
Abstract — This paper shows results of a student project on the

implementation of a spread spectrum channel sounder using

USRP platforms and GNU Radio environment. Such an

implementation would have required months of development

(ASIC, board design and manufacturing, RF design, etc.) 15

years ago. A few weeks of part time work for 2 students were

only necessary here thanks to a software defined radio approach.

It is planned that this channel sounder could be used in a future

cognitive radio context for environment awareness.

Index terms— USRP, GNU radio, spread spectrum, education

I. INTRODUCTION

Implementing radios with students is very challenging as

many aspects of radio engineering areas have to be

jointly addressed and mastered:

- Digital communications basics,

- Analog RF,

- RF to BB conversion,

- Digital BB processing implementation.

This makes such an activity only possible at the latest

stages of students curiculum. This paper illustrates that

thanks to a software radio approach 0, this can be made

with undegraduate students with a reduced background

in only a few of these fields.

Only a decade and a half ago, the implementation of a

radio communication link, transmitter and receiver,

starting from scratch was a task requiring months of

development for a specialist in both signal processing

and electronics. In the context of a spread spectrum

channel sounder of a few MHz of bandwidth (less than

1 µs of delay resolution) for example, this implied to

dimension, specify and implement the digital processing

operations in a FPGA for instance, and to design a board

supporting the necessary electronics around [2]. Then

frequency translation from baseband to RF required the

specification and the design of another board, with a lot

of analog imperfections to solve (IQ imbalance, carrier

leakage, etc.). This could be even more challenging for

higher data bandwidth, implying the use of ASICs

instead of FPGAs [3]. Depending on the carrier

frequency also, the range of difficulty varies a lot.

In a software defined radio (SDR) perspective, many of

these drawbacks fall down as one can re-use sub-parts, if

not all parts, of an existing radio system, and just adapt

its operation through code reprogramming. SDR

philosophy is also a catalizer for open source code and

design tools sharing in the radio field.

Ettus Research (now a part of National Instrument)

provides a hardware platform supporting any carrier

frequency between DC and 4.4 GHz, for a bandwidth up

to a few MHz depending on the board [4]. Then RF to

baseband conversion sub-system is ready for prototyping

(except specific requirements in terms of transmitting

power, depending on each application).

For digital processing, software radio paradigm

priviledges a pure software implementation of radio

processing when possible. In conjunction with USRPs

platforms, this can be done for baseband processing at

least. USRP platforms are connected to a host computer

through USB or ethernet connexions. The GNU Radio

Companion [5] is a friendly environment for the

development of baseband processing thanks to a set of

pre-defined block sets, which enables to build a

complete radio chain without developping specific code

(most of the time).

Next part of the paper describes the project we propose

as a lab to students, before they graduate for engineering

diploma. Part III exposes how students first studied their

application using Ptolemy II simulator, another open

source tooling for embedded systems design. Part IV

details how the channel sounder has been implemented

Spread Spectrum Channel Sounder

Implementation with USRP Platforms

Adrien LE NAOUR, Olivier GOUBET, Christophe MOY, Pierre LERAY

SUPELEC/IETR

Avenue de la Boulais, CS 47601, 35576, Cesson-Sévigné Cedex, France

christophe.moy@supelec.fr

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

285

in GNU radio environment for USRP platforms. Part V

gives some perspective on how using the channel

sounder in a communication system mitigating channel

effects. Finally, channel sounding implementation results

using last N210 platform version and a home made C++

environment are given in part VI, as well as concluding

remarks in a last section.

II. PROJECT DESCRIPTION

Channel sounding is a very pedagogic and a didactic

topic for teaching telecommunications to students.

Implementing a channel sounder enables to point out in

real conditions all the problems due to propagation,

channel effects, and front-end imperfections, such as

transmitter and receiver local oscillators synchronization

issues. In other words, all that is often hidden when

learning digital communications at the beginning.

The channel sounding scheme proposed here is based on

direct sequence spread spectrum technique [6], as shown

in Figure 1.

h (τ ,t)e (t)

r (t)

bb

b
h (τ)

FA b
s (t)

Figure 1 – Channel sounding principles

The signal eb(t) sent by the transmitter (Tx) is a pseudo-

random code c(t). After a matched filter hFA(t) to the

code c(t) at the receiver (Rx), the obtained result sb(t) is

an approximation of the channel impulse response

hb(τ,t), including all analog imperfections if we consider

the channel in a wide sense (i.e. including analog RF of

Tx and Rx). As stated by the following equations:

 eb(t) = c(t)

 hFA(t) = c(ξ-t)

 rb(t) = (c ⊗ hb)(t)

with ⊗ the correlation operator, and ξ = Lc.Tc

 Lc is the number of chips of a code sequence

 Tc is the chip length

As a consequence:

sb(t) = (c⊗ hb⊗hFA)(t) = (c ⊗ hFA ⊗ hb)(t) = (Rc ⊗ hb)(t)

where Rc(t) is the autocorrelation function of code c(t):

 Rc(t) = c c t d() ()τ τ τ
−∞

+∞

∫ ⋅ − ⋅

and: hb(τ,t) = α δ τ τθ
k

j t
k

k

K

t e tk() (())()⋅ ⋅ −− ⋅

=

−

∑
0

1

for a channel of K paths, each with a delay τk and a

phase θk. Consequently:

 sb(t) = α ξ τ τθ
k

j t

k

K

c kt e R t dk() ()()⋅ ⋅ − − ⋅− ⋅

=

−

∑
0

1

For a m-sequence code, the autocorrelation function

Rc(t) is made of a unique peak of width 2.Tc at value Lc.

Then the smaller Tc (i.e. the larger the bandwidth

W=1/Tc) and the longer Lc, the closer is sb(t) to the real

channel impulse response hb(τ,t). Moreover, the

resolution of the sounder is Tc=1/W.

The same structure maybe used also in a communication

system as a way to compensate channel effects, such as

in a RAKE receiver for instance [3][6][7].

As shown in the next section, students have made

simulations using Ptolemy II software as a first approach

to better understand channel sounding principles. Then

they converted the simulations into reality using a

software radio approach through GNU Radio

Companion environment and hardware USRP boards.

III. PTOLEMY SIMULATION

A. Presentation

Ptolemy II is an open source framework developped by

the UC Berkerley at EECS department of Edward Lee.

Our simulations use Synchronous Dataflow (SDF)

model. Ptolemy simulations made the students

understand the basic principles involved in the

implementation of the channel sounder, such as m-

sequences (maximum-length sequences) correlation,

Root Raised Cosine (RRC) filtering and multiple access

(CDMA), before they had a first teaching in digital

communications.

We chose m-sequences generated with 7 shift registers

(Lc = 2
7
-1) for their good autocorrelations properties (at

zero delay, but also at non zero delay, in opposition to

Hadamard codes), and rather good cross-correlation

properties with other sequences (for CDMA purposes).

They reach a peak of 127 at the origin and remain equal

to -1 everywhere else. Sequences are 127 chips long.

Using high values for the m parameter improves the

signal to noise ratio (SNR) after despreading at Rx.

286

B. Simulation of a spread spectrum communication

chain

Such an approach is the basis of direct sequence spread

spectrum communications, when signal is spread with a

specific pseudo-noise sequence. Each data set to be

transmitted, is combined with an m-sequence. Thus,

sending one bit actually requires sending 127 chips. The

longer the spreading sequence, the better the processing

gain, and thus the recovered SNR at Rx. However, this

also decreases data transfer rate. When received, the

signal is synchronously multiplied by the same m-

sequence [6]. Because of their autocorrelation properties,

the data can be reconstructed. Another way (used in this

paper) consists in having a filter matched to the same m-

sequence at Rx and select the peak sign at

autocorrelation point. This avoids synchronization issues

and enables channel compensation [8].

Transmitting a signal on a shared spectrum requires

filtering. Root raised cosine filters maximize the signal

to noise ratio and minimize intersymbol interferences

following Nyquist criteria. Excess bandwidth is set to

0.8 and interpolation in the transmitter filter is set to 4

here.

Cross-correlation between two different m-sequences is

negligible compared to the correlation peak's height

(neglecting near-far effect). It is then possible to

multiplex several transmissions on the same radio

spectrum if they are coded with distinctive m-sequences.

This principle is used in CDMA (Code Division

Mutliple Access) technology with multiple

communications between transmitters and receivers

sharing the same channel. Each transmitter uses its own

pseudo-noise sequence to spread the data signal. Then all

the signals are added and transmitted through the

channel. Each receiver despreads the resultant signal

with the pseudo-noise code used by the transmitter it

communicates with. Because of the cross-correlation

properties mentionned earlier, only one data signal is

despread and recovered, the other other being scrambled

and considered as noise. Figure 2 illustrates this

principle using Ptolemy II simulator.

In the context of a channel with imperfections, data can

be transmitted inphase and a code for channel sounding

on quadrature, so that channel estimation enables to

correct channel effects, as in UMTS uplink for instance.

C. Simulation of a channel sounder

Channel imperfections such as multiple paths and

Gaussian noise can be considered. The channel sounder

allows to get the impulse response of the channel.

A first version of the sounding chain is shown in Figure

3 (no phase rotation) in the Ptolemy environment. Two

echoes (multipaths) are added here to the direct path, as

well as additive white gaussian noise (AWGN) to

simulate the channel.

Figure 4 shows the obtained channel impulse response in

Ptolemy simulations in a noisy environment.

Figure 2 – Simuling CDMA with Ptolemy

287

Figure 3 – Transmission chain with multipath and AWGN

Three peaks corresponding to the direct path and the two

echos can be observed. We also can see the effect of the

white gaussian noise. The noise can be mitigated while

averaging the impulse response on several

autocorrelation sequences when the channel is

stationnary [2][7].

Figure 4 – Channel impulse response

We can see that beyond first objective of Ptolemy which

targets the modeling and design of real-time embedded

systems, Ptolemy II may also be used as a valuable tool

for educational purpose, in particular in

communications.

IV. CHANNEL SOUNDER IMPLEMENTATION

GNU Radio Companion (GRC) is a free development

environment for software radio. Familiarizing with GNU

Radio project [5] is easy due to similarities between

Ptolemy II and GRC processing blocks. It has been first

checked that transposed in GRC environment, without

connecting to radio platforms, the simulations give

similar results to Ptolemy.

A. Real implementation on USRP: transmitter

Two stations are required in order to implement the

channel sounder on USRP platforms: a transmitter

capable of generating m-sequences and a receiver

capable of correlating the received signal with the m-

sequence used at Tx. Each station requires a host

computer equipped with one USRP1 platform (via USB

connection). GNU Radio is used through GRC to

conceive the designs.

In GRC, in-phase component (I) and quadrature

component (Q) components are sent to the Tx USRP

platform through the imaginary and real parts of the

USRP sink block input of Figure 5. In-phase component

is dedicated to the channel sounder, e.g. it is made of

successive m-sequences. Nothing is transmitted through

the quadrature component for the channel sounder (it

could be used to transmit data as exposed in III.B).

B. Real implementation on USRP: receiver

The receiver of Figure 6 has to include a correlator

block. It is made using a FIR filter whose coefficients

are made of the m-sequence code reversed in time, so

that the convolution becomes a correlation [2][7]. This is

the principle of a matched filter (to the transmitted

code). The working frequency is 2.4 GHz ; however the

actual frequency of Tx and Rx local oscillators in USRP

devices can deviate from that frequency (the difference

is up to a few kHz).

288

Figure 5 – Channel sounder transmitter

Figure 6 – Channel sounder receiver

In order to precisely tune the frequency of local

oscillators and reduce the frequency gap between the

receiver and the transmitter, two sliders were added.

Students noticed that the correlator can not support a too

important frequency shift. At least the phase shift

between the two oscillators should not be significant

(let’s say less than 20°) during the correlation on Lc

chips.

The measured channel impulse response at the

output of the correlator is shown in Figure 7 on several

successive correlation periods with I component on top

and Q component below. The observation of the impulse

response provides useful information about the

imperfections introduced by the channel. We can see that

in these conditions of experimentation, the signal to

noise ratio is high ; indeed, USRP platforms are side by

side and signal amplification is within its maximal range.

Multiple paths are absent, because of short-range

transmission. But the carriers frequency

desynchronisation is clearly visible as correlation peaks

rotate over the course of time, whereas we should only

see positive peaks in I component and nothing except

AWGN in Q. We see on Figure 7 the desynchronisation

phenomenon while observing the signal over 10

sequences.

Phase can be extracted from this sounding

information and could be used to compensate in real-

time the frequency shift between Tx and Rx oscillators

in a communication link [2][7]. But in a communication

context, we may get rid off synchronization issue by

other means, as exposed in the next section.

289

Figure 7 – Channel impulse response : top (I), low (Q)

V. SPREAD SPECTRUM COMMUNICATION

Thanks to the easy implementation of radio systems with

a software radio approach, students also investigated

spread spectrum communications, beyond channel

sounding. The specific issue of carrier synchronization is

illustrated here.

A. Synchronization with a Costas Loop

First, the Costas Loop was considered to deal with the

desynchronization issue. Once the signal is properly

synchronized, a peak detection function can be added at

the output of the correlator. A positive peak means that a

'1' was transmitted, and a negative peak means that a '0'

was transmitted.

However, students faced that the Costas Loop was not

enough to completely synchronize the carriers, as the

phase regularly shifts from 0° to 180°. Costas Loop

based designs did not appear viable, since the loop could

not lock when the desynchronization was too high. The

reason could be that students were not skilled enough in

digital communications to find the good parameters

values, during their project, or because the

desynchronization was out of range of the Costas loop. A

complete study of the Costas loop provided in the GNU

environnement would have been neccessary for that.

B. RAKE-like channel compensation

A second solution that was envisioned consists in using

the channel impulse response obtained with the channel

sounder to compensate the phase-shift in a direct

sequence spread spectrum communication link. In this

context, communication data are spread on Q component

with another code of the same length Lc than the

sounding code of I component. For each ‘1’ data

(respectively ‘0’) the code sequence (respectively the

opposite sequence) is sent.

Figure 8 – phase-shift compensation algorithm using a RAKE-like approach

290

The phase-shift can be measured on the impulse

response given by the correlation on I component code,

when a correlation peak appears. The receiver design is

shown in Figure 8. However, an efficient correction

requires that the correlation function is performed while

carriers shift stays negilgible. Simulations showed that a

desynchronisation of 400 Hz can be compensated at a

chip rate of 1 MHz (when correlation is 127 µs long).

But students observed a desynchronization of several

khz between the two platforms local oscillators, thus

requiring a ten times higher chip rates (10 MHz). But

students could not reach that transfer rate with USRP 1

platforms connected via USB link to the host platform.

As the communication chain was developped and

simulated with the addition of the imperfections due to

desynchronization, this allowed to validate the design for

lower values of desynchronization only (than in reality).

Results are shown on Figure 9. Sequence {1,1,-1} was

transmitted with a simulated desynchronization of

150 Hz at a chip rate of 1 MHz. Successive sequences of

two positive peaks, followed by one negative peak are

obtained, as expected.

Figure 9 – Data transmission with phase-shift

We can observe that the channel estimation peaks no

longer rotate. It is also possible to monitor the evolution

of the phase-shif as we can see in Figure 10. Then we

can demodulate data while selecting the Q component

peaks values and recover the {1,1,-1} sequence.

Figure 10 – Phase shift evolution

This system finally acts as the arms of a RAKE receiver

[2][3][7].

VI. N210 PLATFORM EXPERIMENTS

A developpement environment has been done in Supélec

SCEE lab in order to run communications chains with

the latest N210 platform of Ettus Research (as GRC

could not support N210 platform at the time this student

project was done) in the Microsoft Windows

environment. This developpement environment is based

on the one hand on processing blocks which have been

encapsulated in our C++ framework, and on the other

hand on the management architecture for cognitive radio

[9] developped in Supélec research [10], called

HDCRAM (Hierarchical and Distributed Cognitive

Radio Architecture Management) [11].

In this environment, students implemented the sounding

chain at a chip rate of 1 Mchip/s. This gives a resolution

in time of 1 µs. Above all, this permits to obtain a

correlation in 127 µs. Moreover carriers

desynchronization has been reduced while using a lower

carrier frequency (1.4 GHz) thanks to new RF daughter

boards. All that made the phase shift negligible on a

correlation period, so that the channel sounding system

has been validated in real conditions. Figure 11 shows

the I component measured channel impulse response

with a resolution of 1 µs @ 1.4 GHz. This measure has

been done at a distance of 20 m in two rooms separated

by a 12 m corridor.

Figure 11 – Measured channel impulse response with a

resolution of 1 µs (1 MHz chip rate) @ 1.4 GHz

Thanks to the flexibility of software radio, students

could also easily perform many other measurements with

different conditions in terms of carrier frequency and

chip rate. Next Figures give a few examples.

This system could now be used to make channels

measurement campaigns in many different

environments, taking into account the office topology,

the level of transmission, the carrier frequency, etc. This

will be the topic of next year students.

Figure 13 shows a new phenomenon that occurs when

carrier frequency goes down (here 300 MHz). The

correlation is not only rotating, but also suffers from

shape deformation.

291

Figure 12 – Measured channel impulse response with a

chip rate of 300 kHz @ 800 MHz

Students have not clearly identified the cause of this

phenomenon. However, a spectrum analyzer

measurerement of the radio spectrum also reveals the

existence of many frequency harmonics at multiples of

the carrier frequency so that the hypothesis of non

linearities caused by the amplification may be done.

Further investigations are planned to really explain it.

Figure 13 – Measured channel impulse response with a

chip rate of 300 kHz @ 300 MHz

VII. CONCLUSIONS AND FUTURE WORK

This paper shows how software radio can be used as a

pedagogic tooling for teaching digital communications,

beyond theoretical basics. It enables indeed to

investigate early in the curriculum of undergraduate

students such hard topics as synchronization, multipath,

even non linearities, etc. After 2 decades, we can say that

software radio promoted the use of open source software

solutions for radio design and development. But if this

starts to be effective at the education or lab level, this

has not yet come true at the industry level. We can

wonder when the maturity of such an approach will

make it a reality. This paper is also a very good exercise

for the writing of a communication paper by students.

This lab and others in the future can be found at:
http://www.rennes.supelec.fr/ren/perso/cmoy/SCEE-SERI/

VIII. ACKNOWLEDGMENT

Authors would like to thank all the contributors to the

GNU Radio and Ptolemy projects.

IX. REFERENCES

[1] J. Mitola, “The Software Radio Architecture,” IEEE

Communications Magazine, vol. 33, n°5, May 95

[2] C. Moy, "Conception d'un Système de Transmission

Numérique à Etalement de Spectre Hybride DS/FH de

Type RAKE Adapté au Canal de Diffusion Troposphé-

rique - Mesures de Propagation sur une Liaison Expéri-

mentale à 4.5 GHz", Ph.D. dis., INSA Rennes, June 99

[3] C. Moullec, G. El Zein, J. Citerne, "An integrated all

digital diversity receiver for spread spectrum

communications over multipath fading channels",

ISSSTA’94, 4-6 July 1994, Oulu, Finland.

[4] http://www.ettus.com/products

[5] http://gnuradio.org/redmine/wiki/gnuradio

[6] J.G. Proakis, "Digital Communications", Mc Graw Hill

1995

[7] C. Moy, G. El Zein, J. Citerne, "Performance of

Hybrid Spread Spectrum DS/FH RAKE Receivers for

Troposcatter Links at 5 GHz", ISSSTA'98, Sun City,

South Africa, 2-4 September 1998

[8] G. L. Turin, "Intoduction to Spread Spectrum

Antimultipath Techniques and their Application to Urban

Digital Radio", Proc. IEEE, vol. 68, n°3, March 1980

[9] J. Mitola, “Cognitive Radio: An Integrated Agent

Architecture for Software Defined Radio”, Ph.D. dis.

Royal Inst. of Tech., Sweden, 2000

[10] J. Palicot, "Radio Engineering: from Software Radio

to Cognitive Radio", Wiley ISTE, July 2011

[11] C. Moy, "High-Level Design Approach for the

Specification of Cognitive Radio Equipments

Management APIs", Journal of Network and System

Management, vol. 18, number 1, pp. 64-96, Mar. 2010

292

