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ABSTRACT 

 

An important problem in designing SDR systems is to obtain 

minimal HW requirements to support implementation of 

desired set of radios. This problem can be solved by a 

method that would find out whether a valid schedule exists 

to perform, before predefined deadlines, all the tasks 

(algorithms) of a set of radios on given set of HW 

components. It is known that radios are periodic in nature 

(i.e. algorithms are periodically repeated). Therefore, to 

analyze schedulability of a single radio it is enough to 

consider only one period of that radio. However, since an 

SDR system must support several radios, larger period of 

time that includes several full periods of each radio must be 

analyzed. In this work, a method for analyzing availability of 

a schedule to perform given set of radios on a HW platform 

is proposed based on cyclostationary extension of radio 

tasks. A necessary condition for existence of a schedule is 

derived. This allows finding minimum HW requirements to 

support a desired set of radios. 

 

 

1. INTRODUCTION 

 

During the last decade, Software Defined Radio (SDR) 

attracts more and more attention of research community 

since it is thought to provide new, essentially wider 

possibilities to Communication Technologies [1] – [5]. An 

SDR system must support implementation of a set of radios 

each radio requiring implementation of a chain of baseband 

signal processing algorithms within very hard real-time 

limits. This brings a need for rather high computational 

power in SDR systems. On the other hand, SDR devices 

should satisfy to strict power consumption and pricing 

constraints. Therefore, in designing an SDR system, 

naturally a task arises to find the minimal amount of HW 

resources that is enough to support given set of radios.  

 In an SDR system, the digital baseband signal 

processing is divided into software tasks that are scheduled 

by a scheduler and carried out by underlying processing 

elements of shared HW platform, e.g. processors and 

hardware accelerators. To make an SDR system efficient, 

the set of radios should share the HW resources as much as 

possible. Due to limited processing capacity and power 

consumption budget in devices, an efficient schedule is of 

crucial importance for the overall system performance and 

hence Quality of Service for the user.  

 In contrary to the traditional ASIC approach where each 

radio baseband has its own dedicated signal processing 

hardware, the SDR approach is based on radio-independent 

signal processing resources e.g. Vector Processor or DSP 

that are shared by a subset or all of the currently running 

radios. All signal processing tasks have to be assigned to one 

of the processing elements within the constraints given by 

their required processing time, dependencies to other tasks 

and absolute deadline set by the radio standards. 

 Another limiting factor for the search of optimal 

schedule is the processing time that may be devoted to 

finding the scheduling algorithm. The optimal scheduling of 

parallel tasks with some precedence relationship onto a 

parallel machine is known to be NP-complete and hence the 

processing time consumed by an exhaustive search for the 

most optimal schedule is unacceptable in an operation 

environment, e.g. radio baseband with clear real-time 

requirements. Therefore, more sophisticated scheduling 

approaches are to be used in practice [7]-[9]. 

 For example, in online dynamic scheduling approaches, 

the scheduling for signal processing tasks is done when a 

task is activated during run-time. The scheduler is not aware 

of the periodicity of the radio baseband and hence is unable 

to predict coming tasks beyond the currently running tasks. 

This implies that instructions have to be loaded into local 

memory of the processing elements on-the-fly, which would 

jeopardize the tight timing constraints in the baseband 

domain in most cases. 

 Another approach is the static scheduling approach 

where, for each radio baseband, time slots on processing 

elements are reserved for each signal processing task during 

design time (compile time). Therefore, the reserved time 

slots cannot be changed according to the dynamic run-time 
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situation resulted, e.g. from different combination of radios 

running in parallel. This leads to suboptimal schedules and 

as result, to over-dimensioned platforms. 

 In [9], a scheduling approach is proposed where static 

schedules are dynamically created for all possible radio 

combinations, to which the system may arrive after the 

moment when the schedulers are designed. Once the system 

changes its state (combination of currently active radios), the 

corresponding schedule is readily available and may be 

used. This significantly relaxes the time constraints for 

schedule design.  

 In this work, we propose a new method of obtaining 

minimal HW resources for given set of periodic jobs 

(radios) based on a new method to analyze and determine 

the schedulability of cyclo-stationary software task sets on 

given set of HW components, e.g. schedulability of 

baseband signal processing in concurrent operation of 

multiple radios on a HW platform consisting of several types 

of processing elements. The proposed method allows using 

HW platforms with minimal resources really necessary to 

support implementation of a given set of radios. The method 

is independent of the actual scheduling policy e.g. Earliest 

Deadline First (EDF), Rate Monotonic (RM) or Deadline 

Monotone (DM), etc. 

  

 

2.  CYCLOSTATIONARY EXTENSION OF A SET OF 

PERIODIC JOBS 

 

In this section we present a timing diagram based model of 

periodic tasks, e.g., radios. This allows deriving a formal 

criteria to analyze schedulability of periodic task sets. In 

particular, in the next section, based on the presented model 

we derive a necessary condition for existence of a valid 

schedule to implement a set of periodic tasks on a computing 

platform containing several sets of processing elements. 

First we present timing based diagram of a single periodic 

task (i.e. radio) in Section 2.1, then we present 

cyclostationary extension of periodic tasks (radios) and 

timing diagram based model of a set of such tasks in Section 

2.2.   

 

2.1. Timing based model of a single periodic task 

 

  

Let the following set of time intervals represent the timing 

information of 1m algorithms in a single radio 1R : 
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Figure 1. Execution time intervals of tasks. 

 

where 10,...,k m , 
1

kt R  is a positive real number 

indicating the starting time of thk  algorithm 1

kA  relative to 

the initial time 
1

0t  of radio 1R , 1k kt t  , 0,..., 1k m  , 

1

kw R  is the execution time of the thk  algorithm, and 

1m N  is a positive integer. The starting time of an 

algorithm is defined as the earliest possible time to start it. 

The execution times are measured with respect to a 

„‟Reference‟‟ Processing Element (PE) having unity 

processing power. 

As an example, Fig. 1 illustrates the timing 

representation of a radio described by (1) a radio is 

represented as a chain of algorithms wherein the precedence 

dependencies of algorithm are implicitly described. Note 

that the set 1S  is ordered in the sense that 1k kt t  , 

10,..., 1k m  . On the other hand, 
1 1

k jA A  does not have 

to be empty for any 1, 0...k j m i j     and, therefore, 

equation (1) does allow algorithm concurrency.  

For example, Algorithms 
1

1kA   and 1

2kA   on Fig. 1 are 

implemented concurrently. As shown in Fig. 1, none of the 

algorithms of radio 1R  is implemented prior to time 1
0t .  

Iimplementation of the Algorithm 1

kA  of radio 1R  starts at 

time 1
kt  and ends at time 1 1

k kt w .  Algorithm 1

1kA 
 of radio 

1R  is implemented within the time interval between 1
1kt   

and 1 1
1 1k kt w  . The implementation tome of the Algorithm 

1

2kA 
 of radio 1R  is the interval between 1

2kt   and 

1 1
2 2k kt w  .  As shown in Fig.1, implementation of the 

Algorithm 1

2kA   may be started before the implementation of 

Algorithm 1

1kA   is complete.  In this regard, Algorithms 1kA    
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Figure 2. Execution time intervals of tasks. 

 

 

and 1

2kA 
 are independent of each other but may only be 

dependent on the preceding algorithms.  

Once time intervals (1) are known, a radio, from 

implementation point of view, can be modelled as: 
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where, in fact, 
1( )f t  indicates the number of algorithms 

that are concurrently implemented at time instance t . For 

instance, the function 1( )f t  for the radio that corresponds to 

the timing diagram of Fig. 1 is given by (see also Fig. 2): 
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since, according to Fig. 1, at each of time intervals 
1 1 1[ , ]k k kt t w and 1 1 1

2[ , ]k k kt w t  only a single algorithm ( 1

kA  or 

1

2kA 
, respectively) is implemented, at time interval 

1 1 1

2 2 2[ , ]k k kt t w   two algorithms 1

1kA   and 1

2kA 
 are 

implemented, and no algorithms are implemented at other 

times.  

 

2.1. Cyclostationary extension of periodic task sets 

 

 

Radios are periodic in nature. Therefore, one can consider 

cyclic or repetitive extension of 
1( )f t  with a period 1T  

 
1 1 1( ) ( ),rf t f t a T a N     (3) 

 

as depicted on Fig. 3. The period 1T  may represent, for 

example, one or several OFDM symbol(s) or any other 

natural sized packet duration. Although Figure 3 does not 

show overlap between the periods, this is not excluded.  

 For example, in IEEE 802.11a WLAN, the same chain 

of algorithms is repeated for each OFDM symbol having 

duration of four microseconds ( 4 s ). Therefore, it is 

natural to consider cyclostationary extension (3) of that 

chain of algorithms with the period of 1 4WLANT T s  . In 

another example, considering 20MHz 3GPP LTE E-UTRA 

implementation, a natural choice of the period in (3) would 

be 1 1LTET T ms   (one millisecond), which is the duration 

of one OFDM sub-frame, since in this radio, all the 

computations can be arranged  to be repeated for each sub-

frame.   

 So far we considered implementation of a single radio. 

Let us now consider the case where several radios should be 

implemented on top of shared HW resources. Similarly to 

radio 1R , the thi  radio iR , 1,..., ,i n n N  , can be defined 

as 

0
( ) ( )i

i
k

mi

k A
f t t


    

 

having period iT , and time intervals  0 1, ,...
i

i i i i

mS A A A , 

[ , ]i i i i

k k k kA t t w  .  Assuming periods iT be natural numbers 

in ns , s , or say in ms , let us consider their Least 

Common Multiplier (LCM): 

 
1

1

...

GCD( ... )

n

lcm n

T T
T

T T

 


 
 (4) 

 

where GCD stands for Greatest Common Divisor. 

 Concatenating each set of intervals iS , 1,...,i n , 

( / )i

lcmT T  times, we get  

 

0 1
1

, ,...
ilcm

ii

i i i i
r T

T m
T

S A A A
 

  
 

 
 

  
 
 

,  

  

which can be interpreted as the cyclic extension of radio 

( )if t . Let us note that presented in this way, all the radios 

will have the same period lcmT . 

As an example, let us assume we need to create a 

scheduler for an SDR system that supports implementation 

of IEEE 802.11a WLAN and 20MHz 3GPP LTE E-UTRA. 

In that case, 1lcmT ms , which is the period of the whole 

algorithm chain for both radios. This means that if a valid 

schedule is created for one period of time 1lcmT ms it can 

then be repetitively applied during the whole time when both 

radios need be operated. Therefore, schedulability analysis 

may be reduced to analysis of only one period. Note that 

during one period one LTE OFDM sub-frame and 250 

WLAN OFDM symbols are processed simultaneously.       
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Figure 3. Periodicity of radio algorithms 

 

 

The sets i
rS , can be united and ordered to a single set S  to 

correspond to the combination of radios iR , 1,...,i n : 

 
1 ... n
r rS S S    (5) 

  

Now, it is easy to see that the combination of radios iR , 

1,...,i n , is periodic with the period lcmT  and the total 

processing time pT  needed to implement this combination 

of radios within one period can be computed as 

 

1 0

imn
ilcm

p ji
i j

T
T w

T 

    

 

3. NECESSARY CONDITION FOR 

SCHEDULABILITY OF A RADIO SET 

 

Suppose now that a set of radios must be implemented on a 

HW platform consisting of K identical “reference” 

processing elements (PEs) each having unity processing 

power. Then the total available processing power within one 

common period lcmT  could have been measured as 

ap lcmT K T   the most that corresponds to the ideal case 

where it was possible to achieve 100% utilization of all PEs 

during whole processing. Therefore, the following term 

 

1 0

1 0

1

i

i

mn
ilcm
k m ii n

p i k k

i
ap lcm i k

T
w

T wT

T K T K T
  

 
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

 
  

(6) 

 

may be used to derive a necessary condition for 

schedulability of radio combinations on HW platforms. 

Namely, one can state that the set of radios { , 1,..., }iR i n  

cannot be implemented on the system with a set of K  

“reference” PEs if   defined in (6) is larger than unity 

( 1  ). 

 This necessary condition can easily be generalized to 

the case where the system includes PEs of different types. 

Without loss of generality suppose the system contains PEs 

of two types. In this case, the algorithms of radios are split 

into two clusters I and II depending on the type of PE where 

they are implemented. Now instead of the measure in (6) the 

following measure may be used: 

 

' max ,
p p

ap ap

T T

T T


   
  

   

 (7) 

 

where I
pT  and II

pT are required processing times of 

algorithms from cluster I and II on corresponding types of 

PEs, and I
apT  and II

apT  are available processing times 

provided by PEs of type I and II, respectively. The 

terms I
pT , II

pT , I
apT , and II

apT  are calculated similarly to 

corresponding terms in (6). The necessary condition now 

transforms to ' 1  .  

 Let us note that the necessary condition based on (7) 

assumes semi-static task assignment where the decision on 

which algorithm to implement on which type of PE is made 

at compile time (that is before the actual implementation 

starts) and remains fixed during the whole execution. This 

does not necessarily mean fully static assignment since only 

type of PE is decided at compile time but the exact PE 

assignment may be implemented dynamically. Also, 

criterion (7) corresponds to the case where the platform 

comprises of only two types of PEs.  

 In a more general scenario, where the platform may 

consist of several types of PEs, say PE clusters ( )rPE , 

1,...,r l , and where fully dynamic task assignment is 

allowed meaning that the algorithms are assigned to PEs 

during the execution time, the equation (7) should be 

generalized. In this case, (7) transforms to 

      

 1,...
 

( )
'' min max

p

ap

r

r
all possible r l
assignments a

T a

T




    
   

    

, (8) 

 

where ( )r

pT a ,  1,...,r l , is the total processing time of all 

algorithms assigned to PEs from cluster r  according to 

assignment a , and 
r

apT  is available processing time or 

power provided by all the PEs of that cluster. In this 

scenario, the necessary condition transforms to '' 1  .  

1( )rf t

time

1T
1T
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 The necessary conditions based on (6) - (8) are valid 

but are rather weak since they do not take into account data 

transfer times. When taking these data transfers into 

account, (6) is transformed to 

 

1 0

( _ )
imn

ilcm
p b ji

i j

T
T w t bus

T


 

    (9) 

 

where ( _ )i
jw t bus  represents the execution of the thi  

algorithm including data bus transfer time. If the ratio  

 

p b

av

T

T


  

 

is larger than unity, the radios may only be, in the best case, 

implemented with a limited amount of data transfers 

between PEs. In practice, this determines which algorithms 

have to reside on the same processing element. 

 It should be noted that the derived necessary conditions 

do not generate or guarantee the existence of a valid 

schedule. For example, if we take sufficiently large number 

K of PEs, we may make the value of   less than unity. 

However, this would not mean a valid schedule is possible 

since there may be algorithms that cannot be implemented 

within a pre-specified time irrelevant on how many PEs are 

used. The algorithm may be essentially sequential or it may 

require too extensive data communication when parallelized 

to several PEs. The proposed necessary conditions do not 

reveal such situations and, therefore, cannot be considered 

as satisfactory conditions. However, the introduced model 

and the derived necessary conditions are useful for 

schedulability analysis and for the design of an SDR system 

with minimal HW resource since they indicate (to designers 

or to automated schedule creating systems) the maximum 

number of PEs that is necessarily needed to support 

implementation of a specified set of radios.           

      

 

4. CONCLUSION 

 

Timing diagram based model of radio sets was introduces. 

This model explicitly uses periodic nature of radio tasks. In 

particular it formally defines the minimum period of time for 

which valid static schedules for a set of radios should be 

designed and verified or simulated. Also based on the 

proposed model, necessary conditions were derived for 

existence of a valid schedule to implement a set of radios on 

a given SDR platform. The derived necessary conditions do 

not guarantee existence of a schedule for mapping the 

considered combination or radios onto a given HW 

platform. Neither, they provide a valid schedule. 

Nevertheless, these conditions may be used to analyze 

whether given set of radios is , in principle, possible to map 

onto a given HW platform, thus simplifying the design of 

SDR systems with minimal HW resources.  
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