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Abstract—This paper proposes a novel scalable Multiple-
Input Multiple-Output (MIMO) detector that does not require
preprocessing to achieve good bit error rate (BER) performance.
MIMO processing is a key technology in broadband wireless
technologies such as 3G LTE, WiMAX, and 802.11n. Existing
detectors such as Flexsphere use preprocessing before MIMO de-
tection to improve performance. Instead of costly preprocessing,
the proposed detector schedules multiple search passes, where
each search pass detects the transmit stream with a different
permuted detection order. By changing the number of parallel
search passes, we show that this scalable detector can achieve
comparable performance to Flexsphere with reduced resource
requirement, or can eliminate LLR clipping and achieve BER
performance within 0.25 dB of exhaustive search with increased
resource requirement.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is a key technique
of many wireless standards such as 3G LTE, WiMAX and
802.11n. As the received signals are combined signals from
the multiple transmit antennas, the main challenge for a MIMO
receiver is to decouple the received signals to recover the
transmit signals. This challenge, the MIMO detection problem,
is known to be an integer least-squares problem that can be
solved with an exhaustive search. However, an exhaustive
search algorithm is cost prohibitive for wireless systems with
strict latency and power requirements.

As a result, a number of suboptimal algorithms with sig-
nificantly reduced complexity have been developed. Since
the search process is a tree traversal, there are two main
approaches to MIMO detection: depth-first algorithms such as
depth-first sphere detection [1], and breadth-first algorithms
such as K-best [2]. In depth-first sphere detection, the number
of tree nodes visited is large in the low signal to noise ratio
(SNR) range, while the number of tree nodes visited is small
in the high SNR range. As a result, depth-first sphere detection
has variable throughput which is undesirable in systems with
strict latency requirements. An attractive alternative is K-
best detection that visits a fixed number of nodes which
results in fixed throughput independent of SNR. However,
a large K value is required to achieve performance close to
exhaustive search. The primary challenge of a high throughput
low latency K-best detector design is the need to sort at each
step of the algorithm.

To address the sorting complexity of the K-best detection
algorithm, a number of modified sort-free algorithms similar

to K-best have been developed. The key to good sort-free
algorithms is finding an approximation of sort that provides
good overall performance. For example, in SSFE [3], instead
of sorting N values to find the best K values, the workload
is first partitioned into M arrays, where M is the modulation
order. Fast enumeration is used to find the best K/M values
for each subarray without sorting each subarray. However,
this approximation reduces the accuracy of the detector. To
recover some of the performance loss, authors in [4] present
a hard decision detector called Flexsphere. While the search
process is similar to SSFE, Flexsphere improves upon SSFE
by performing better preprocessing, V-BLAST-like antenna
reordering and modified real-value decomposition (RVD), to
achieve accuracy closer to optimal exhaustive search.

An existing implementation of the Flexsphere detector [5]
for WiMAX shows that the V-BLAST-like preprocessing block
uses significant amount of FPGA resources due to matrix
inversions, while the QR decomposition and detection blocks
combined use significantly less FPGA resources. In addition,
the candidate list generated by Flexsphere does not guarantee
bit-level reliability information, the log likelihood ratio (LLR),
can not be found for all bits, leading to the need for LLR
clipping [6], [7].

Instead of computing the optimal antenna detection order
with a V-BLAST-like preprocessing block before detection,
we propose scheduling multiple search passes through the
search space, where each search uses a different permuted
antenna detection order. Compared to the design in [5], the
proposed design can either achieve comparable performance
with reduced resource requirement, or it can achieve better
performance with increased resource requirement. In addition,
we will show this design can avoid the problem of LLR
clipping when the number of search passes through the search
space is the same as the number of antennas. Since a typical
wireless system usually combines a soft-output detector and a
soft-input decoder to maximize performance, we also modified
the Flexsphere detector to perform soft-output decoding in this
paper.

This paper is organized as follows: Section 2 gives an
overview of the system model. Section 3 describes the pro-
posed detection algorithm. Section 4 presents the performance
of the proposed detector. In section 5, we present the cor-
responding FPGA implementation. Finally, we conclude in
section 6.
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II. MIMO SYSTEM MODEL

For an N, x Ny MIMO system, the source transmits NV
signals and the destination receives signals on [V, antennas.
The received signal, y = [yo,¥1, ..., YN,—1), can be modeled
by:

y = Hs +n, €))

where H = [hg, hy, ..., hn, —1] is the N, x N; channel matrix,
where each element, h;;, is an i.d.d. zero mean circular sym-
metric complex Gaussian random variable (ZMCSCG) with O’%L
variance. Given a binary vector x = [z, 1, Z3...4 1], Where
L = logy M - Ny, the function map(-) translates the binary
vector x onto s = [sg, S1, ..., Sn,—1]. Each element of s, s;, is
an element drawn from a finite alphabet €2 with cardinality M
and average power F; per symbol. For example, the constel-
lation alphabet for QPSK is {—1—j, —1+7j,1—7,1+ 4} with
M = 4. Finally, the receiver noise, n = [ng, n1, ..., N, —1], iS
an independent ZMCSCG with o7 /2 variance per dimension.
We can obtain an equivalent system model in the real
domain. To ensure the in-phase and the quadrature parts of the
same complex symbol are adjacent neighbors [4], we perform
modified real-valued decomposition (MRVD) as follows:

R(yo) MR (s0)
;(y())) ;((80))
Y1 S1
) | mE) —3(H) (s, i
) | = () ) | 260 [+
R(yn, 1) R(sw, 1)
I(yn,—1) J(sn,—1)
y = Hs+n. (3)

MRVD doubles the number of elements in each vector and
doubles both dimensions of H. Furthermore, each element of
the equivalent transmit vector, §;, is an element drawn from
a finite alphabet Q' with cardinality Q = v/M. For example,
the real value decomposed constellation alphabet for QPSK is
{-1,1} and Q = 2. _

Given y and the channel matrix H, the goal of the soft-
output MIMO detector at a MIMO receiver is to compute the
logarithmic a-posteriori probability (APP) ratio, Lp (z|y, H),
per bit. Assuming no prior knowledge of the transmitted bits,
the soft-output value per bit can be approximated with the
following equation using max-Log approximation [8] and L*-
norm [1].

|~
1

2
207

|5 -7,
202
4)
where X, _1 is the list of all binary vectors with the k"
component equal to -1, Xy ;1 is the list of all binary vectors
with the k" component equal to +1, and § = map(x).

min

Lp(zp|y, H) ~ min
D( k|ya ) x€Xp 41

x€Xg, —1

III. PROPOSED SOFT-OUTPUT N-WAY MIMO DETECTOR

The soft-output detector is computationally intensive as
computing Lp(xx|§, H) exactly requires searching through
the set of all possible binary vectors to find the hypothesis
and the counter-hypothesis. To approximate Lp(z;|y, H) ,

a soft-output MIMO detector finds a smaller set of transmit
vectors, or a candidate list, £, by excluding unlikely vectors.
To compute Lp(z|y,H), the candidate list is divided into
Ly —1 and Ly 41, where L _; is the list of candidates with
the k*" bit equal to —1 and L 41 is the list of candidates
with the &*" bit bit equal to +1,

) nyﬂ v — {5
Lp(zs|y,H) ~ min ————< — min L
(x5, H) XxELp —1 202 XELp 41 202

hypothesis counter—hypothesis

(&)
Although Flexsphere [4] performs close to exhaustive search
as a hard decision detector, it does not perform close to
exhaustive search since the generated candidate list size is
very small. When computing soft-output for the k*" bit, the
list £, 1 or the list £ 1 may be an empty set, in which
case Lp(xx|y, H) cannot be computed since the hypothesis
or the counter-hypothesis is unknown. When an empty set
occurs, we can still generate an LLR value by clipping the
LLR to a predetermined value [7]. This, however, leads to
performance degradation, especially when the clipping value is
not picked appropriately. Furthermore, Lp(z|¥, H) may not
be accurately approximated due to the small candidate list size.
Although the V-BLAST-like preprocessing ensures optimal
detection order, the preprocessing block is very expensive. In
the proposed detection algorithm, we leverage the fact that
the search algorithm is cheap and propose a novel detection
method in which the preprocessing block is removed in favor
of performing multiple search passes.

A. MIMO Detection Search Pass

The proposed MIMO detection scheme uses the same search
algorithm as Flexsphere and SSFE. Since the search algorithm
is discussed in-depth in [4], we will give a brief overview of
the algorithm in this section. _

Given y and H, we first perform QR decomposition on H
for an equivalent system model, where the Euclidean distance
of a transmit vector S, is:

ly-6s| = Iy-Rsl,. (©)
where R, an upper-triangular matrix, is the effective channel
matrix and ¥ is the effective received vector.

To generate a smaller candidate list, the MIMO detector
excludes transmit vectors with large Euclidean distances and
searches for transmit vectors with small Euclidean distances.
Since R is upper triangular, a detector can evaluate the
Euclidean distance of a transmit vector level by level. As
a result, the search process can be viewed as a traversal
through a tree. The search algorithm can be viewed as a
greedy tree search. The algorithm traverses the tree breadth
first and prunes unlikely branches level by level until there are
a few complete paths left. Figure 1 demonstrates an example
of the search process for a 2 x 2 16-QAM MIMO system.
Since all branches in the first two levels are kept, the first
two levels of the tree are fully expanded. At the subsequent
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Figure 1. An example of the search process for a 2x2 16-QAM MIMO
system

23 Best out-going path

Figure 2. An example of the pruning process at node j.

levels, the algorithm evaluates all branches out of each node
and prunes unlikely branches with large Euclidean distances.
The selectivity of the pruning process is controlled by how
many branches a node keeps in the pruning process. This
search algorithm only keeps the best branch for each node
after the first two tree levels. All surviving paths at the last
tree level are in our candidate list.

We will now describe the pruning function. Figure 2 shows
the data flow at the j*" node at stage i. Given one incoming
path with path history p =(po,p1,...,p;) and euclidean dis-
tance d,,, we wish to extend the incoming path to the next
level i+ 1 by picking the best out-going path among () paths.
The updated cumulative weight after connecting node p; to
the k' node in level i + 1 is:

= dm+w T 0<E<Q -1, (7
where wf,?rb is defined as:
M
wit™ =k — Regsk— Y, Regpilh,  ®)
j=k+1
= |[lbi+1(P) — Riwskllr- ©)
The best connected node in level ¢ 4+ 1 that minimizes

wi<12+1>is simply the closest constellation point in Q' to

Riksk /b, y1(p). The algorithm to find the best node can be
implemented with a simple round function followed by a
threshold function. When the best node is found, the path
history at level 7+ 1 is updated by appending the best outgoing
node to p and the Euclidean distance at level ¢ + 1 is updated
by saving d.,, as d,.

Algorithm 1 Proposed MIMO Detection Algorithm
1) Initialization: £ «— @
2) for i =0 to N-1 do

3) y; < circular rotate rows of y i times
4) H; < circular rotate columns of H i times
5) (¥, R;) < MRVD-QRD(y;, H;)

6) L; — search(y;,R;)

7 L—LUL;

8) end

9) Compute LLR values using candidate list £

Pass 0

] L] 2| 8 b e 0
Pass 1

el [y ] 0 L e ey

Figure 3. Proposed Detector for a 2x2 MIMO System.

B. N-Way Scheduled Search

For the proposed N-way scheduled MIMO detector, we
remove the V-BLAST-like preprocessing block in Flexsphere
in favor of multiple search passes. The proposed algorithm
is summarized in Algorithm 1. The inputs for all search
passes are the same, consisting of the channel matrix H
and the received vector y. Since the detection order affects
the performance of the detector, we schedule multiple search
passes where each pass uses a different antenna detection order
to generate different lists of candidates. Without the V-BLAST-
like preprocessing block, the optimal detection order is not
known. We propose an antenna detection order that can be
obtained by a simple circular rotation of columns of H and
rows of y. A search pass, consisting of RVD decomposition,
QR decomposition and tree search, is performed for each
permutation. The result is the i*" search pass processes the i*"
antenna first. Since H has N; columns, the proposed detector
runs up to NN, passes for N, possible permutations. Each
detection pass generates more candidates for the candidate list.
The total number of candidates generated is NC, where C' is
the number of candidate generated by one search pass and N
is the number of search passes. Figure 3 illustrates two search
passes for a 2x2 MIMO 16-QAM system.

After each search pass, the hypothesis and the counter-
hypothesis for each bit are updated using the generated
candidate lists. After NV search passes, the LLR values are
computed for each bit by finding the difference between the
hypothesis and the counter-hypothesis according to equation 5.
Compared to Flexsphere, a larger list increases the probability
of finding the best hypothesis and the counter-hypothesis per
transmitted bit. We note that each search pass guarantees that
the hypothesis and the counter-hypothesis can be found for the
bits corresponding to the first antenna detected. The first two
levels of the tree are completely expanded. Due to the property
of the pruning function, there is a complete path through all
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nodes in the first two levels of the tree at the end of the search.
This means the candidate list will have a candidate through
each possible symbol transmitted by the first antenna. This
property is illustrated by Figure 1. As a result, the two sublists
for each bit transmitted by the first antenna level are always
non-empty and the hypothesis and the counter-hypothesis both
can be found. The LLR values corresponding to the antenna
expanded first by each of the search passes do not require
clipping. When N = Ny, there is no need for LLR clipping
since each antenna is fully expanded once and each bit has a
hypothesis and a counter-hypothesis, increasing performance.

IV. PERFORMANCE

We compared the BER performance of our proposed N-way
scheduled MIMO detector against the soft-output Flexsphere
detector and the K-best detector in a flat fading Rayleigh
fading channel. In our simulation, the soft output of the
detector is fed to a length 2304, rate 1/2 WiMAX LDPC
decoder, which performs up to 20 decoding iterations. For
the K-best detector, we choose a large K value of 64 for 16-
QAM and 256 for 64-QAM. For the proposed algorithm, we
show the results for up to 4 detection passes. We used an LLR
clipping value of 8 for all the detector configurations with the
exception of the proposed detection algorithm with 4 detection
passes where LLR clipping was not required.

Figure 4 compares the performance of detectors for 16-
QAM. We see that Flexsphere gains more than 1 dB of per-
formance at FER of 10~2 compared to the N-way scheduled
MIMO detector where N = 1. This shows the benefits of V-
BLAST-like preprocessing. The proposed N-way scheduled
MIMO detector with N = 2 performs better than Flexsphere,
while the proposed N-way scheduled MIMO detector with N
= 3 performs better than the K-best MIMO detector. Finally,
the proposed detector with N = 4 performs within 0.25 dB
of exhaustive search at FER of 1073, This is expected as N
= 4 avoids LLR clipping and generates more accurate LLR
values due to a larger candidate list. Figure 5 compares the
performance of the detector for 64-QAM. The result is similar
to 16-QAM. For N = 2, the N-way scheduled MIMO detector
performs similarly to the soft-output Flexsphere. For N =
3, the N-way scheduled MIMO detector performs similarly
to the K-best detector. For N = 4, the N-way scheduled
MIMO detector’s performance is close to exhaustive search.
The results suggest that we can remove the costly V-BLAST-
like preprocessing and improve performance by increasing the
number of detection passes.

V. FPGA HARDWARE IMPLEMENTATION

In this paper, we targeted a Virtex®-5 XC5VFX130T-
2FF1738 FPGA. A complete soft-output Flexsphere detector
is implemented with Xilinx System Generator by extending
the hard-decision Flexsphere design presented by authors in
[5]. The hard-decision Flexsphere detector design consists of
three components: a channel preprocessor, RVD/QRD block,
and a sphere detector block. The design outputs hard decisions
which are the constellation points of the candidate with the
smallest Euclidean distance among the 64 candidates at the last
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Figure 4. 4x4 16-QAM BER Performance
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Figure 5. 4x4 64-QAM BER Performance

level. To perform soft-output decoding, instead of outputting
the candidate with the smallest Euclidean distance, we added
an LLR computation block which uses the 64 candidates to
generate soft-output LLR values.

To meet the target data rate of 83.965 Mbps which cor-
responds to a 360 sub-carriers WiMAX system, the sphere
detector has a throughput of one candidate per cycle. To match
the data rate, the LLR generator needs to process 64 candidates
to generate 24 bit-level soft values every 64 cycles with a
minimal clock frequency of 225 Mhz. The LLR generator
is straight forward. We demodulate each incoming candidate
into bits using a look-up table. We allocate two registers per
demodulated bit. In total, we have 48 18-bit registers which
are partitioned into two sets—one set for the hypothesis and
one set for the counter-hypothesis. Depending on whether a
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Table T
RESOURCE USAGE OF SOFT-OUTPUT FLEXSPHERE

Block Slices LUTSs/FFs DSP48 | Block RAM
Preprocessing 9,999 20,339/29,954 159 105
RVD/QRD 1,715 4,418/5,556 30 27
Sphere Detector 2,445 3,113/6,525 48 12
LLR Computation 1,498 1,906/3,909 0 2
Total 15,657 | 29,776 /45,944 237 146
Table 11
RESOURCE USAGE OF MERGE BLOCKS
N | Slices | LUTs/FFs | DSP48 | Block RAM
2 65 100/201 0 0
3 137 208/401 0 0
4 202 312/602 0 0

demodulated bit is O or 1, we compare the Euclidean distance
against the value in the corresponding register. If the current
Euclidean distance is smaller, the value in the register is
replaced by the current Euclidean distance of the candidate.
All 24 bits are evaluated in parallel to meet the throughput
requirement. The resources required for the blocks from [5]
and the LLR computation block are shown in Table I.

Since the proposed design is a modified Flexsphere detector,
we used the design proposed by authors in [5] to implement
our current proposed design. The RVD-QRD, the sphere
detector, and the LLR Computation blocks are reused while
the channel preprocessor is removed. Each search pass is one
pass through all three blocks. Therefore, the throughput of an
implementation with one copy of these three blocks is reduced
N times for N search passes.

To improve the achievable throughput of the proposed
detector, we use more resources and perform search passes
in parallel. We simply replicate the serial implementation N
times, where each instance of the detector performs a detection
pass independently to generate the hypothesis and the counter-
hypothesis per transmitted bit. The output is N lists of the
hypotheses and counter-hypotheses per transmitted bit that
need to be merged into one list. The merger block is a fairly
simple block, where the minimum value among N values is
found for each transmitted bit. Since the resource cost depends
on N, the resources required by merging N lists are listed in
Table II.

The overall resource required is approximately N times the
serial implementation of the proposed detector plus the cost
of merger block for value N and is shown in Table III.

Figure 6 shows the cost of different realizations of the
detector compared to the soft-output Flexsphere, where the
cost of the Flexsphere is normalized to one. To achieve compa-
rable performance to soft-output Flexsphere with preprocessor,
we need at least two search passes. Although we need an

Table IIT
TOTAL RESOURCE USAGE OF N-WAY SPHERE DETECTOR

N | Slices LUTs/FFs DSP48 | Block RAM
1 5,658 9,437/15,990 78 41

2 | 11,274 | 19,018/32,525 156 82

3 | 16,827 | 28,743/49,117 234 123

4 | 22,832 | 38,515/65,381 312 164

16
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Block RAM
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Figure 6. Resource Comparison

additional RVD/QRD block, sphere detector block and LLR
generator block for N = 2, we save a substantial amount of
resources compared to the Flexsphere detector because we
eliminate the expensive preprocessing block. The amount of
resources required for N = 4 increased around 45 percent
compared to the soft-output Flexsphere detector. However,
increasing the number of search passes to four increases the
performance of the detector by another 0.5 dB over the soft-
output Flexsphere design.

VI. CONCLUSION

In this paper, we presented a scalable detection algorithm
that does not require preprocessing to achieve good perfor-
mance. We propose scheduling search passes with different
antenna detection order, where the i*" antenna is positioned as
the first layer for the i search pass. We show that by changing
the number of search passes, we can achieve BER performance
0.25 dB from exhaustive search and eliminate LLR clipping.
We also show that we can achieve comparable performance
to Flexsphere with two search passes and eliminate the costly
processing, resulting in a more area-efficient design.
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