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Abstract— The Integrated Technical Reference Model (I-TRM) 

for an autonomous Wireless Sensor Network (WSN) has been 

developed to be used as a guideline to develop a unified and 

standardized architecture for a diverse array of multi-platform 

WSNs. Based on the I-TRM proposed by Michel and Fortier, 

there are three planes to this reference model: The Information 

Plane, the Control Plane and the Behavior Plane. This reference 

model lays out a detailed layered model with functional 

description of each layer described in general terms. The 

Information Plane puts forward the information processing side 

of the system. The main focus is on data collection, information 

aggregation, knowledge generation and presentation. It shows 

how data is transformed into knowledge. 

This paper presents the follow up research performed on this I-

TRM, by providing a platform independent API to aid designers 

of WSNs to develop a codified implementation of WSNs. The API 

has been implemented using nesC in a TinyOS environment, 

running on the Berkeley Motes. 

Keywords-component; wireless sensor networks; reference 

model;  API 

I.  INTRODUCTION 

WSNs are networks of tens, hundreds or thousands of 
“Sensor Nodes”. Sensor Nodes are miniature size devices that 
are equipped with one or more sensors, measuring 
environmental elements such as temperature, light, vibration, 
humidity etc. Integrated with low cost and low power wireless 
communication modules, Sensor Nodes are designed to be 
limited in storage, computational resources and total energy 
available. A common sensor node platform used in the research 
community is the Crossbow Mote, shown in Figure 1. These 
low cost nodes can be strewn, or carefully placed in a 
deployment zone, allowing for collection, aggregation and 
communication of environmental data between themselves and 
ultimately to a user station. Sample applications are 
environmental monitoring in buildings, forest fires, volcanoes, 
battlegrounds, storms, underwater and other hostile 
environments.  

WSNs are rapidly expanding in deployment in an 
astounding variety of applications. The effort involved in 
developing and productizing non-reusable code for WSNs that 
are based on a multitude of hardware platforms, operating 
systems and models is non-trivial and has lead researchers to 

find solutions to standardize the design philosophy and the 
design approach of WSNs.  

 
Figure 1 - The MicaZ Crossbow Berkely Mote 

 
The I-TRM proposed by Michel and Fortier attempts to 
standardize the structure of applications running on a sensor 
network based on a layered model. In this paper we specify the 
information face of this model in further detail by augmenting 
to its layer based definition, a set of API that can be used as a 
programmer’s guideline for implementing these layers.  

 

 
 

Figure 2 - A Possible WSN Hierarchy 

 

II. PROBLEM DEFINITION 

The concept of an integrated TRM for WSNs is a novel 
idea introduced by [3]. No other comprehensive WSN 
reference model has been proposed by others. This novel I-
TRM, however has been so far defined in terms of generic 
responsibilities of individual layers and the overall relationship 
of the three faces of the model. No work has been done to take 
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the I-TRM to the next level of specifity and to propose a 
reference API for all appropriate layers.  

The research work proposed here is to build on the 
foundations of the I-TRM, as laid out in [1] and [2], but to 
bring the existing foundations to a complete framework, along 
with a real system implementation of the framework. The 
functional decomposition of each layer and the interlayer 
interaction needs to be developed and specified. Based on the 
current work published in the literature, an API for the layered 
I-TRM model is to be developed, as well as inner workings of 
each layer is to be sufficiently outlined. This API, while 
generic and expandable, must contain sufficient level of 
specification in order to make it directly implementable in a 
test platform. 

Once these technical specifications are complete, an 
embodiment of them will be implemented in a sample WSN. 
The current plan is to implement the layers 1 and 2 of the I-
TRM, in the Micaz motes by utilizing and expanding the 
current TinyOS infrastructure and programming paradigm 
already in place. These motes will constitute the “Sensor 
Nodes”. Similarly, layers 3 through 6 are to be implemented in 
a combination of a mote and a laptop. This would constitute the 
“Root Node” of the WSN. 

The main objectives of this research project are as follows: 

 
1. Based on the current state of the art in the literature, define 

an API definition for all relevant layers of the I-TRM. It is 
understood that while this API might not address all 
possible implementations of the I-TRM across the 
spectrum of applications, it should provide for a guideline 
for a programmer to be able to implement physical WSN 
utilizing the I-TRM. 

2. In order to validate the proposed API (in the context of the 
I-TRM), develop a full WSN system, demonstrating a 
significant subset of the API’s offerings. This WSN will 
have the following components: 

a. Sensor node source code developed for a sample 
WSN system based on a commercially available 
sensor node platform, implementing the proposed 
I-TRM API. 

b. Source code developed for the Root Node, 
implementing the proposed I-TRM API. 

c. Infra-structure code providing seamless 
communication between all system components, 
as well as to a Windows™ based graphical user 
interface.  

3. Collect performance data and statistics from the 
implemented system (e.g. code and data size, energy 
consumption, ease of programmability, …) to provide 
direction for future work on the I-TRM. 

This research is work in progress and in future papers we 
will describe the API definition and implementation of other I-
TRM faces. Also experimental results of the overall system 
implementation are part of future plans for this work. 

III. API DEFINITION 

 
Figure 3 below illustrates the six layers of the information 

face of the I-TRM. As with any other layered model, the lower 
layers act as service providers to upper layers and as we go up 
in layers the level os generality of functionality increases. That 
is the lowest layer (physical layer) deals with most concrete 
physical level of data acquisition, where as layers above it deal 
with increasingly more complex issues in transforming data 
into information. In this section we will describe the function 
of each layer and the API associate with it. 

 

 
Figure 3 - Information Plane of the I-TRM 

A. Physical Layer:  

This layer constitutes sensors and mechanical units. It 
gathers raw data in unformatted, unverified and transitory 
format. It deals with the electrical, mechanical and procedural 
characteristics. Metadata associated with the physical layer 
would be the sensor type, serial number, location, and 
calibration status.  This meta-data would generally exist in a 
stable form as part of the physical sensor. 

Implementation of this layer would include the metadata 
included in Table 1. The API for this layer would include 
functions such as DataReady(),  in the same split phase form as 
in TinyOS. That is, whenever a data sample is available, the 
event DataReady() will be created, signaling availability of an 
A/D data sample. Furthermore specific sensors would have 
been known at this point to the I-TRM and therefore 
enumerated and identifiable. There would be also methods 
available to provide the metadata alone, data with all or a select 
subset of metadata and data alone.  These events will be 
generated in response to a family of API from the C-TRM 
having the general form of GetData(). 
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Metadata Description 

Type  Sensor type (e.g. temperature) 

Manufacturer  Sensor manufacturer 

Model  Sensor model name 

Sample size  

 

The size of the generated sample 

Sample type  The type of sample (e.g. integer) 

AD resolution  

 

A/D resolution (Number of bits) 

Sample rate  The sample rate (per second) 

 

Sample rate divider 1 if per second, other int (10, 100…) 

for slower rates 

Location Location of sensor 

Calibration Status Calibrated or not 

Last Calibration Date Numeric form of "yyyy-mm-dd 
hh:mm:ss" 

Table 1 - IC-TRM Layer 1 Metadata 
 

B. Data Layer:  

This layer extracts and transforms data into digital forms 
and checks the authenticity of the measurements. The voltage 
from the physical layer is transformed into a byte or a word 
using a proscribed (although possibly variable) process 
involving amplifiers, filters and analog to digital converters.  
Variable parameters could include sampling rate, digitization 
accuracy, filter cutoff frequency, amplifier gain, etc.  Meta-data 
generated at this level could include these parameters, plus a 
time tag, a verification bit to indicate that the sensor is 
calibrated and operating properly, etc.  Meta-data from the 
physical layer and data layer would be bundled with the data to 
form an informative data packet. 

API of this layer would include the capability to have the 
metadata included in  

Table 2 be partially or fully sent with the sensor data. 

 

Metadata Description 

Measurement_ID Unique identified for this 

measurement group (e.g. 

temperature, humidity, pressure1, 
pressure2, …) 

Time Tag Time tag of sample taken: 

Numerical form of "yyyy-mm-dd 

hh:mm:ss:zzz" 

Filter Cutoff Frequency Where applicable, the cut off 
frequency of the low pass filter 

Amplifier Gain Where applicable, the amplifier gain 

of the amplifier after the ADC 

 

Table 2 - IC-TRM Layer 2 Metadata 
 

C. Information Layer:  

The third layer correlates data with scaling, location, type 
of measurement, etc, to produce information about the system 
or environment. the data and metadata from the data layer 
would be combined to produce information that reports, for 
example, the temperature at the 12 O’clock position in the 
combustion chamber of the number one engine was 1000

o
F at 

T+1.0 seconds from test start, and that this measurement should 
be believed with a high degree of confidence.   

This layer will have two modes: Transparent Mode and 
Report Mode. In Transparent Mode, it passes the layer 2 data 
(and possibly metadata upon request) directly up to layer 4. On 
the other hand, in Report Mode, this layer uses the data and 
metadata from layer 2 to create an xml format report. The text 
string associated with this report can be used directly to 
generate a sequence of data reports used by applications. 

In the Report Mode, the data reported from this layer would 
have at the minimum, the information listed in  

Table 3. 

 

 

Information Description 

Measurement ID Unique identified for this measurement group 

(e.g. temperature, humidity, pressure1, 

pressure2, …) 

Sensor Data Actual sensor data obtained from layer 2 

Layer 1 Metadata Optional Field 

Layer 2 Metadata Optional Field 

Confidence Level enum (High, Med, Low) 

This is obtained by a sliding scale of date of 

last calibration as well as other environmental 

factors that may affect performance of the 

sensor. Details of decision thresholds are 

implementation specific. 

 

Table 3 - IC-TRM Layer 3 Reported Sensor Data 

 

D. Aggregation Layer:  

The fourth layer is focused on goal-directed merging of 
information from various sources, as directed by the 
requirements of the system or subsystem. For example, 
readings from multiple temperature sensors, with synchronized 
time-tags, could be combined to give an instantaneous view of 
the temperature gradients within the combustion chamber.  
Additionally, a moving window of a time-sequenced series of 
readings could be combined to provide the dynamic response to 
changes in the system.  Temperatures, pressures and fuel flows 
could be combined to create a measure of engine efficiency.   

The API for this layer is a set of reported outcomes, based 
on the particular data fusion, estimation or aggregation method 
specified in the C-TRM API to this layer. For example if the C-
TRM (control face of the I-TRM) layer had requested a data 
aggregation by taking the moving average of the last N samples 
and reporting only the average, this API would report the data 
and the metadata which precisely identifies the meaning and 
method of derivation of the reported data. Table 4 lists the 
metadata associated with the data reported from this layer. 
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Metadata Description 

Measurement_ID Unique identified for this measurement group (e.g. 

temperature, humidity, pressure1, pressure2, …) 

General Method  General approach taken to reduce the data. This is from 

an enumerated list. 

 

Specific Method  The specific method of data reduction employed. For 

example, for aggregation we can have average, min, 
max, … 

Specific 

Parameters 
This field identifies the parameters and constraints of 

each specific method used in data reduction in this 

layer 

Table 4 - IC-TRM Layer 4 Metadata 

 

E. Knowledge Layer:  

This later transforms aggregated information into 
knowledge by processing against intrinsic and extrinsic 
information and knowledge available. If the engine temperature 
approached or exceeded this value, warnings could be issued, 
or commands could be issued to lower layers in the T&E 
system to increase sampling rate or accuracy of the engine 
temperature sensors so a more accurate post-test analysis could 
be conducted. It should be noted that the knowledge extracted 
from the lower layers in the IC-TRM will be used to issue the 
commands by the other TRM faces, and NOT the I-TRM. 

The knowledge extraction can be in the form of any of the 

following rules. Additional rules can be added to this layer per 

specific application implementation. 

 Average value for a subset of sensors has exceeded a 

certain threshold (re-active) 

 The variance (or standard deviation) for a subset of 

sensors has exceeded a certain threshold – indicating an 

unstable sensor or sensors (re-active) 

 The trend in the last N samples is upwards/downwards, 

towards an alarming threshold (pro-active) 

 Data collected indicates detection of start of an “activity” 

and thereby requiring change in measurement parameters 

or engaging additional sensors/mechanisms (pro-active) 

 

The API will comprise of a set of enabling conditions (as 

listed above and an event report to the B-TRM indicating the 

specified condition has been met. 

 
Rule List  Rule Types 

IC_L5_Event_Report enum { 

  Average_Exceeded, 

  StdDev_Exceeded, 
  Trend_Alarm, 

  Activity_Start_Detected, 

  Other 
} ICTRM_L5_Rule_List_t; 

 
Table 5 - IC-TRM Layer 5 Rules 

 

 

 

 

 

 

 
API  Argument C Data Type 

IC_L5_Rule_Specify 

(Specific Rule for a 

measurement type 

being monitored) 

 

Measurement 

ID 

int 

 Rule ID int 

 Rule See Error! Reference source not found. 

 Rule 

Arguments 

struct 

{ 

     int  threshold; 

} Average_Exceeded_Params_ICTRM_L5_t; 

 

  struct 

{ 

     int  threshold; 

} StdDev_Exceeded_Params_ICTRM_L5_t; 

 

  struct 

{ 

     int  threshold; 

     int trend; //upward or downward 

     int window_size; //num of samples back 

     int percent_proximity;  //how close 

} Trend_Alarm_Params_ICTRM_L5_t; 

 

  struct 

{ 

    // an activity is simply a combination  

    // of individual rules 

     int  rule_ID_1; 

     int  rule_ID_2; 

     int  rule_ID_3; 

     int  rule_ID_4; 

     int  rule_ID_5; 

     int *additional_rules; 

} 

Activity_Start_Detected_Params_ICTRM_L

5_t; 

 

Table 6 - IC-TRM Layer 5 API Arguments 

 

F. Application/Presentation Layer:  

The uppermost layer provides a means for the user to access 

and use information from the system in a consistent format.  

All event reports of layer 5 are made available to the 

applications via this layer. This layer will provide a universal 

and standard interface to all applications utilizing the I-TRM. 

This interface is based on XML. Extensible Markup Language 

(XML) is a way to apply structure to a web page. XML 

provides a standard open format and mechanisms for 

structuring a document so that it can be exchanged and 

manipulated. XML offers a standard open format for 

communities to develop structured mechanisms for marking 

text and data to facilitate the exchange and manipulation of 

documents among the community members. 

A markup language is the set of rules. It declares what 

constitutes markup in a document, and defines exactly what 

the markup means. It also provides a description of document 

layout and logical structure. 

  

IV. IMPLEMENTATION 

A.  Software Organization 

 The implementation of this platform is based on a 

three tiered software architecture: 
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1. The sensor mote software: This tier of the software 

resides in the sensor motes. As can be seen in  

2. Figure 4, this tier in itself is composed of two sub-tiers: 

 

2.1. Layers 1 and 2 that reside in the sensor motes. These 

motes are the components responsible for ALL data 

collection in the WSN. 

2.2. Layers 3 and 4 that reside in Cluster Heads. Cluster 

Heads are essentially sensor motes with perhaps 

additional computing and storage resources. In a test 

environment, Cluster Heads can be nothing more 

than a sensor mote attached to a portable/embedded  

PC. 

 

 
 

Figure 4 - Location of Software Layers in the WSN Components 

 

3. The user interface: This tier runs as a Windows™ or 

Linux based application that through its graphical user 

interface provides the end user visibility into the WSN 

information collection, and control of the WSN’s 

behavior.  Figure 5 illustrates a prototype user interface 

written in Microsoft Visual Basic™ Express 2008. This 

tier communicates to the Cluster Heads through the USB 

interface of the PC on one side, and to the backend server 

tier through a TCP/IP socket interface on the other. This 

tier does not contain any decision making intelligence. It 

acts as a conduit and data format converter, gluing the 

field deployed portions of the WSN to the user as well as 

the analysis engine. 

  

 
 

Figure 5 - User Interface Screen Capture 

 

4. The backend server: This program contains the layers 5 

and 6 of all faces of the I-TRM (Control, Information and 

Behavioral). It communicates to the user interface tier 

through a socket interface. This tier therefore can run 

remotely from the WSN deployment field, away from 

potential physical hazards.   

 
The infrastructure software for the sensor motes are as 

follows: 

Operating System:  TinyOS is an open source, BSD-
licensed operating system designed for low-power wireless 
devices, such as those used in sensor networks, ubiquitous 
computing, personal area networks, smart buildings, and smart 
meters. A worldwide community from academia and industry 
use, develop, and support the operating system as well as its 
associated tools, averaging 35,000 downloads a year.  

Routing and networking: XMesh is a full featured multi-
hop, ad-hoc, mesh networking protocol developed by 
Crossbow for wireless networks. An XMesh network consists 
of nodes (Motes) that wirelessly communicate and are capable 
of hopping radio messages to a base station where they are in 
range.  The hopping effectively extends radio communication  

and reduces the power required to transmit messages.  

  

B. Hardware Organization 

 As can be seen in Figure 6, the test platform consists 

of N sensor motes that constitute the WSN. A mote, 

programmed as the base station, collects all upstream packets 

and forwards them to the user interface in the laptop. In turn, 

all downstream packets originating from the backend server, 

are routed through the user interface to the base station and to 

the intended sensor nodes. 

   

  

Figure 6 - I-TRM Test Platform Hardware Organization 

 

   

V. CONCLUSION 

As has been shown partially in this paper the I-TRM API is 
platform independent as well as application agnostic. It can 
easily adapt to any application by customizing the data 
structure containing the application specific parameters passing 
its address to the pointer in the API calls. Very much like the 
pthreads and other standardized API, the inner workings of the 
API are abstracted away from the callers, with one major 
difference that here the inner workings are NOT implemented 
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only once, but are developed for each custom application. The 
positive and negative impacts of this API on a system 
performance are for future study once a full implementation of 
the system is available. This is mainly because I_TRM does not 
operate at physical and data link layers. Consequently 
simulation tools cannot model the complex system level effects 
of the protocol. 

VI. FUTURE WORK 

Future work in this research is development of an API for 
the behavior and control faces of the technical reference model 
(namely B-TRM and C-TRM). Based on specifications of all 
three faces of the I_TRM, we plan to complete the design and 
coding a fully functional WSN based on this model. 
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