

ANALYSING SCHEDULABILITY OF SDR SYSTEMS BASED ON

CYCLOSTATIONARY EXTENSION OF PERIODIC TASKS

Jan Westmeijer (mimoOn GmbH, Duisburg, Germany; e-mail:

jan.westmeijer@mimoon.de) and David Guevorkian (Department of Signal Processing,

Faculty of Computing and Electrical Engineering, Tampere University of Technology,

Tampere, Finland; e-mail: david.guevorkian@tut.fi)

ABSTRACT

An important problem in designing SDR systems is to obtain

minimal HW requirements to support implementation of

desired set of radios. This problem can be solved by a

method that would find out whether a valid schedule exists

to perform, before predefined deadlines, all the tasks

(algorithms) of a set of radios on given set of HW

components. It is known that radios are periodic in nature

(i.e. algorithms are periodically repeated). Therefore, to

analyze schedulability of a single radio it is enough to

consider only one period of that radio. However, since an

SDR system must support several radios, larger period of

time that includes several full periods of each radio must be

analyzed. In this work, a method for analyzing availability of

a schedule to perform given set of radios on a HW platform

is proposed based on cyclostationary extension of radio

tasks. A necessary condition for existence of a schedule is

derived. This allows finding minimum HW requirements to

support a desired set of radios.

1. INTRODUCTION

During the last decade, Software Defined Radio (SDR)

attracts more and more attention of research community

since it is thought to provide new, essentially wider

possibilities to Communication Technologies [1] – [5]. An

SDR system must support implementation of a set of radios

each radio requiring implementation of a chain of baseband

signal processing algorithms within very hard real-time

limits. This brings a need for rather high computational

power in SDR systems. On the other hand, SDR devices

should satisfy to strict power consumption and pricing

constraints. Therefore, in designing an SDR system,

naturally a task arises to find the minimal amount of HW

resources that is enough to support given set of radios.

 In an SDR system, the digital baseband signal

processing is divided into software tasks that are scheduled

by a scheduler and carried out by underlying processing

elements of shared HW platform, e.g. processors and

hardware accelerators. To make an SDR system efficient,

the set of radios should share the HW resources as much as

possible. Due to limited processing capacity and power

consumption budget in devices, an efficient schedule is of

crucial importance for the overall system performance and

hence Quality of Service for the user.

 In contrary to the traditional ASIC approach where each

radio baseband has its own dedicated signal processing

hardware, the SDR approach is based on radio-independent

signal processing resources e.g. Vector Processor or DSP

that are shared by a subset or all of the currently running

radios. All signal processing tasks have to be assigned to one

of the processing elements within the constraints given by

their required processing time, dependencies to other tasks

and absolute deadline set by the radio standards.

 Another limiting factor for the search of optimal

schedule is the processing time that may be devoted to

finding the scheduling algorithm. The optimal scheduling of

parallel tasks with some precedence relationship onto a

parallel machine is known to be NP-complete and hence the

processing time consumed by an exhaustive search for the

most optimal schedule is unacceptable in an operation

environment, e.g. radio baseband with clear real-time

requirements. Therefore, more sophisticated scheduling

approaches are to be used in practice [7]-[9].

 For example, in online dynamic scheduling approaches,

the scheduling for signal processing tasks is done when a

task is activated during run-time. The scheduler is not aware

of the periodicity of the radio baseband and hence is unable

to predict coming tasks beyond the currently running tasks.

This implies that instructions have to be loaded into local

memory of the processing elements on-the-fly, which would

jeopardize the tight timing constraints in the baseband

domain in most cases.

 Another approach is the static scheduling approach

where, for each radio baseband, time slots on processing

elements are reserved for each signal processing task during

design time (compile time). Therefore, the reserved time

slots cannot be changed according to the dynamic run-time

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

234

situation resulted, e.g. from different combination of radios

running in parallel. This leads to suboptimal schedules and

as result, to over-dimensioned platforms.

 In [9], a scheduling approach is proposed where static

schedules are dynamically created for all possible radio

combinations, to which the system may arrive after the

moment when the schedulers are designed. Once the system

changes its state (combination of currently active radios), the

corresponding schedule is readily available and may be

used. This significantly relaxes the time constraints for

schedule design.

 In this work, we propose a new method of obtaining

minimal HW resources for given set of periodic jobs

(radios) based on a new method to analyze and determine

the schedulability of cyclo-stationary software task sets on

given set of HW components, e.g. schedulability of

baseband signal processing in concurrent operation of

multiple radios on a HW platform consisting of several types

of processing elements. The proposed method allows using

HW platforms with minimal resources really necessary to

support implementation of a given set of radios. The method

is independent of the actual scheduling policy e.g. Earliest

Deadline First (EDF), Rate Monotonic (RM) or Deadline

Monotone (DM), etc.

2. CYCLOSTATIONARY EXTENSION OF A SET OF

PERIODIC JOBS

In this section we present a timing diagram based model of

periodic tasks, e.g., radios. This allows deriving a formal

criteria to analyze schedulability of periodic task sets. In

particular, in the next section, based on the presented model

we derive a necessary condition for existence of a valid

schedule to implement a set of periodic tasks on a computing

platform containing several sets of processing elements.

First we present timing based diagram of a single periodic

task (i.e. radio) in Section 2.1, then we present

cyclostationary extension of periodic tasks (radios) and

timing diagram based model of a set of such tasks in Section

2.2.

2.1. Timing based model of a single periodic task

Let the following set of time intervals represent the timing

information of 1m algorithms in a single radio 1R :

 
1

1 1 1 1 1 1 1 1

0 1, ,... , ,m k k k kS A A A A t t w     (1)

Figure 1. Execution time intervals of tasks.

where 10,...,k m ,
1

kt R is a positive real number

indicating the starting time of thk algorithm 1

kA relative to

the initial time
1

0t of radio 1R , 1k kt t  , 0,..., 1k m  ,

1

kw R is the execution time of the thk algorithm, and

1m N is a positive integer. The starting time of an

algorithm is defined as the earliest possible time to start it.

The execution times are measured with respect to a

„‟Reference‟‟ Processing Element (PE) having unity

processing power.

As an example, Fig. 1 illustrates the timing

representation of a radio described by (1) a radio is

represented as a chain of algorithms wherein the precedence

dependencies of algorithm are implicitly described. Note

that the set 1S is ordered in the sense that 1k kt t  ,

10,..., 1k m  . On the other hand,
1 1

k jA A does not have

to be empty for any 1, 0...k j m i j   and, therefore,

equation (1) does allow algorithm concurrency.

For example, Algorithms
1

1kA  and 1

2kA  on Fig. 1 are

implemented concurrently. As shown in Fig. 1, none of the

algorithms of radio 1R is implemented prior to time 1
0t .

Iimplementation of the Algorithm 1

kA of radio 1R starts at

time 1
kt and ends at time 1 1

k kt w . Algorithm 1

1kA 
 of radio

1R is implemented within the time interval between 1
1kt 

and 1 1
1 1k kt w  . The implementation tome of the Algorithm

1

2kA 
 of radio 1R is the interval between 1

2kt  and

1 1
2 2k kt w  . As shown in Fig.1, implementation of the

Algorithm 1

2kA  may be started before the implementation of

Algorithm 1

1kA  is complete. In this regard, Algorithms 1kA 

1 1

1 1k kt w 

time

1

1kt 

1

kt
1

2kt 

1 1

k kt w
1 1

2 2k kt w 

1

kA

1

2kA 

1

1kA 

235

1

2

1

kt
1

2kt 

1 1

2 2k kt w 

1()f t

t

Figure 2. Execution time intervals of tasks.

and 1

2kA 
 are independent of each other but may only be

dependent on the preceding algorithms.

Once time intervals (1) are known, a radio, from

implementation point of view, can be modelled as:

1

1

1

0

() ()
k

m

A
k

f t t


  , 1

11
()

0 otherwisek

k

A

t A
t


  


 (2)

where, in fact,
1()f t indicates the number of algorithms

that are concurrently implemented at time instance t . For

instance, the function 1()f t for the radio that corresponds to

the timing diagram of Fig. 1 is given by (see also Fig. 2):

1 1

2

1 1 1 1

2 2 2

1, for [,]

() 2, for [,]

0, otherwise

k k

k k k

t t t

f t t t t w



  

 


  



since, according to Fig. 1, at each of time intervals
1 1 1[,]k k kt t w and 1 1 1

2[,]k k kt w t  only a single algorithm (1

kA or

1

2kA 
, respectively) is implemented, at time interval

1 1 1

2 2 2[,]k k kt t w   two algorithms 1

1kA  and 1

2kA 
 are

implemented, and no algorithms are implemented at other

times.

2.1. Cyclostationary extension of periodic task sets

Radios are periodic in nature. Therefore, one can consider

cyclic or repetitive extension of
1()f t with a period 1T

1 1 1() (),rf t f t a T a N    (3)

as depicted on Fig. 3. The period 1T may represent, for

example, one or several OFDM symbol(s) or any other

natural sized packet duration. Although Figure 3 does not

show overlap between the periods, this is not excluded.

 For example, in IEEE 802.11a WLAN, the same chain

of algorithms is repeated for each OFDM symbol having

duration of four microseconds (4 s). Therefore, it is

natural to consider cyclostationary extension (3) of that

chain of algorithms with the period of 1 4WLANT T s  . In

another example, considering 20MHz 3GPP LTE E-UTRA

implementation, a natural choice of the period in (3) would

be 1 1LTET T ms  (one millisecond), which is the duration

of one OFDM sub-frame, since in this radio, all the

computations can be arranged to be repeated for each sub-

frame.

 So far we considered implementation of a single radio.

Let us now consider the case where several radios should be

implemented on top of shared HW resources. Similarly to

radio 1R , the thi radio iR , 1,..., ,i n n N  , can be defined

as

0
() ()i

i
k

mi

k A
f t t


 

having period iT , and time intervals  0 1, ,...
i

i i i i

mS A A A ,

[,]i i i i

k k k kA t t w  . Assuming periods iT be natural numbers

in ns , s , or say in ms , let us consider their Least

Common Multiplier (LCM):

1

1

...

GCD(...)

n

lcm n

T T
T

T T

 


 
 (4)

where GCD stands for Greatest Common Divisor.

 Concatenating each set of intervals iS , 1,...,i n ,

(/)i

lcmT T times, we get

0 1
1

, ,...
ilcm

ii

i i i i
r T

T m
T

S A A A
 

  
 

 
 

  
 
 

,

which can be interpreted as the cyclic extension of radio

()if t . Let us note that presented in this way, all the radios

will have the same period lcmT .

As an example, let us assume we need to create a

scheduler for an SDR system that supports implementation

of IEEE 802.11a WLAN and 20MHz 3GPP LTE E-UTRA.

In that case, 1lcmT ms , which is the period of the whole

algorithm chain for both radios. This means that if a valid

schedule is created for one period of time 1lcmT ms it can

then be repetitively applied during the whole time when both

radios need be operated. Therefore, schedulability analysis

may be reduced to analysis of only one period. Note that

during one period one LTE OFDM sub-frame and 250

WLAN OFDM symbols are processed simultaneously.

236

Figure 3. Periodicity of radio algorithms

The sets i
rS , can be united and ordered to a single set S to

correspond to the combination of radios iR , 1,...,i n :

1 ... n
r rS S S   (5)

Now, it is easy to see that the combination of radios iR ,

1,...,i n , is periodic with the period lcmT and the total

processing time pT needed to implement this combination

of radios within one period can be computed as

1 0

imn
ilcm

p ji
i j

T
T w

T 

 

3. NECESSARY CONDITION FOR

SCHEDULABILITY OF A RADIO SET

Suppose now that a set of radios must be implemented on a

HW platform consisting of K identical “reference”

processing elements (PEs) each having unity processing

power. Then the total available processing power within one

common period lcmT could have been measured as

ap lcmT K T  the most that corresponds to the ideal case

where it was possible to achieve 100% utilization of all PEs

during whole processing. Therefore, the following term

1 0

1 0

1

i

i

mn
ilcm
k m ii n

p i k k

i
ap lcm i k

T
w

T wT

T K T K T
  

 

  


 


(6)

may be used to derive a necessary condition for

schedulability of radio combinations on HW platforms.

Namely, one can state that the set of radios { , 1,..., }iR i n

cannot be implemented on the system with a set of K

“reference” PEs if  defined in (6) is larger than unity

(1 ).

 This necessary condition can easily be generalized to

the case where the system includes PEs of different types.

Without loss of generality suppose the system contains PEs

of two types. In this case, the algorithms of radios are split

into two clusters I and II depending on the type of PE where

they are implemented. Now instead of the measure in (6) the

following measure may be used:

' max ,
p p

ap ap

T T

T T


   
  

   

 (7)

where I
pT and II

pT are required processing times of

algorithms from cluster I and II on corresponding types of

PEs, and I
apT and II

apT are available processing times

provided by PEs of type I and II, respectively. The

terms I
pT , II

pT , I
apT , and II

apT are calculated similarly to

corresponding terms in (6). The necessary condition now

transforms to ' 1  .

 Let us note that the necessary condition based on (7)

assumes semi-static task assignment where the decision on

which algorithm to implement on which type of PE is made

at compile time (that is before the actual implementation

starts) and remains fixed during the whole execution. This

does not necessarily mean fully static assignment since only

type of PE is decided at compile time but the exact PE

assignment may be implemented dynamically. Also,

criterion (7) corresponds to the case where the platform

comprises of only two types of PEs.

 In a more general scenario, where the platform may

consist of several types of PEs, say PE clusters ()rPE ,

1,...,r l , and where fully dynamic task assignment is

allowed meaning that the algorithms are assigned to PEs

during the execution time, the equation (7) should be

generalized. In this case, (7) transforms to

 1,...

()
'' min max

p

ap

r

r
all possible r l
assignments a

T a

T




    
   

    

, (8)

where ()r

pT a , 1,...,r l , is the total processing time of all

algorithms assigned to PEs from cluster r according to

assignment a , and
r

apT is available processing time or

power provided by all the PEs of that cluster. In this

scenario, the necessary condition transforms to '' 1  .

1()rf t

time

1T
1T

237

 The necessary conditions based on (6) - (8) are valid

but are rather weak since they do not take into account data

transfer times. When taking these data transfers into

account, (6) is transformed to

1 0

(_)
imn

ilcm
p b ji

i j

T
T w t bus

T


 

   (9)

where (_)i
jw t bus represents the execution of the thi

algorithm including data bus transfer time. If the ratio

p b

av

T

T



is larger than unity, the radios may only be, in the best case,

implemented with a limited amount of data transfers

between PEs. In practice, this determines which algorithms

have to reside on the same processing element.

 It should be noted that the derived necessary conditions

do not generate or guarantee the existence of a valid

schedule. For example, if we take sufficiently large number

K of PEs, we may make the value of  less than unity.

However, this would not mean a valid schedule is possible

since there may be algorithms that cannot be implemented

within a pre-specified time irrelevant on how many PEs are

used. The algorithm may be essentially sequential or it may

require too extensive data communication when parallelized

to several PEs. The proposed necessary conditions do not

reveal such situations and, therefore, cannot be considered

as satisfactory conditions. However, the introduced model

and the derived necessary conditions are useful for

schedulability analysis and for the design of an SDR system

with minimal HW resource since they indicate (to designers

or to automated schedule creating systems) the maximum

number of PEs that is necessarily needed to support

implementation of a specified set of radios.

4. CONCLUSION

Timing diagram based model of radio sets was introduces.

This model explicitly uses periodic nature of radio tasks. In

particular it formally defines the minimum period of time for

which valid static schedules for a set of radios should be

designed and verified or simulated. Also based on the

proposed model, necessary conditions were derived for

existence of a valid schedule to implement a set of radios on

a given SDR platform. The derived necessary conditions do

not guarantee existence of a schedule for mapping the

considered combination or radios onto a given HW

platform. Neither, they provide a valid schedule.

Nevertheless, these conditions may be used to analyze

whether given set of radios is , in principle, possible to map

onto a given HW platform, thus simplifying the design of

SDR systems with minimal HW resources.

5. REFERENCES

[1] A. Ahtiainen, H. Berg, U. Lücking. A. Pärssinen. and J.

Westmeijer, “Architecting Software Radio,” Proceeidngs
of the SDR 07 Technical Conference and product Exposition,
2007.

[2] A. Ahtiainen, K. van Berkel, D. van Kampen, O.
Moreira, A. Piipponen, T. Zetterman, ” Multi-radio
Scheduling and Resource Sharing on a Software
Defined Radio Computing Platform,” Proceeidngs of the
SDR 08 Technical Conference and product Exposition, 2008.

[3] L. Harju and J. Nurmi, “Hardware platform for software-
defined WCDMA/OFDM baseband receiver
implementation,” IET Comput. Digit. Tec., Vol.. No 5, pp.
640-652, 2007.

[4] F. Kasperski, O.Pierrelee, F. Dotto, M. Sarlotte, ”High data
rate fully flexible SDR modem advanced configurable
architecture & development methodology,” Proceedings of
Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE '09, pp. 1040-1044, 2009.

[5] H. Berg, C. Brunelli and U. Lücking, “Analyzing models
of computation for software defined radio applications,”
Proceedings of International Symposium on System-on-
Chip, 2008 (SOC-2008), pp. 1-4, 2008.

[6] S. Sriram, Sh. S. Bhattacharyya, Embedded
Multiprocessors. Scheduling and Synchronization.
Signal Processing and Communication Series, Marcel
Dekker Inc., 2000, 327.

[7] O. Moreira, F. Valente, M. Bekooij, “Scheduling
multiple independent hard-real-time jobs on a
heterogeneous multiprocessor,” Proceedings of the 7th
ACM & IEEE international conference on Embedded
software. 2007, pp. 57-66. 2007.

[8] O. Moreira J.-D. Mol, M. Bekooij and J. van
Meerbergen, “Multiprocessor Resource Allocation for
Hard-real-time Streaming with a Dynamic job-mix," in
Proceedings of IEEE Int. Symposium Real Time and
Embedded Technology and Applications (RTAS-2005),
pp. 332-341, 2005

[9] D. Guevorkian, J. Westmeijer, “Predictive scheduling
of job combinations in SDR systems,” submitted to
SDR‟11 WInnComm, 2011.

238

