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ABSTRACT 

The digital down converter (DDC) is a fundamental com-

ponent in modern receivers. Two different architectures, 

operating on very different principles, have become domi-

nant in modern receiver systems. The first of these is the 

Edwin Armstrong heterodyne model formed by three 

processes, a quadrature heterodyne, a low-pass filter, and an 

M-to-1 down sampler. The second is the band centered po-

lyphase filter in which the three processes are performed in 

the reverse order, an M-to-1 aliasing down sampler, an M-

path partitioned low-pass filter, and an M-point complex 

phase-alignment vector. The second option finds great favor 

in multichannel receivers in which multiple narrowband 

signals are separated by the single filter coupled to an IFFT 

that provides the multiple M-point phase alignment vectors. 

In this paper we present a polyphase filter form of the sin-

gle channel DDC that offers significant computational ad-

vantages over the conventional single channel DDC. This 

architecture may present the minimum power implementa-

tion of a DDC and likely will find great value in battery 

operated radio receivers. 

1. INTRODUCTION 

There are many ways of performing the task of a digital 

down converter. The DDC converts a real sampled data 

signal centered at an arbitrary intermediate frequency to a 

complex base band signal centered at zero frequency. The 

most common form of the DDC is based on Edwin 

Armstrong’s heterodyne receiver. It contains three 

processes: a quadrature direct digital synthesizer (DDS) 

feeding a pair of multipliers that perform the desired spec-

tral translation, a pair of sampled data low-pass filters that 

reduce the signal bandwidth, and a down sampling process 

that reduces the output sample rate in proportion to the filter 

bandwidth reduction. In modern receivers the filter is im-

plemented in a multirate architecture that embeds the re-

sampling process in the filtering process.  

A ubiquitous resampling filter present in many systems is 

the K-stage cascade Integrator comb (CIC) or Hogenauer 

filter. This filter consists of K-digital integrator stages, an 

M-to-1 down sampler, and K-derivative stages. Figure 1 

shows the evolution of the M-to-1 resampled K-stage box-

car integrator transfer function to separate numerator and 

denominator filters and their reordering by the noble identi-

ty to the Hogenauer partition with the comb filters at the 

input rate becoming derivative filters at the output rate. The 

attraction of this filter is that it performs the filtering and 

resampling without multipliers. In many systems the CIC 

performs an M/4-to-1 bandwidth and sample rate reduction 

followed by a pair of half band filters that correct for the 

CIC’s main lobe spectral distortion and a final house clean-

ing filter to obtain a 4-to-1 bandwidth reduction and 4-to-1 

down sampling. This is seen in Figure 2 which shows the 

form of the CIC based DDC as often seen in the Gray-chip 

family.  

An important consideration often overlooked when compar-

ing the CIC filter to other filtering options is the bit width 

of the registers in the CIC Integrators. The prototype M-to-

1 resampling boxcar filter has a gain of M and of course a 

K-stage version of the boxcar filter has a gain of M
K
. The 

registers in the integrators of the CIC, and in general the 

registers of the derivatives, must accommodate this gain. 

The number of bits required for the integrator registers is 

shown in eqn.(1) as the sum of the number of bits 

representing the input signal plus the number of bits to ac-

commodate the K stages of gain. Specifically say we re-

quire 16 bit input samples processed by a 6-stage filter per-

forming 1000-to-1 down sampling. Inserting these values in 

eqn.(1) we find that baccum=16+60 =76 bits. There would 

be 6 integrators on each of the I and Q legs of the DDC for 

a total of twelve 76 bit registers operating at the input rate. 
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The total number of bits circulating in the CIC integrators 

would be 912 bits which is the equivalent to 57 16-bit 

words. Alternate DDC architectures that use less than 57 

16-bit words at the input sample rate may be a better choice 

for the DDC than the CIC based version. When we include 

two multiplies required to implement the DDS I-Q conver-

sion we have some 59 16 bit arithmetic operations. 

         
2ceil[log ( )]K

ACCUM DATAb b M         (1) 

 

Figure 1. Successive Transformations of M-to-1 Down 

Sampling K-Stage Boxcar Integrator to Cascade Integrator 

Comb and then to Hogenauer Partition. 

 

 
Figure 2. Digital Down Converter Containing Direct Digital 

Down Converter, M/4-to-1 Resampling CIC filter, One 

Half-Band Compensating Filter and One Half Band Clean-

up FIR Filter. 

 

1. ALTERNATE ARCHITECHURE 

The design we present here replaces the resampling CIC 

filters with a cascade of 2-to-1 down sampling half band 

filters. A cascade of traditional true half band filters is very 

efficient because half the coefficients are zero and each 

successive filter in the chain operates at half the speed of 

the previous stage. What we propose here is a novel variant 

of the half band filter, namely a two-path recursive all-pass 

linear phase implementation. The form of this filter is 

shown in Figure 3. The core stages of this filter are shown 

in Figure 4. The transfer functions of these cores are first 

and second order polynomials in Z
2
. Note the upper path is 

a pure delay line with linear phase. The lower path is de-

signed to match the phase of the upper path in the pass band 

region and to differ from the upper path by  in the stop 

band region. Since the upper path is linear phase, the com-

posite filter is also linear phase up to the pass band edge (as 

shown later in Figure 11). Since the polynomials forming 

the filter stages are polynomials in Z
2
 we can invoke the 

noble identity and pull the 2-to-1 down sampler through the 

filter and perform the 2-to-1 down sampling at the input to 

the filter. When we do this, the polynomials in Z
2
 become 

polynomials in Z. This transformation is shown in Figures 5 

and 6. Figures 7, 8, and 9 present a ninth order version of 

this two path filter. Note this particular filter has only 4 

coefficients for which the down sampling workload is re-

markably only 2-multiplies per input sample. 

 

 
Figure 3. Two-Path, Half Band Linear Phase Filter. 

 

            

Figure 4. Recursive All-Pass First Order and Second Order 

Filters Formed by Polynomials in Z
2
.
 

 

 
Figure 5. 2-to-1 Down Sampled Two-Path, Half Band  

Linear Phase Filter. 
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Figure 6. Recursive All-Pass First Order and Second Order 

Formed by Polynomials in Z. 

 

 

Figure 7. Ninth Order Two-Path, Half Band Linear Phase 

Filter.
 

 

 

Figure 8. 2-to-1 Resampled Ninth Order Two-Path, Half 

Band Linear Phase Filter.
 

 

Figure 9. Commutator 2-to-1 Resampled Ninth Order Two-

Path, Half Band Linear Phase Filter. 

 

We will shortly have need for four versions of this half 

band filter that are centered on the four cardinal directions 

that are multiples of /2. Using the notation of a 4-point 

DFT we will refer to these filters by their bin numbers, 0, 1, 

2, & 3.The transfer function for the upper and lower arms, 

denoted TP and BT, of Figure 7 are shown in eqn.(2). We 

can perform the low-pass to band-pass transformation that 

converts the low-pass Bin-0 filter to the Hilbert transform 

Bin-1 filter by the substitution shown in eqn.(3). When this 

substitution is made in eqn.(2) we obtain eqn.(4) where we 

see the effect of the transformation is to reverse the polarity 

of the coefficients in the second order polynomials and to 

declare the bottom path to be the imaginary part of the 

complex impulse response. This is precisely what happens 

when the Hilbert transform filter is coupled with the upper 

path delay line to form the analytic signal filter. The pole 

zero diagrams of the Bin-0 and Bin-1 filters are shown in 

Figure 10. Figure 11 shows the group delay and frequency 

response of this simple half band filter. From the two lower 

subplots we note that the filter exhibits linear phase in its 

stop band interval and its complementary pass band inter-

val. For this design, these intervals are 25.64% of the nor-

malized frequency axis. The pass band of the filters extends 

0.64% beyond the 25% point where adjacent filters overlap. 

This 0.64% overlap is required to have a signal located at 

the crossover boundary be in one of the four filters. As the 

sample rate is lowered by the succession of half band fil-

ters, the overlap region must increase as the signal band-

width of interest occupies a larger fraction of the sample 

rate. The DDC system for which this design was performed 

extracted a single 20 kHz bandwidth signal from a 100 

MHz sample rate. This bandwidth is one part in 5000 and at 

the end of 10 half-band filter chain. The filters required to 

accomplish this task use 4-coefficients for filters 1-through 

6, use 5-coefficients for filters7-through 9, and use7-

coefficients for filter 10. 
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Figure 10. Pole-Zero Diagrams for Half-Band Bin-0 and 

Half-Band Bin-1 Filters. 

 
Figure 11. Group Delay, Zoom to Group Delay Detail and 

Frequency Response of Half-Band Filter. 

 

The first improved option for the DDC has us replacing the 

CIC filter with the cascade of recursive half band filters as 

shown in Figure 12. Remember that when delivering 2-

inputs to compute 1-output, the workload per input sample 

to the first filter is 1 multiply per input and the workload 

per input sample to the next filter is also 1 multiply per in-

put but occurs at half the rate so the workload for the next 

stage referenced to the input stage is 1/2 multiply per input 

sample. Following this reasoning, the workload for the cas-

cade chain per path is shown in eqn.(5). Here we see that, 

for a ten stages cascade, the workload per path is approx-

imately 3. multiplies per input sample. Thus the workload 

of the I-Q filter chains is approximately 6 multiplies per 

input sample. Note that the coefficients in the filter are 

fixed and they can be implemented with simple logic rather 

than with full Booth multipliers. If we include the I-Q qua-

drature mixing, the entire DDS requires only 8-multiplies 

per input sample. This is a significant improvement over the 

CIC’s 59 equivalent arithmetic operations. 

 
Figure 12. Digital Down Converter with Cascade Recursive 

Half-Band Low-Pass Linear Phase Filters 
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2. IMPROVED ALTERNATE ARCHITECTURE 

 

A improved second option for the DDC has us moving the 

DDS from the input of the cascade half band filter chain to 

its output. When operated at the low output rate, its contri-

bution to the workload is insignificant. To accomplish this 

shift we have to modify the half-band filters. The modifica-

tion is trivial only requiring sign changes in the two path 

filters. At each location in the half band chain, the half band 

filter has to be selected from one of 4-possible half band 

filter options. As commented upon earlier, the four filters 

are centered at the four cardinal directions or phases, 0, /2, 

2 /2, and 3 /2 which we labeled as bins 0, 1, 2, & 3 suc-

cessively. In the architecture of Figure 13, every possible 

input center frequency is associated with a unique succes-

sion of nine sets of phase selections presented to each stage 

by the channel selector. The selection process proceeds in 

the following manner. We note that due to the effect of the 

sample rate halving, at each stage the relative position of 

the selected signal center frequency is aliased or doubled 

when normalized to the new output sample rate. As an ex-

ample, we track the four successive locations of a signal 

initially located at normalized input frequency of 0.1 which 

places it in the bin-0 filter (-0.125 to +0.125) of the four 

possible filters. The effect of the upcoming successive alias 

shifts due 2-to-1 resampling is illustrated in Figure 13. Af-

ter the first half-band filter and 2-to-1 down sample it has 

aliased to the normalized frequency 0.2 which places it in 

the Bin-1 filter (+0.125 to +0.375). Following the second 

half band filter and 2-to-1 down sample it has aliased to 0.4 

which is in the Bin-2 filter (+0.375 to +0.625). The third 

half band filter and 2-to-1 down sample places it at 0.8 or at 

-0.2 which is in Bin-3 (+0.6255 to +0.875). A fourth half-

band filter and 2-to-1 down sample places it at 1.6 or 0.6 or 

-0.4 modulo(1) which is back to Bin-2 (+0.375 to +0.625). 

At the end of the sequence of 2-to-1 down sample aliasing 
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and half band filter the signal of interest will reside at some 

offset centered location. In the example just cited, the final 

center frequency is -0.4 at sample rate fS/16. A final hetero-

dyne at this output rate, as show in Figure 13, shifts the 

center of the final aliased band back to zero frequency. 

 

Forming the four bin filters from a single prototype half 

band filter is a simple matter of changing the sign of two 

adders. The first adder performs the sum or difference of 

the two paths as shown in Figure 9. Here we see that the 

sum of the two paths forms the low-pass filter, the Bin 0 

output and that the difference of the paths forms the high 

pass filter, the Bin-2 output. The second sign change was 

described earlier as coefficient sign change resulting from 

the low-pass to band pass transformation of eq(2). The ea-

siest place to effect the sign change is at the left most adder 

in the transfer function G(Z) shown in Figure 6. 

 

 
Figure 13. Digital Down Converter with Cascade Recursive 

Half-Band Four-Bin Linear Phase Filters. 

 

 
Figure 14. Spectra of Signal Aliased to Different Sampled 

Data Frequencies in Successive 2-to-1 Sample rate Reduc-

tions. 

 

3. CONCLUSION 

 

The DDC filter structure shown in Figure 12 is a very effi-

cient technique to reduce bandwidth and sample rate. It 

performs a base banding operation and 1000-to-1 down 

sampling with approximately 8 arithmetic operations per 

real input sample. Two of these operations are the quadra-

ture mixing at the input to the filter chain. In the DDC filter 

structure shown in Figure 13 the quadrature mixing is 

moved to the output of the filter chain where its contribu-

tion to the workload is insignificant so that the workload 

drops to approximately 6 arithmetic operations per real in-

put sample. These workload numbers compare quite favor-

ably with the CIC work load of nearly 59 real arithmetic 

operations per input sample distributed over the quadrature 

heterodyne and the very wide bit width of the many input 

integrators. 

 

We finally note that the dual of the two process presented 

here will form a digital up converter (DUC) with the same 

computationally efficient work load, a work load nearly an 

order of magnitude smaller than the traditional CIC based 

DUC. 
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