
On The Use Of An Algebraic
Language Interface For
Waveform Definition

Michael L Dickens and J Nicholas Laneman

 —

WINNF’11’US 2011-Dec-02
Thursday, November 17, 2011

! Blocks versus Buffers

! Problem

! Saline Implementation

! Conclusions

Overview

2 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

A Waveform Graph

3 / 26

DownsamplerSink

Source Rate
Limiter

Quadrature
Demodulator

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

A Waveform Graph

3 / 26

DownsamplerSink

Source Rate
Limiter

Quadrature
Demodulator

Subfilter
#N

..
.

..
.

..
.

1:N
Serial

to
Parallel

N-Way
Sum

Subfilter
#1

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

output = pp_down_N_block (input, N, options)
{
 s2p = serial_to_parallel (N, options)
 for n = 1:N {
 filter[n] = fir_filter (options.ppf[n])
 }
 acc = sum (options)
 connect ((input, 1), (s2p, 1))
 for n = 1:N {
 connect ((s2p, n), (filter[n], 1))
 connect ((filter[n], 1), (acc, n))
 }
 return (acc)
}

Block-Centric Script

4 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

output = pp_down_N_block (input, N, options)
{
 s2p = serial_to_parallel (N, options)
 for n = 1:N {
 filter[n] = fir_filter (options.ppf[n])
 }
 acc = sum (options)
 connect ((input, 1), (s2p, 1))
 for n = 1:N {
 connect ((s2p, n), (filter[n], 1))
 connect ((filter[n], 1), (acc, n))
 }
 return (acc)
}

Block-Centric Script

4 / 26 WINNF‘11’US 2011-Dec-02

1

Thursday, November 17, 2011

output = pp_down_N_block (input, N, options)
{
 s2p = serial_to_parallel (N, options)
 for n = 1:N {
 filter[n] = fir_filter (options.ppf[n])
 }
 acc = sum (options)
 connect ((input, 1), (s2p, 1))
 for n = 1:N {
 connect ((s2p, n), (filter[n], 1))
 connect ((filter[n], 1), (acc, n))
 }
 return (acc)
}

Block-Centric Script

4 / 26 WINNF‘11’US 2011-Dec-02

1

2

Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

5 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

5 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

6 / 26 WINNF‘11’US 2011-Dec-02

output = pp_down_N_buffer (input, N, options)

Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

6 / 26 WINNF‘11’US 2011-Dec-02

output = pp_down_N_buffer (input, N, options)

! Needs to be defined

• Means for defining functions taking stream buffers
as arguments

• Means for defining functions returning an operation

Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

7 / 26 WINNF‘11’US 2011-Dec-02

s2p = serial_to_parallel (input, N, options)

Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

7 / 26 WINNF‘11’US 2011-Dec-02

s2p = serial_to_parallel (input, N, options)

! Needs to be defined

• Operations taking 1 or more streams as input

• Means for storing the output of an operation

Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

8 / 26 WINNF‘11’US 2011-Dec-02

acc += fir_filter (s2p[n], options.ppf[n])

Thursday, November 17, 2011

output = pp_down_N_buffer (input, N, options)
{
 s2p = serial_to_parallel (input, N, options)
 acc = fir_filter (s2p[1], options.ppf[1])
 for n = 2:N {
 acc += fir_filter (s2p[n], options.ppf[n])
 }
 return (acc)
}

Buffer-Centric Script

8 / 26 WINNF‘11’US 2011-Dec-02

acc += fir_filter (s2p[n], options.ppf[n])

! Needs to be defined

• Means for creating a temporary variable storing the
output of a prior operation

• Means for appending a stream to the input stream list
of an operation

Thursday, November 17, 2011

 Block

 Buffer

Block Versus Buffer

! Instantiation and connection
can be in any order

!Various forms in use since
the late 1960’s

9 / 26 WINNF‘11’US 2011-Dec-02

!Non-algebraic language
interface structure

!All former and current data-
flow style processing

!Waveform must be created
from source(s) to sink(s)

!Various forms in use since
the early 1970’s

!Algebraic-like language
interface structure

!MATLAB has more than 1
million users worldwide

Thursday, November 17, 2011

Problem

To allow script-based waveform definition
using C++ and buffer-centric programming

10 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

Problem

To allow script-based waveform definition
using C++ and buffer-centric programming

!Uses some special C++ sauce …

• Namespaces

• Templates

• Operation Overloading

• typeid

10 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

Saline Implementation

11 / 26 WINNF‘11’US 2011-Dec-02

! Basic Classes

! Variable Types

! Operator Types

! Type Propagation

! Runtime Operation Checks

Surfer Algebraic Language INterfacE

Thursday, November 17, 2011

!Requires 3 basic classes

1.A base class

namespace saline {
 template < typename item_t >
 class stream_base;
}

!All stream-oriented variable classes are derived from
this base class, such that one can always downcast to
a saline::stream_base of the appropriate type

Saline Variable Types

12 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

2. An operator class that represents the output buffer(s)
resulting from some specific operator. For example, an
fft operator class might be defined via

namespace saline {
 template < typename in_t,
 typename proc_t,
 typename out_t >
 class fft :
 public stream_base < out_t >;
}

! Only the output buffer type of the new class is provided
to the base stream class

! Can be explicitly declared, but not required

Saline Variable Types

13 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

3. An enclosure variable class

namespace saline {
template < typename item_t >
class enclosure :
 public stream_base < item_t >;

}

! Contains a reference to an operator variable

! Can be explicitly declared

! Can be implicit temporary placeholders

• e.g., when multiple operators are executed before
the operator= method is issued

• A new object is created and knowledge of this
memory allocation is retained for later deletion

Saline Variable Types

14 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

! 6 primary operator types required to define an algebraic
language

1. op (options)

Operation taking no input streams, e.g., sources

2. op (stream1, …, streamN, options)

Operation taken a-priori known number of input streams

3. op (stream1, …, options)

Operation taken a number of input streams, which is not
known until runtime

Saline Operator Types

15 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

4. stream1 op stream2 op stream3 …

Generally expands at compile time to

tmp = stream1 op stream2
tmp op stream3

where tmp is an implicit temporary enclosure
variable. Expansion depends on language operator
precedence ordering.

Saline Operator Types

16 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

4. stream1 op stream2 op stream3 …

Generally expands at compile time to

tmp = stream1 op stream2
tmp op stream3

where tmp is an implicit temporary enclosure
variable. Expansion depends on language operator
precedence ordering.

Saline Operator Types

16 / 26 WINNF‘11’US 2011-Dec-02

Except ...

Thursday, November 17, 2011

4. stream1 op stream2 op stream3 …

… when all streams are of the same type, and all of the
operators are the same, then runtime optimization can
occur, e.g.,

Saline Operator Types

17 / 26 WINNF‘11’US 2011-Dec-02

+lpf[1]
lpf[2]
lpf[3]

lpf[N]

+

+

...
+

lpf[1]
lpf[2]
lpf[3]

lpf[N]

...
out = lpf[1] + lpf[2] + … + lpf[N]

Thursday, November 17, 2011

5. stream1 = stream2

Requires that stream1 be an explicit enclosure
variable. If stream2 is an enclosure variable, then just
copies the information held by stream2 into stream1

6. stream1 op= stream2

Requires that stream1 be an explicit enclosure
variable, and generally expands at runtime to

tmp = stream1
stream1 = tmp op stream2

where tmp is an implicit temporary enclosure variable

Saline Operator Types

18 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

5. stream1 = stream2

Requires that stream1 be an explicit enclosure
variable. If stream2 is an enclosure variable, then just
copies the information held by stream2 into stream1

6. stream1 op= stream2

Requires that stream1 be an explicit enclosure
variable, and generally expands at runtime to

tmp = stream1
stream1 = tmp op stream2

where tmp is an implicit temporary enclosure variable

Saline Operator Types

18 / 26 WINNF‘11’US 2011-Dec-02

Except ...

Thursday, November 17, 2011

6. stream1 op= stream2

when both streams are of the same type, and if
stream2 contains an operator of the same type
as op, then runtime optimization can occur, e.g.,

Saline Operator Types

19 / 26 WINNF‘11’US 2011-Dec-02

out = lpf[1];
for n=2:N { out += lpf[n]; }

+lpf[1]
lpf[2]
lpf[3]

lpf[N]

+

+

...
+

lpf[1]
lpf[2]
lpf[3]

lpf[N]

...

Thursday, November 17, 2011

Type Propagation

20 / 26 WINNF‘11’US 2011-Dec-02

!Operator types 1-4 return a saline::stream_base
of some template type, e.g.

namespace saline {
 template < typename arg_t >
 stream_base < arg_t >&
 serial_to_parallel
 (stream_base < arg_t >& arg,
 int num_outputs,
 options_t& options);
}

! Stream type is propagated from input(s) to output(s) via
the template parameter(s)

Thursday, November 17, 2011

! 3 checks are performed during runtime

1. Variable Overwriting : The code

saline::enclosure < int > A;
A = 5;
A = 10;

generates a warning on the last line, because the variable
was overwritten. Internally, the last two lines of the above
code are reinterpreted as

A = 5;
tmp_A = A;
A = 10;

where tmp_A is an implicit temporary enclosure variable

Runtime Operation Checks

21 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

2. Implicit type changes : The code

saline::enclosure < int > A;
saline::enclosure < float > B;
A = 5;
B = A;

generates a warning on the last line, because the stream
type was not explicitly changed. Internally, the last two
lines of the above code are reinterpreted as

tmp_A = saline::type_converter
 < int, float > (A);
B = tmp_A;

where tmp_A is an implicit temporary enclosure variable

Runtime Operation Checks

22 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

3. Variable declaration order : The code

saline::enclosure < int > A, B;
A = B;

generates an error on the last line, because the stream
B has not been set before it is saved into stream A

Runtime Operation Checks

23 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

namespace saline {
 template < typename arg_t >
 stream_base < arg_t > pp_down_N_Saline
 (stream_base < arg_t >& input,
 size_t N, options_t& options)
 {
 enclosure < arg_t > s2p, acc;
 s2p = serial_to_parallel (input, N, options);
 acc = fir_filter (s2p[1], options.ppf[1]);
 for (size_t n = 2; n < N; n++) {
 acc += fir_filter (s2p[n], options.ppf[n]);
 }
 return (acc);
 }
}

Saline Code

24 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

Conclusions
! Enabled algebraic-like waveform definition

interface in C++
• Buffer-centric approach to waveform definition
• 3 variable type classes

25 / 26

• 6 operator types, with possible runtime
waveform optimization

• 3 runtime operation checks
• Stream type propagation via template arguments

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

Ongoing Work

Conclusions
! Enabled algebraic-like waveform definition

interface in C++

! Increasing efficiency of runtime kernel

• Buffer-centric approach to waveform definition
• 3 variable type classes

!More compelling example using OFDM

25 / 26

• 6 operator types, with possible runtime
waveform optimization

• 3 runtime operation checks
• Stream type propagation via template arguments

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

Questions?

Thank you!

26 / 26 WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

Backup Slides

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

! Part of the C++ standard

! A namespace is the scope within which a given set of
classes, functions, and global variables are valid

! Denoted by “::” between the namespace name (before),
and the class, function, or variable (after), e.g.

namespace foo { int bar; }

! describes a variable bar, of type int, residing in the
namespace foo. One could reference this variable
directly after it is declared, via foo::bar

! Can have the same-named class, function, or variable in
multiple namespaces, so there is a trade-off between too
many and too few namespaces

C++ Namespace

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

!Part of the C++ standard

!Allows a single definition to apply to any number of
‘types’

! For example, the function max could be defined

template < typename T >
T max (T a, T b)
{ return (a > b ? a : b); }

!The above function could be used via, e.g.,

float fm = max < float > (1, 2);

!Recently ratified standard, C++11, allows for
variable number of template arguments

C++ Templates

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

! Part of the C++ standard

! Define math operators, e.g., +, *, &, <, %, for data-flows

! Overload the associated C++ operators, e.g., operator+,
operator*, etc..

! For example, operator+ for identically-typed arguments

template < typename T > foo < T > operator+
(foo < T > lhs, foo < T > rhs) {
return (foo < T > (lhs.value () + rhs.value ())); }

! Using the above code, assuming foo is appropriately defined

foo < int > a, b, c;
a = 1;
b = 2;
c = a + b;

! Cannot do differently-typed arguments

C++ Operation Overloading

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

! Part of the C++ standard, but implementations vary from compiler to
compiler

! Used for comparing any two already-declared variables’ types

! For example, operator+ for differently-typed arguments

template < typename lhs_t, typename rhs_t >
foo < lhs_t > operator+
(foo < lhs_t > lhs, foo < rhs_t > rhs) {
 lhs_t rhs_to_use = 0;
 if (typeid (lhs) == typeid (rhs)) {
 rhs_to_use = rhs.value ();
 } else {
 rhs_to_use = lhs_t (rhs.value ());
 }
 return (foo < lhs_t > (lhs.value () +
 rhs_to_use));
}

C++ typeid

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

!Using the above code, assuming foo and operator= are
appropriately defined

foo < int > a;
foo < short > b;
foo < long > c;
a = 1;
b = 2;
c = a + b;

C++ typeid

WINNF‘11’US 2011-Dec-02
Thursday, November 17, 2011

