routing and networking: XMesh is a full featured multi-
hop, ad-hoc, mesh networking protocol developed by
Crossbow for wireless networks. An XMesh network consists
of nodes (Motes) that wirelessly communicate and are capable
of hopping radio messages to a base station where they are in
range. The hopping effectively extends radio communication

and reduces the power required to transmit messages.

B. Hardware Organization

 As can be seen in Figure 6, the test platform consists

of N sensor motes that constitute the WSN. A mote,

programmed as the base station, collects all upstream packets

and forwards them to the user interface in the laptop. In turn,

all downstream packets originating from the backend server,

are routed through the user interface to the base station and to

the intended sensor nodes.

Figure 6 - I-TRM Test Platform Hardware Organization

V. CONCLUSION

As has been shown partially in this paper the I-TRM API is
platform independent as well as application agnostic. It can
easily adapt to any application by customizing the data
structure containing the application specific parameters passing
its address to the pointer in the API calls. Very much like the
pthreads and other standardized API, the inner workings of the
API are abstracted away from the callers, with one major
difference that here the inner workings are NOT implemented

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

411

only once, but are developed for each custom application. The
positive and negative impacts of this API on a system
performance are for future study once a full implementation of
the system is available. This is mainly because I_TRM does not
operate at physical and data link layers. Consequently
simulation tools cannot model the complex system level effects
of the protocol.

VI. FUTURE WORK

Future work in this research is development of an API for
the behavior and control faces of the technical reference model
(namely B-TRM and C-TRM). Based on specifications of all
three faces of the I_TRM, we plan to complete the design and
coding a fully functional WSN based on this model.

VII. REFERENCES

[1] Fortier, P., & Michel, H. (2005). Comparison of the EI TRM versus
TENA. ITEA Technology Review Workshop. Atlanta, GA.

[2] Dipple, H., & Michel, H. (2006). The Control Technical Reference
Manual. International Conference on Artificial Intelligence. Las Vegas.

[3] Joshi, H., & Michel, H. (2007). Integrating Information-Centric,
Control-Centric and Behavior-Centric Technical Reference Models for
Autonomous Sensor Networks. Proceedings of the 2007 International
Conference on Wireless Networks ICWN, (pp. 319-324). Las Vegas,
NV.

[4] Joshi, H. (2008). Autonomous Mobile Sensor Networks Architecture for
Hazard Detection and Surveillance. Dartmouth, MA: M.S.,University of
Massachusetts Dartmouth.

[5] Michel, H., & Joshi, H. (2008). A Sensor Network Architecture:
Information, Control and Behavior Definitions for Large-Scale or
Systems-of-Systems Testing. Journal of the International Test and
Evaluation Association , 29 (4).

[6] Joshi, H., & Michel, H. (2008). Integrated Technical Reference Model
and Sensor Network Architecture. International Conference on Wireless
Networks. Las Vegas, NV.

[7] Beheshti, B., & Michel, H. (2011). Middleware/API and Data Fusion in
Wireless Sensor Networks. IEEE Long Island Systems, Applications and
Technology Conference. Farmingdale.

Biographies

Babak is a faculty member in the School of
Engineering and Computing Sciences, New York
Institute of Technology, Old Westbury, New York,
where he has served since 1987.

Babak received his BEEE and MSEE both in Electrical
Engineering from State University of New York at

Stony Brook, in 1985 and 1987, respectively. Babak is author of
numerous articles and papers, and has presented in many conferences on
topics ranging from engineering education to wireless systems. Babak is
a recipient of the IEEE Millennium Medal, two IEEE Region 1 awards,
two IEEE Long island Section awards and the Ellis College Excellence
in Teaching Award. Babak is a member of Tau Beta Pi engineering
honor society, and Eta Kappa Nu electrical engineering honor society.

Dr. Howard E. Michel is associate professor of
electrical and computer engineering at the University
of Massachusetts Dartmouth.

He retired from the U.S. Air Force in 1994, having
served as a pilot, satellite launch director, engineer and
engineering manager. Other achievements include
successfully launching seven satellites by directing
launch-base test and integration involving booster,

satellite, and range hardware; and developing Department of Defense
engineering processes for mission-critical computer systems. Michel is
currently a consultant for the U.S. Navy in the area of embedded
instrumentation and architectures.

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

412

