
Abstract — This paper shows results of a student project on the 

implementation of a spread spectrum channel sounder using 

USRP platforms and GNU Radio environment. Such an 

implementation would have required months of development 

(ASIC, board design and manufacturing, RF design, etc.) 15 

years ago. A few weeks of part time work for 2 students were 

only necessary here thanks to a software defined radio approach. 

It is planned that this channel sounder could be used in a future 

cognitive radio context for environment awareness. 

 
Index terms— USRP, GNU radio, spread spectrum, education 

 

I. INTRODUCTION 

 

Implementing radios with students is very challenging as 

many aspects of radio engineering areas have to be 

jointly addressed and mastered: 

- Digital communications basics, 

- Analog RF, 

- RF to BB conversion, 

- Digital BB processing implementation. 

This makes such an activity only possible at the latest 

stages of students curiculum. This paper illustrates that 

thanks to a software radio approach 0, this can be made 

with undegraduate students with a reduced background 

in only a few of these fields. 

 

Only a decade and a half ago, the implementation of a 

radio communication link, transmitter and receiver, 

starting from scratch was a task requiring months of 

development for a specialist in both signal processing 

and electronics. In the context of a spread spectrum 

channel sounder of a few MHz of bandwidth (less than 

1 µs of delay resolution) for example, this implied to 

dimension, specify and implement the digital processing 

operations in a FPGA for instance, and to design a board 

supporting the necessary electronics around [2]. Then 

frequency translation from baseband to RF required the 

specification and the design of another board, with a lot 

of analog imperfections to solve (IQ imbalance, carrier 

leakage, etc.). This could be even more challenging for 

higher data bandwidth, implying the use of ASICs 

instead of FPGAs [3]. Depending on the carrier 

frequency also, the range of difficulty varies a lot. 

 

In a software defined radio (SDR) perspective, many of 

these drawbacks fall down as one can re-use sub-parts, if 

not all parts, of an existing radio system, and just adapt 

its operation through code reprogramming. SDR 

philosophy is also a catalizer for open source code and 

design tools sharing in the radio field.  

 

Ettus Research (now a part of National Instrument) 

provides a hardware platform supporting any carrier 

frequency between DC and 4.4 GHz, for a bandwidth up 

to a few MHz depending on the board [4]. Then RF to 

baseband conversion sub-system is ready for prototyping 

(except specific requirements in terms of transmitting 

power, depending on each application). 

 

For digital processing, software radio paradigm 

priviledges a pure software implementation of radio 

processing when possible. In conjunction with USRPs 

platforms, this can be done for baseband processing at 

least. USRP platforms are connected to a host computer 

through USB or ethernet connexions. The GNU Radio 

Companion [5] is a friendly environment for the 

development of baseband processing thanks to a set of 

pre-defined block sets, which enables to build a 

complete radio chain without developping specific code 

(most of the time). 

 

Next part of the paper describes the project we propose 

as a lab to students, before they graduate for engineering 

diploma. Part III exposes how students first studied their 

application using Ptolemy II simulator, another open 

source tooling for embedded systems design. Part IV 

details how the channel sounder has been implemented 
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in GNU radio environment for USRP platforms. Part V 

gives some perspective on how using the channel 

sounder in a communication system mitigating channel 

effects. Finally, channel sounding implementation results 

using last N210 platform version and a home made C++ 

environment are given in part VI, as well as concluding 

remarks in a last section. 

 

II. PROJECT DESCRIPTION 

 

Channel sounding is a very pedagogic and a didactic 

topic for teaching telecommunications to students. 

Implementing a channel sounder enables to point out in 

real conditions all the problems due to propagation, 

channel effects, and front-end imperfections, such as 

transmitter and receiver local oscillators synchronization 

issues. In other words, all that is often hidden when 

learning digital communications at the beginning. 

 

The channel sounding scheme proposed here is based on 

direct sequence spread spectrum technique [6], as shown 

in Figure 1.  
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Figure 1 – Channel sounding principles 

 

The signal eb(t) sent by the transmitter (Tx) is a pseudo-

random code c(t). After a matched filter hFA(t) to the 

code c(t) at the receiver (Rx), the obtained result sb(t) is 

an approximation of the channel impulse response 

hb(τ,t), including all analog imperfections if we consider 

the channel in a wide sense (i.e. including analog RF of 

Tx and Rx). As stated by the following equations: 

 eb(t) = c(t) 

 hFA(t) = c(ξ-t) 

 rb(t) = (c ⊗ hb)(t) 

with ⊗ the correlation operator, and ξ = Lc.Tc 

 Lc is the number of chips of a code sequence 

 Tc is the chip length 

 

As a consequence: 

sb(t) = (c⊗ hb⊗hFA)(t) = (c ⊗ hFA ⊗ hb)(t) = (Rc ⊗ hb)(t) 

 

where Rc(t) is the autocorrelation function of code c(t): 
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for a channel of K paths, each with a delay τk and a 

phase θk. Consequently: 
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For a m-sequence code, the autocorrelation function 

Rc(t) is made of a unique peak of width 2.Tc at value Lc. 

Then the smaller Tc (i.e. the larger the bandwidth 

W=1/Tc) and the longer Lc, the closer is sb(t) to the real 

channel impulse response hb(τ,t). Moreover, the 

resolution of the sounder is Tc=1/W. 

 

The same structure maybe used also in a communication 

system as a way to compensate channel effects, such as 

in a RAKE receiver for instance [3][6][7]. 

 

As shown in the next section, students have made 

simulations using Ptolemy II software as a first approach 

to better understand channel sounding principles. Then 

they converted the simulations into reality using a 

software radio approach through GNU Radio 

Companion environment and hardware USRP boards. 

 

III. PTOLEMY SIMULATION 

 

A. Presentation 

 

Ptolemy II is an open source framework developped by 

the UC Berkerley at EECS department of Edward Lee. 

Our simulations use Synchronous Dataflow (SDF) 

model. Ptolemy simulations made the students 

understand the basic principles involved in the 

implementation of the channel sounder, such as m-

sequences (maximum-length sequences) correlation, 

Root Raised Cosine (RRC) filtering and multiple access 

(CDMA), before they had a first teaching in digital 

communications. 

 

We chose m-sequences generated with 7 shift registers 

(Lc = 2
7
-1) for their good autocorrelations properties (at 

zero delay, but also at non zero delay, in opposition to 

Hadamard codes), and rather good cross-correlation 

properties with other sequences (for CDMA purposes). 

They reach a peak of 127 at the origin and remain equal 

to -1 everywhere else. Sequences are 127 chips long. 

Using high values for the m parameter improves the 

signal to noise ratio (SNR) after despreading at Rx. 

 

286



B. Simulation of a spread spectrum communication 

chain 

 

Such an approach is the basis of direct sequence spread 

spectrum communications, when signal is spread with a 

specific pseudo-noise sequence. Each data set to be 

transmitted, is combined with an m-sequence. Thus, 

sending one bit actually requires sending 127 chips. The 

longer the spreading sequence, the better the processing 

gain, and thus the recovered SNR at Rx. However, this 

also decreases data transfer rate. When received, the 

signal is synchronously multiplied by the same m-

sequence [6]. Because of their autocorrelation properties, 

the data can be reconstructed. Another way (used in this 

paper) consists in having a filter matched to the same m-

sequence at Rx and select the peak sign at 

autocorrelation point. This avoids synchronization issues 

and enables channel compensation [8]. 

 

Transmitting a signal on a shared spectrum requires 

filtering. Root raised cosine filters maximize the signal 

to noise ratio and minimize intersymbol interferences 

following Nyquist criteria. Excess bandwidth is set to 

0.8 and interpolation in the transmitter filter is set to 4 

here. 

 

Cross-correlation between two different m-sequences is 

negligible compared to the correlation peak's height 

(neglecting near-far effect). It is then possible to 

multiplex several transmissions on the same radio 

spectrum if they are coded with distinctive m-sequences. 

This principle is used in CDMA (Code Division 

Mutliple Access) technology with multiple 

communications between transmitters and receivers 

sharing the same channel. Each transmitter uses its own 

pseudo-noise sequence to spread the data signal. Then all 

the signals are added  and transmitted through the 

channel. Each receiver despreads the resultant signal 

with the pseudo-noise code used by the transmitter it 

communicates with. Because of the cross-correlation 

properties mentionned earlier, only one data signal is 

despread and recovered, the other other being scrambled 

and considered as noise. Figure 2 illustrates this 

principle using Ptolemy II simulator. 

 

In the context of a channel with imperfections, data can 

be transmitted inphase and a code for channel sounding 

on quadrature, so that channel estimation enables to 

correct channel effects, as in UMTS uplink for instance.  

 

C. Simulation of a channel sounder 

 

Channel imperfections such as multiple paths and 

Gaussian noise can be considered. The channel sounder 

allows to get the impulse response of the channel. 

 

A first version of the sounding chain is shown in Figure 

3 (no phase rotation) in the Ptolemy environment. Two 

echoes (multipaths) are added here to the direct path, as 

well as additive white gaussian noise (AWGN) to 

simulate the channel. 

 

Figure 4 shows the obtained channel impulse response in 

Ptolemy simulations in a noisy environment. 

 

 
Figure 2 – Simuling CDMA with Ptolemy 
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Figure 3 – Transmission chain with multipath and AWGN 

 

Three peaks corresponding to the direct path and the two 

echos can be observed. We also can see the effect of the 

white gaussian noise. The noise can be mitigated while 

averaging the impulse response on several 

autocorrelation sequences when the channel is 

stationnary [2][7]. 

 

 
Figure 4 – Channel impulse response 

 

We can see that beyond first objective of Ptolemy which 

targets the modeling and design of real-time embedded 

systems, Ptolemy II may also be used as a valuable tool 

for educational purpose, in particular in 

communications. 

 

IV. CHANNEL SOUNDER IMPLEMENTATION 

 

GNU Radio Companion (GRC) is a free development 

environment for software radio. Familiarizing with GNU 

Radio project [5] is easy due to similarities between 

Ptolemy II and GRC processing blocks. It has been first 

checked that transposed in GRC environment, without 

connecting to radio platforms, the simulations give 

similar results to Ptolemy. 

 

A. Real implementation on USRP: transmitter 

 

Two stations are required in order to implement the 

channel sounder on USRP platforms: a transmitter 

capable of generating m-sequences and a receiver 

capable of correlating the received signal with the m-

sequence used at Tx. Each station requires a host 

computer equipped with one USRP1 platform (via USB 

connection). GNU Radio is used through GRC to 

conceive the designs. 

 

In GRC, in-phase component (I) and quadrature 

component (Q) components are sent to the Tx USRP 

platform through the imaginary and real parts of the 

USRP sink block input of Figure 5. In-phase component 

is dedicated to the channel sounder, e.g. it is made of 

successive m-sequences. Nothing is transmitted through 

the quadrature component for the channel sounder (it 

could be used to transmit data as exposed in III.B). 

 

B. Real implementation on USRP: receiver 

 

The receiver of Figure 6 has to include a correlator 

block. It is made using a FIR filter whose coefficients 

are made of the m-sequence code reversed in time, so 

that the convolution becomes a correlation [2][7]. This is 

the principle of a matched filter (to the transmitted 

code). The working frequency is 2.4 GHz ; however the 

actual frequency of Tx and Rx local oscillators in USRP 

devices can deviate from that frequency (the difference 

is up to a few kHz).  
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Figure 5 – Channel sounder transmitter 

 

 
Figure 6 – Channel sounder receiver 

 

 

In order to precisely tune the frequency of local 

oscillators and reduce the frequency gap between the 

receiver and the transmitter, two sliders were added. 

Students noticed that the correlator can not support a too 

important frequency shift. At least the phase shift 

between the two oscillators should not be significant 

(let’s say less than 20°) during the correlation on Lc 

chips. 

The measured channel impulse response at the 

output of the correlator is shown in Figure 7 on several 

successive correlation periods with I component on top 

and Q component below. The observation of the impulse 

response provides useful information about the 

imperfections introduced by the channel. We can see that 

in these conditions of experimentation, the signal to 

noise ratio is high ; indeed, USRP platforms are side by 

side and signal amplification is within its maximal range. 

Multiple paths are absent, because of short-range 

transmission. But the carriers frequency 

desynchronisation is clearly visible as correlation peaks 

rotate over the course of time, whereas we should only 

see positive peaks in I component and nothing except 

AWGN in Q. We see on Figure 7 the desynchronisation 

phenomenon while observing the signal over 10 

sequences. 

 

Phase can be extracted from this sounding 

information and could be used to compensate in real-

time the frequency shift between Tx and Rx oscillators 

in a communication link [2][7]. But in a communication 

context, we may get rid off synchronization issue by 

other means, as exposed in the next section. 
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Figure 7 – Channel impulse response : top (I), low (Q) 

 

V. SPREAD SPECTRUM COMMUNICATION 

 

Thanks to the easy implementation of radio systems with 

a software radio approach, students also investigated 

spread spectrum communications, beyond channel 

sounding. The specific issue of carrier synchronization is 

illustrated here. 

 

A. Synchronization with a Costas Loop 

 

First, the Costas Loop was considered to deal with the 

desynchronization issue. Once the signal is properly 

synchronized, a peak detection function can be added at 

the output of the correlator. A positive peak means that a 

'1' was transmitted, and a negative peak means that a '0' 

was transmitted.  

 

However, students faced that the Costas Loop was not 

enough to completely synchronize the carriers, as the 

phase regularly shifts from 0° to 180°. Costas Loop 

based designs did not appear viable, since the loop could 

not lock when the desynchronization was too high. The 

reason could be that students were not skilled enough in 

digital communications to find the good parameters 

values, during their project, or because the 

desynchronization was out of range of the Costas loop. A 

complete study of the Costas loop provided in the GNU 

environnement would have been neccessary for that. 

 

B. RAKE-like channel compensation 

 

A second solution that was envisioned consists in using 

the channel impulse response obtained with the channel 

sounder to compensate the phase-shift in a direct 

sequence spread spectrum communication link. In this 

context, communication data are spread on Q component 

with another code of the same length Lc than the 

sounding code of I component. For each ‘1’ data 

(respectively ‘0’) the code sequence (respectively the 

opposite sequence) is sent.  

 

 

 
Figure 8 – phase-shift compensation algorithm using a RAKE-like approach 
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The phase-shift can be measured on the impulse 

response given by the correlation on I component code, 

when a correlation peak appears. The receiver design is 

shown in Figure 8. However, an efficient correction 

requires that the correlation function is performed while 

carriers shift stays negilgible. Simulations showed that a 

desynchronisation of 400 Hz can be compensated at a 

chip rate of 1 MHz (when correlation is 127 µs long). 

But students observed a desynchronization of several 

khz between the two platforms local oscillators, thus 

requiring a ten times higher chip rates (10 MHz). But 

students could not reach that transfer rate with USRP 1 

platforms connected via USB link to the host platform. 

 

As the communication chain was developped and 

simulated with the addition of the imperfections due to 

desynchronization, this allowed to validate the design for 

lower values of desynchronization only (than in reality). 

Results are shown on Figure 9. Sequence {1,1,-1} was 

transmitted with a simulated desynchronization of 

150 Hz at a chip rate of 1 MHz. Successive sequences of 

two positive peaks, followed by one negative peak are 

obtained, as expected. 

 

 
Figure 9 – Data transmission with phase-shift 

 

We can observe that the channel estimation peaks no 

longer rotate. It is also possible to monitor the evolution 

of the phase-shif as we can see in Figure 10. Then we 

can demodulate data while selecting the Q component 

peaks values and recover the {1,1,-1} sequence. 

 

 
Figure 10 – Phase shift evolution 

 

This system finally acts as the arms of a RAKE receiver 

[2][3][7]. 

 

VI. N210 PLATFORM EXPERIMENTS 

 

A developpement environment has been done in Supélec 

SCEE lab in order to run communications chains with 

the latest N210 platform of Ettus Research (as GRC 

could not support N210 platform at the time this student 

project was done) in the Microsoft Windows 

environment. This developpement environment is based 

on the one hand on processing blocks which have been 

encapsulated in our C++ framework, and on the other 

hand on the management architecture for cognitive radio 

[9] developped in Supélec research [10], called 

HDCRAM (Hierarchical and Distributed Cognitive 

Radio Architecture Management) [11]. 

 

In this environment, students implemented the sounding 

chain at a chip rate of 1 Mchip/s. This gives a resolution 

in time of 1 µs. Above all, this permits to obtain a 

correlation in 127 µs. Moreover carriers 

desynchronization has been reduced while using a lower 

carrier frequency (1.4 GHz) thanks to new RF daughter 

boards. All that made the phase shift negligible on a 

correlation period, so that the channel sounding system 

has been validated in real conditions. Figure 11 shows 

the I component measured channel impulse response 

with a resolution of 1 µs @ 1.4 GHz. This measure has 

been done at a distance of 20 m in two rooms separated 

by a 12 m corridor. 

 

 
 
Figure 11 – Measured channel impulse response with a 

resolution of 1 µs (1 MHz chip rate) @ 1.4 GHz 

 

Thanks to the flexibility of software radio, students 

could also easily perform many other measurements with 

different conditions in terms of carrier frequency and 

chip rate. Next Figures give a few examples.  

 

This system could now be used to make channels 

measurement campaigns in many different 

environments, taking into account the office topology, 

the level of transmission, the carrier frequency, etc. This 

will be the topic of next year students. 

 

Figure 13 shows a new phenomenon that occurs when 

carrier frequency goes down (here 300 MHz). The 

correlation is not only rotating, but also suffers from 

shape deformation.  

291



 

 
Figure 12 – Measured channel impulse response with a 

chip rate of 300 kHz @ 800 MHz 

 

Students have not clearly identified the cause of this 

phenomenon. However, a spectrum analyzer 

measurerement of the radio spectrum also reveals the 

existence of many frequency harmonics at multiples of 

the carrier frequency so that the hypothesis of non 

linearities caused by the amplification may be done. 

Further investigations are planned to really explain it. 

 

 
Figure 13 – Measured channel impulse response with a 

chip rate of 300 kHz @ 300 MHz 

VII. CONCLUSIONS AND FUTURE WORK 
 

This paper shows how software radio can be used as a 

pedagogic tooling for teaching digital communications, 

beyond theoretical basics. It enables indeed to 

investigate early in the curriculum of undergraduate 

students such hard topics as synchronization, multipath, 

even non linearities, etc. After 2 decades, we can say that 

software radio promoted the use of open source software 

solutions for radio design and development. But if this 

starts to be effective at the education or lab level, this 

has not yet come true at the industry level. We can 

wonder when the maturity of such an approach will 

make it a reality. This paper is also a very good exercise 

for the writing of a communication paper by students. 
 

This lab and others in the future can be found at: 
http://www.rennes.supelec.fr/ren/perso/cmoy/SCEE-SERI/ 
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