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output = pp_down_N_block (input, N, options)
{
  s2p = serial_to_parallel (N, options)
  for n = 1:N {
   filter[n] = fir_filter (options.ppf[n])
  }
  acc = sum (options)
  connect ((input, 1), (s2p, 1))
  for n = 1:N {
    connect ((s2p, n), (filter[n], 1))
    connect ((filter[n], 1), (acc, n))
  }
  return (acc)
}

Block-Centric Script
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output = pp_down_N_buffer (input, N, options)
{
  s2p = serial_to_parallel (input, N, options)
  acc = fir_filter (s2p[1], options.ppf[1])
  for n = 2:N {
    acc += fir_filter (s2p[n], options.ppf[n])
  }
  return (acc)
}

Buffer-Centric Script
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output = pp_down_N_buffer (input, N, options)

! Needs to be defined

• Means for defining functions taking stream buffers 
as arguments

• Means for defining functions returning an operation
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s2p = serial_to_parallel (input, N, options)

! Needs to be defined

• Operations taking 1 or more streams as input

• Means for storing the output of an operation
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acc += fir_filter (s2p[n], options.ppf[n])

! Needs to be defined

• Means for creating a temporary variable storing the 
output of a prior operation

• Means for appending a stream to the input stream list 
of an operation
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 Block

 Buffer

Block Versus Buffer

! Instantiation and connection 
can be in any order

!Various forms in use since 
the late 1960’s
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!Non-algebraic language 
interface structure

!All former and current data-
flow style processing

!Waveform must be created 
from source(s) to sink(s)

!Various forms in use since 
the early 1970’s

!Algebraic-like language 
interface structure

!MATLAB has more than 1 
million users worldwide 
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Problem

To allow script-based waveform definition 
using C++ and buffer-centric programming
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Problem

To allow script-based waveform definition 
using C++ and buffer-centric programming

!Uses some special C++ sauce …

• Namespaces

• Templates

• Operation Overloading

• typeid
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Saline Implementation 
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! Basic Classes

! Variable Types

! Operator Types

! Type Propagation

! Runtime Operation Checks

Surfer Algebraic Language INterfacE
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!Requires 3 basic classes

1.A base class 

namespace saline {
  template < typename item_t >
  class stream_base;
}

!All stream-oriented variable classes are derived from 
this base class, such that one can always downcast to 
a saline::stream_base of the appropriate type

Saline Variable Types 
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2. An operator class that represents the output buffer(s) 
resulting from some specific operator.  For example, an 
fft operator class might be defined via

namespace saline {
  template < typename in_t,
             typename proc_t,
             typename out_t >
  class fft :
    public stream_base < out_t >;
}

! Only the output buffer type of the new class is provided 
to the base stream class

! Can be explicitly declared, but not required

Saline Variable Types 
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3. An enclosure variable class

namespace saline {
template < typename item_t >
class enclosure :
  public stream_base < item_t >;

}

! Contains a reference to an operator variable

! Can be explicitly declared

! Can be implicit temporary placeholders

• e.g., when multiple operators are executed before 
the operator= method is issued

• A new object is created and knowledge of this 
memory allocation is retained for later deletion

Saline Variable Types 
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! 6 primary operator types required to define an algebraic 
language

1. op (options)

Operation taking no input streams, e.g., sources

2. op (stream1, …, streamN, options)

Operation taken a-priori known number of input streams

3. op (stream1, …, options)

Operation taken a number of input streams, which is not 
known until runtime

Saline Operator Types 
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4. stream1 op stream2 op stream3 …

Generally expands at compile time to

tmp = stream1 op stream2
tmp op stream3

where tmp is an implicit temporary enclosure 
variable. Expansion depends on language operator 
precedence ordering.

Saline Operator Types 
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4. stream1 op stream2 op stream3 …

… when all streams are of the same type, and all of the 
operators are the same, then runtime optimization can 
occur, e.g.,

Saline Operator Types 

17 / 26 WINNF‘11’US   2011-Dec-02

+lpf[1]
lpf[2]
lpf[3]

lpf[N]

+

+

...
+

lpf[1]
lpf[2]
lpf[3]

lpf[N]

...
out = lpf[1] + lpf[2] + … + lpf[N]
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5. stream1 = stream2

Requires that stream1 be an explicit enclosure 
variable. If stream2 is an enclosure variable, then just 
copies the information held by stream2 into stream1

6. stream1 op= stream2

Requires that stream1 be an explicit enclosure 
variable, and generally expands at runtime to

tmp = stream1
stream1 = tmp op stream2

where tmp is an implicit temporary enclosure variable

Saline Operator Types 
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6. stream1 op= stream2

when both streams are of the same type, and if 
stream2 contains an operator of the same type 
as op, then runtime optimization can occur, e.g.,

Saline Operator Types 
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out = lpf[1];
for n=2:N { out += lpf[n]; }
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Type Propagation 
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!Operator types 1-4 return a saline::stream_base 
of some template type, e.g.

namespace saline {
  template < typename arg_t >
  stream_base < arg_t >&
  serial_to_parallel
  (stream_base < arg_t >& arg,
   int num_outputs,
   options_t& options);
}

! Stream type is propagated from input(s) to output(s) via 
the template parameter(s)
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! 3 checks are performed during runtime

1. Variable Overwriting : The code

saline::enclosure < int > A;
A = 5;
A = 10;

generates a warning on the last line, because the variable 
was overwritten. Internally, the last two lines of the above 
code are reinterpreted as

A = 5;
tmp_A = A;
A = 10;

where tmp_A is an implicit temporary enclosure variable

Runtime Operation Checks 
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2. Implicit type changes : The code

saline::enclosure < int > A;
saline::enclosure < float > B;
A = 5;
B = A;

generates a warning on the last line, because the stream 
type was not explicitly changed. Internally, the last two 
lines of the above code are reinterpreted as

tmp_A = saline::type_converter
          < int, float > (A);
B = tmp_A;

where tmp_A is an implicit temporary enclosure variable

Runtime Operation Checks 
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3. Variable declaration order : The code

saline::enclosure < int > A, B;
A = B;

generates an error on the last line, because the stream 
B has not been set before it is saved into stream A

Runtime Operation Checks 
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namespace saline {
  template < typename arg_t >
  stream_base < arg_t > pp_down_N_Saline
  (stream_base < arg_t >& input,
   size_t N, options_t& options)
  {
    enclosure < arg_t > s2p, acc;
    s2p = serial_to_parallel (input, N, options);
    acc = fir_filter (s2p[1], options.ppf[1]);
    for (size_t n = 2; n < N; n++) {
      acc += fir_filter (s2p[n], options.ppf[n]);
    }
    return (acc);
  }
}

Saline Code
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Conclusions
! Enabled algebraic-like waveform definition 

interface in C++
• Buffer-centric approach to waveform definition
• 3 variable type classes

25 / 26

• 6 operator types, with possible runtime 
waveform optimization

• 3 runtime operation checks
• Stream type propagation via template arguments
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Ongoing Work

Conclusions
! Enabled algebraic-like waveform definition 

interface in C++

! Increasing efficiency of runtime kernel

• Buffer-centric approach to waveform definition
• 3 variable type classes

!More compelling example using OFDM

25 / 26

• 6 operator types, with possible runtime 
waveform optimization

• 3 runtime operation checks
• Stream type propagation via template arguments
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Questions?

Thank you!
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Backup Slides
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! Part of the C++ standard

! A namespace is the scope within which a given set of 
classes, functions, and global variables are valid

! Denoted by “::” between the namespace name (before), 
and the class, function, or variable (after), e.g.

namespace foo { int bar; }

! describes a variable bar, of type int, residing in the 
namespace foo. One could reference this variable 
directly after it is declared, via foo::bar

! Can have the same-named class, function, or variable in 
multiple namespaces, so there is a trade-off between too 
many and too few namespaces

C++ Namespace
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!Part of the C++ standard

!Allows a single definition to apply to any number of 
‘types’

! For example, the function max could be defined

template < typename T >
T max (T a, T b)
{ return (a > b ? a : b); }

!The above function could be used via, e.g.,

float fm = max < float > (1, 2);

!Recently ratified standard, C++11, allows for 
variable number of template arguments

C++ Templates
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! Part of the C++ standard

! Define math operators, e.g., +, *, &, <, %, for data-flows

! Overload the associated C++ operators, e.g., operator+, 
operator*, etc..

! For example, operator+ for identically-typed arguments

template < typename T > foo < T > operator+
(foo < T > lhs, foo < T > rhs) {
return (foo < T > (lhs.value () + rhs.value ())); }

! Using the above code, assuming foo is appropriately defined

foo < int > a, b, c;
a = 1;
b = 2;
c = a + b;

! Cannot do differently-typed arguments

C++ Operation Overloading
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! Part of the C++ standard, but implementations vary from compiler to 
compiler

! Used for comparing any two already-declared variables’ types

! For example, operator+ for differently-typed arguments

template < typename lhs_t, typename rhs_t >
foo < lhs_t > operator+
(foo < lhs_t > lhs, foo < rhs_t > rhs) {
  lhs_t rhs_to_use = 0;
  if (typeid (lhs) == typeid (rhs)) {
    rhs_to_use = rhs.value ();
  } else {
    rhs_to_use = lhs_t (rhs.value ());
  }
  return (foo < lhs_t > (lhs.value () +
                         rhs_to_use));
}

C++ typeid
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!Using the above code, assuming foo and operator= are 
appropriately defined

foo < int > a;
foo < short > b;
foo < long > c;
a = 1;
b = 2;
c = a + b;

C++ typeid
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