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ABSTRACT 
 
We discuss implementation aspects of a software-defined 
radio system that allows the user to define waveforms using 
an algebraic language interface, currently as an extension to 
C++. Current software-defined radio systems provide 
waveform definitions through a combination of a graphical 
interface, markup language, interpreted script, and compiled 
code. No matter which methods are used, the actual 
executed code generates each waveform via a series of 
graph-style connections: instantiating blocks and then 
explicitly connecting ports between blocks. We propose a 
system that allows the user to define waveforms using a 
novel text-based algebraic language interface similar to that 
found in MathWorks MATLAB or GNU Octave. Our 
system simplifies the waveform programming abstraction 
by using implicit graph-style connections; it makes 
extensive use of C++ templates and operator overloading to 
allow this high-level abstraction. Our interface is solely an 
abstraction layer providing an alternative means for coding 
waveforms when compared with current techniques, and 
hence has no more overhead than current techniques. 
Example code is provided for comparison and contrast of 
different methods of waveform definition. 
 
 

1. INTRODUCTION AND MOTIVATION 
 
Developing software-defined radio (SDR) technologies 
requires knowledge of both hardware and software, drawing 
from antenna physics to analog and digital signal processing 
techniques, from operating system (OS) kernel extensions to 
full graphical user interfaces (GUI) – not to mention 
knowledge of regulatory policies and the intellectual 
property scene. In the Open Systems Interconnection seven 
layer model [1], SDR technologies are involved at all layers 
– though certain layers are more strongly represented than 
others. Although SDR developers can specialize in a 
specific area, many end up spanning multiple disciplines in 
order to create a more integrated platform. The 
learning curve for developing and using SDR continues to 
be discussed [2][3], but the reality is that there are actual 
and perceived barriers to developing and using SDR 
technologies. 

 Current SDR frameworks – the collection of 
executables and libraries, header, resource, and data files for 
a given project – provide waveform definition through a 
combination of one or more of the following: GUIs, markup 
languages, interpreted scripts, and compiled code. No matter 
which methods are used, the actual executed code generates 
each waveform via a series of graph-style connections: 
instantiating signal processing blocks and then explicitly 
connecting ports between blocks. 
 This block-centric approach to stream-based signal 
processing differs from that used by industry standard 
applications such as MathWorks MATLAB [4] and GNU 
Octave [5]. Going back to the early 1980’s, MATLAB 
(among related projects) has provided digital signal 
processing capabilities with a relatively simple learning 
curve. MATLAB script is written in a buffer-centric 
algebraic-like programming language, which is now being 
used by millions of end-users – many in academia but 
plenty in industry as well [6]. By “algebraic-like”, we mean 
a mathematical expression in which only numbers, 
variables, and arithmetic operations are used. MATLAB 
scripts can currently work with scalars, arrays, and matrices 
of varying types, but not with streams beyond splitting 
stream data into arrays and doing array processing.  One 
goal in this work is to show that MATLAB-style C++ code 
can be made to work with streams using data-flow 
techniques. 
 Block-centric (traditional SDR) and buffer-centric 
(industry standard) digital signal processing can be used to 
accomplish the same task, albeit using different language 
abstractions. For example, in typical Monte Carlo 
experiments for testing a channel coding model, vectors of 
random data are generated and then processed using 
operations in a set order that represent the encoder, channel, 
and decoder. With each new vector of random data, the 
simulation converges towards a result; each operation may 
keep state between random vector iterations. Such 
simulations are often written first in a MATLAB-style script 
because it generally provides the fastest development time. 
If the interpreted script is too slow, then it can be converted 
into a compiled language. 
 To perform such a Monte Carlo simulation using 
MATLAB-style script, an extended loop is used, within 
which the random data is created and processed; statistics 
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are kept using variables declared outside of the loop. Such a 
simulation can also be performed using SDR-style 
processing techniques, where the random data vectors 
become frames generated by a random source, and the 
ordered operations are SDR blocks joined to make a 
“waveform” of sorts, performing signal processing on those 
frames. Statistics can be handled either directly inside a 
decoder sink, or via a callback from the sink. The primary 
difference between these MATLAB-style and SDR-style 
scripts is the programming abstraction. One of our goals in 
this work is to start bridging the gap between these styles, 
with the hope of making SDR-style programming more 
accessible, and with a more-familiar learning curve, to 
programmers who learned signal processing using 
MATLAB-style programming. 
 Our Surfer SDR framework aims to enhance the user’s 
experience by pushing complexity into the framework’s 
programming [7]. Continuing this trend from the 
perspective of reducing the user’s learning curve for 
creating script-based waveforms, we augmented Surfer to 
provide an alternative, algebraic-like language interface – 
using a buffer-centric approach similar to that provided by 
MATLAB and Octave. 
 The Surfer algebraic language interface (SALINE) is 
written in C++, as an independent layer that resides in its 
own C++ namespace, and provides an algebraic-like 
language interface for waveform definition. SALINE is split 
into the core user accessible classes, functions, and macros, 
and an interface to the underlying SDR framework. 
Although SALINE is designed with Surfer in mind, an 
interface into other SDR frameworks, e.g. GNU Radio [8], 
could be created relatively easily. SALINE is an abstraction 
layer that merely acts as an alternative means for coding 
waveforms when compared with current techniques; it has 
no more overhead that any other technique. The underlying 
SDR framework supplies the blocks / components and 
actual connections methods, and thus the framework is 
responsible for any heterogeneous processing or specialized 
instructions such as SSE, Neon, or Altivec. 
 Both Surfer and SALINE make extensive use of C++ 
templates; for example, all currently implemented Surfer 
blocks are written as templates and thus must be explicitly 
instantiated by the user’s waveform application. By using 
template classes for all blocks, Surfer avoids code 
redundancy and related bug duplication issues, and also 
allows for easier debugging of code issues because the 
source is directly available as a header file. That said, 
explicit-typed SALINE functions and Surfer blocks can be 
created and utilized through the use of Surfer’s signal-
processing flavors [7]. 
 We provide relevant background information, in 
Section 2, on how SDR waveforms are defined in different 
abstractions. Section 3 presents important C++ concepts 
needed to understand the SALINE implementation. In 

Section 4, we describe the SALINE programming 
implementation, with emphasis on the types of operators 
required to create its algebraic-like interface as well as how 
C++ templates can be used to promote type propagation 
through the waveform graph. Example scripts and C++ code 
snippets are provided throughout, displayed in the Bold 
Courier font in order to help set them apart from the rest 
of the text. Conclusions, acknowledgements, and references 
are then provided in Sections 5, 6, and 7, respectively. 
 

2. BACKGROUND 
 
In this section, we discuss the programming abstractions 
used by current SDR frameworks to define waveforms, in as 
broad terms as possible. Our goal is to provide enough 
relevant information such that the implementation described 
in Section 4 can be compared with the current methods; we 
are not trying to fully describe how GNU Radio or JTRS 
SCA [9] defines waveforms, but rather to look at the way 
waveform definitions take place in a general sense. 
 Each SDR waveform can be described by an acyclic 
graph, whether performing packet or frame processing of 
data. Such a processing abstraction allows for a GUI to 
describe a given waveform – e.g., the GNU Radio 
Companion [10], MathWorks Simulink [11], National 
Instruments LabVIEW [12], and others [13-15] – as well as 
a text-based definition via a script or compiled program. 
Although we are considering expanding the SALINE 
concept into an interpretive script, for this work we are 
concentrating on compiled script-style programs. We firmly 
believe that both GUI and script interfaces have their 
benefits and usage. SALINE is not meant to replace any of 
the various GUIs; rather, it is meant to augment current 
scripting methods. 
 Figure 1 shows a generic signal-processing block, 
including input and output buffers (also called ports) and 
data streams, and the block state. Note that there must be 
exactly one input data stream per input buffer, while there 
can be more than one output data stream per output buffer. 
Source blocks provide only outputs, while sink blocks 
require only inputs. The waveform designer sets an initial 
state for each block requiring it. In the following 

Figure 1 – General diagram of a SDR signal-processing block 
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subsections, we provide scripts showing different 
programming abstractions for waveform description. 
 
2.1. Block-centric abstraction 
 
 Current SDR frameworks, when defining the waveform 
graph via scripts or text-based programs, use a block-centric 
abstraction. In this abstraction, each block is created and 
then connections are formed between adjacent blocks’ 
output and input ports. Data is manipulated by each block’s 
signal-processing algorithm, taking data from input ports, 
performing processing, and the writing data into output 
ports. In a block-centric language, individual buffers are 
generally hidden from the user’s script; the primary user-
interface is each block: its instantiated object, input / output 
ports, and state. 
 As a simple example of block-centric programming, 
consider the polyphase downsample-by-N [16] 
implementation found in Listing 1, written in a script 
combining features of MATLAB and C++ in order to 
reduce code complexity while providing the features 
necessary for comparison and contrasting with other 
programming abstractions. This listing shows a function 
named pp_down_N_block that takes three arguments 
(input, N, and options) and returns one (output). The 
function serial_to_parallel takes a stream of items 
and parses them to N output streams, in order and without 
duplication. The function fir_filter creates a finite-
impulse response filter using the provided vector as the filter 
taps. 
 For the function connect, the first argument pair 
always refers to a block and its output port, and the second 
argument always refers to a block and its input port; this 
function creates a graph connection between the provided 

pairs. The connect function is meant for demonstration 
purposes only, and can be assumed to be type-agnostic. For 
the sake of simplicity, we assume for this and related 
listings that array and port indices are 1-based (i.e., start 
numbering with 1, not 0), and that options contains the 
polyphase filter coefficients in the variable ppf[n] as well 
as anything else required for instantiation the blocks. For 
block-centric programming, the variables input, s2p, 
filter[n], and acc refer to instantiated block objects. 
 In this code listing, blocks are created first and then 
connected together to form the waveform graph; one could 
combine the block creation and connection stages, but it 
does not change the underlying abstraction. Note that with 
this abstraction, the waveform graph can be connected in 
any order: from source to sink, sink to source, or from 
internal blocks towards both the source and sink. No 
matter the graph ordering, connect calls are required to 
form the graph. 
 
2.2. Buffer-centric abstraction 
 
 MATLAB and Octave scripts are written in an 
algebraic-like language using a buffer-centric abstraction to 
define signal-processing algorithms. In this abstraction, data 
– in the form of scalars, arrays, or matrices – is manipulated 
by functions in the user’s script via data buffers. In a buffer-
centric language, objects are exposed in the user’s script to 
the degree that the user and language allow. 
 Listing 2 provides a buffer-centric script for the 
polyphase downsample-by-N function. This listing shows a 
function named pp_down_N_buffer with the same 
function arguments and return as pp_down_N_block, and 
where the internally used functions have the same purpose. 
For buffer-centric programming, the variables input, s2p, 
and acc refer to output buffers from previous operators. The 
line acc = 0 is shorthand for zeroing out the buffer before 
it is used; this code is written for clarity, not efficiency. 
Because connections are defined implicitly through the 

Listing 2 – Polyphase downsample-by-N written 
using buffer-centric programming 

output = pp_down_N_buffer 
  (input, N, options) 
{ 
  s2p = serial_to_parallel 
    (input, N, options) 
  acc = 0 
  for n = 1:N { 
    // ‘acc’ reused 
    acc += fir_filter (s2p[n], 
                       options.ppf[n])) 
  } 
  return (acc) 
} 

output = pp_down_N_block 
  (input, N, options) 
{ 
  // declare blocks first 
  s2p = serial_to_parallel (N, options) 
  for n = 1:N { 
   filter[n] = fir_filter (options.ppf[n]) 
  } 
  acc = sum (options) 
  // connect blocks second 
  connect ((input, 1), (s2p, 1)) 
  for n = 1:N { 
    connect ((s2p, n), (filter[n], 1)) 
    connect ((filter[n], 1), (acc, n)) 
  } 
  return (acc) 
} 

Listing 1 – Polyphase downsample-by-N written using 
block-centric programming 
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manipulation of buffers, the underlying waveform graph is 
abstracted away from the user’s script and hence no 
connect calls are required. The use of the += operator 
provides a more intuitive language interface than that found 
when using block-centric programming, and also allows for 
certain runtime graph optimizations – both of which will be 
discussed further in Section 4. 
 
2.3. Definition via GUI 
 
GUI representations of waveforms are neither entirely 
buffer- nor block-centric, but rather a mix of the two – 
though more towards the latter because the user does not 
directly manipulate the buffers, but rather draws 
connections between blocks (ports). Each GUI-described 
waveform must contain both blocks as well as explicit 
connections between them. Figure 2 shows, approximately, 
the same polyphase downsample-by-N waveform drawn 
using GNU Radio Companion (GRC), for N=3. Please note 
that GRC provides a single block that performs this 
function; the goal here is to show the abstraction used for 
GUI waveform creation. 
 
2.4. Other waveform definition methodologies 
 
A variety of other script-oriented waveform or data-flow 
definition methodologies and languages have been proposed 
and/or are in use [17-24], the most notable of which in SDR 
circles is JTRS SCA. For the most part, these frameworks 
define waveforms (or the equivalent data-flow) through 
some combination of markup and compiled languages. All 
of the definition languages we have encountered, when 
reduced to their essence, use block-centric programming. 
 

3. IMPORTANT C++ FEATURES 
 
SALINE heavily relies on three standard features of C++ 
that are not available in C or other similar languages: 
templates, operator overloading, and runtime variable type 
comparison. These features are covered briefly in the 
following subsections. 
 
3.1. Templates 
 
Templates are part of the current C++ standard [25] and 
allow the definition of any instance of a class, method, 
variable, or function concisely, with minimal redundancy. A 
template function or class is designed to work on many 
different data types without being rewritten specifically for 
each one. For example, let us compare the C and C++ 
implementations for a max function, which takes two same-
typed arguments and returns the maximum of them. In C the 
function max of two same-typed arguments for the types 
int and float could be written 
 
  int max_i (int a, int b) 
  { return (a > b ? a : b); } 
  float max_f (float a, float b) 
  { return (a > b ? a : b); } 
 
Note that in C the function names must be unique, as must 
the input arguments and return type for each function. 
Clearly, there is significant code redundancy, and to expand 
these functions to include other types beyond those provided 
would require more similarly named functions. 
 C++ provides templates to reduce the code complexity 
for such functions. The max function taking two same-typed 
arguments, as above, can be written generically via a C++ 
template function as 
 
  template < typename T > 
  T max (T a, T b) 
  { return (a > b ? a : b); } 
 
This template function will be expanded by the compiler 
into an explicit-typed (non-template) function at compile-
time. For example, if the code 
 
  float fm = max < float > (1, 2); 
 
is issued, then the compiler will implicitly create the max 
function for type float. Templates are a powerful 
abstraction that can be used to greatly reduce written-code 
size and increase code-reuse. 
 That said, the current C++ standard does not allow for a 
variable number of template arguments (e.g., for a function 
taking those types as arguments); nor does C++ robustly 
handle a variable number of arguments to functions or 

Figure 2 – Rough diagram of the polyphase downsample-by-N 
created using the GNU Radio Companion, for N = 3 
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methods. The recently ratified standard, called C++11 [26], 
does allow for variadic templates, which in turn will allow 
for robust handling of a variable number of arguments to 
functions or methods. 
 Templates in and of themselves cannot be used to 
create a robust algebraic abstraction in C++. We still desire 
standard math operators (e.g., +, *, &, <, and %) to be 
available; in C++, we can use operator overloading to fulfill 
this need. 
 
3.2. Operator overloading 
 
In the C language, the math operators +, *, &, <, and % (and 
a handful of others similar to these) are defined solely for 
the built-in variable types, e.g., int and long; some are 
defined for float, but none can be made to work with user-
defined classes. In C++, these operators can be overloaded 
to work with any class type; the function names for those 
listed above are operator+, operator*, operator&, 
operator<, and operator%. This type of operator 
overloading provides a robust abstraction mechanism, 
allowing end-user programs to hide complexity. For 
example, suppose we define a template class that stores a 
type value, as 
 
  template < typename T > class foo { 
  public: 
    T d_value; 
    foo (T value = 0) : d_value (value) {} 
    ~foo () {} 
    T value () { return (d_value); } 
  } 
 
Given this class, we want to be able to manipulate the stored 
value through operator overloading. One could concisely 
write the code for the + operator for same-typed arguments 
as 
 
  template < typename T > foo < T > operator+ 
  (foo < T > lhs, foo < T > rhs) { 
    return (foo < T > (lhs.value () + 
                       rhs.value ())) 
  } 
 
such that the + operator for identical foo template types 
returns another foo with the internal value of the sum of 
the provided arguments internal values. The above code can 
be used to produce the algebraic-like code segment 
 
  foo < int > a, b, c; 
  a = 1; 
  b = 2; 
  c = a + b; 
 

Given the availability of templates and operator 
overloading, one can almost construct a C++ extension 
providing an algebraic-like abstraction. The missing key is 
for operator overloading in cases when the argument types 
are not identical. In this case, in order for the C++ code to 
compile and function correctly, the arguments’ types must 
be able to be compared. The standard library type_info 
class provides this utility. 
 
3.3. type_info and typeid 
 
The typeid facility provided by the type_info class 
allows for type comparison of almost any two active 
variables, as well as a means of retrieving the actual variable 
type as a string. The typeid facility is not limited to built-
in C++ types, but is also available for user-created types. 
Continuing from the previous examples, suppose we wanted 
to add two potentially different foo class types. Then, using 
typeid, one way to implement this functionality is 
 
  template < typename lhs_t, 
             typename rhs_t > 
  foo < lhs_t > operator+ 
  (foo < lhs_t > lhs, foo < rhs_t > rhs) 
  { 
    lhs_t rhs_to_use = 0; 
    if (typeid (lhs) == typeid (rhs)) { 
      rhs_to_use = rhs.value (); 
    } else { 
      rhs_to_use = lhs_t (rhs.value ()); 
    } 
    return (foo < lhs_t > (lhs.value () + 
                           rhs_to_use)); 
  } 
 
Admittedly, for basic types such as int and float, the 
above function could be written with less complexity 
because the C++ compiler will do any type conversion 
implicitly. That said, the above code could also be used with 
any lhs_t and rhs_t types, so long as the type cast from 
rhs_t to lhs_t is valid and operator+ is defined for the 
lhs_t type. The above code can now be used to produce 
the algebraic-like code segment 
 
  foo < int > a, c; 
  foo < float > b; 
  a = 1; 
  b = 2; 
  c = a + b; 
 
where the addition is between the types int and float, and 
the result stored as an int. Similarly, we can also overload 
the operator= method (an in-class function), to allow code 
such as 
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  foo < int > a; 
  foo < short > b; 
  foo < long > c; 
  a = 1; 
  b = 2; 
  c = a + b; 
 
With the above three C++ concepts in mind, we now 
describe the C++ extension allowing for algebraic-like 
language waveform definition. 
 

4. ALGEBRAIC ABSTRACTION 
 
SALINE is written as an independent user-interface layer 
that resides in its own C++ namespace, and provides an 
algebraic-like language interface for waveform definition. 
This section describes the basic classes and concepts 
required to implement SALINE, including the types of 
variable classes and operators, how templates are used to 
perform type propagation through the waveform graph as it 
is being defined, and its runtime operation. We then briefly 
describe the interface to the underlying SDR framework. 
 
4.1. Types of variables 
 
Algebraic expressions are combinations of variables and 
operators on those variables. A variable might represent 
static data in the form of a scalar, vector, matrix, or constant 
stream, dynamic data being generated by from a source, or 
processed data generated by an operator. In order to 
represent these algebraic expressions using SALINE, three 
basic variable-oriented classes are required. Examples of the 
latter two classes are provided after their definition. 
 
1. A base stream class from which all other stream-oriented 

variable classes are derived. 
2. An operator class that can be either directly or indirectly 

instantiated, which represents the output buffer(s) 
resulting from some specific operator. When multiple 
output buffers are available, they are obtained using 
array indexing via overloading the C++ operator[] 
method. 

3. An enclosure variable class that contains a reference to 
an operator variable. Enclosure variables are either 
explicitly declared in the waveform script or program, or 
created as temporary placeholders when multiple 
operators are executed before the operator= method is 
issued. When as the latter, a new object is created and 
knowledge of this memory allocation is retained by 
SALINE for later deletion. 

 
 The first two classes’ prototypes are defined as 
 

  namespace saline { 
    template < typename item_t > 
    class stream_base; 
    template < typename item_t > 
    class enclosure : 
      public stream_base < item_t >; 
  } 
 
such that the enclosure class inherits from the 
stream_base class, and both are defined within the 
saline C++ namespace. Prototypes for operators such as 
fft and serial_to_parallel can be defined similarly to 
that of the enclosure class. Note that the stream_base 
template type defines the output buffer data type, as is 
required by buffer-centric implementations. For SALINE, 
types are defined explicitly at compile type; when using 
runtime-compiled kernels such as those available in 
OpenCL [27], types can be defined at compile-time or 
runtime as needed. 
 In the case where a single template type is used in the 
class definition, then at least one input or output stream 
must be of that type. It is possible to use explicitly typed 
streams when defining operators, but this definition 
technique is discouraged. In order to use input and output 
streams of different types, multiple template parameters can 
be provided and used. Thus, for example, to create an fft 
operation taking in, processing, and returning streams of 
different types, one could use the class prototype 
 
  namespace saline { 
    template < typename in_t, 
               typename proc_t, 
               typename out_t > 
    class fft_i_p_o : 
      public stream_base < out_t >; 
  } 
 
Note that only the output buffer type of the new fft class is 
provided to the base stream class. 
 
4.2. Types of operators 
 
There are six primary C++ compatible types of operators 
needed to form SALINE. Each is described briefly, with 
example functions. For all operator types below, op refers to 
an operator function, options to user-supplied 
initialization parameters, stream to a single class inheriting 
from saline::stream_base, and streams to two or 
more stream arguments separated by commas. 
 
1. op (options) : Type 1 operators take no data streams 

as arguments, only options. Examples include stream 
sources, such as reading from a file, generating random 
data, or providing a constant value. 

229



2. op (stream, options) : Type 2 operators take a 
single data stream and options. Examples include many 
common math and signal-processing functions, such as 
sin, and fft, and serial_to_parallel. 

3. op (streams, options) : Type 3 operators take a 
variable number of input streams, followed by options. 
This operator type is currently implemented as 
(options, streams) because the current C++ 
specification does not robustly handle a variable number 
of arguments to a function or method [28]. The next C++ 
specification should provide the necessary functionality 
via variadic templates, which will allow for the desired 
argument ordering. Examples include 
parallel_to_serial and analysis_filterbank, 
which in this case both take multiple input streams and 
return a single stream. Certain native-C++ mathematical 
operators, such as sum and +, are implemented as both 
this type as well as the next. 

4. stream op stream : Type 4 operators are those that 
overload built-in C++ math functions. Examples include 
command math functions such as +, *, &, <, and %, but, 
instead of operating on scalars (or vectors, as provided 
by some libraries) these operators are overloaded to 
handle streams. C++ handles just a single instance of this 
operator at a time: the command A + B + C is 
interpreted by C++ to be (A + B) + C where the 
parentheses denote operator ordering. SALINE internally 
splits this equation into two separate equations: tmp = 
A + B and tmp + C, where tmp is a temporary 
enclosure variable allocated as a placeholder for the first 
sum. Under some circumstances, multiple type 4 
operators can be combined together, as a sort of runtime 
optimization; this technique is described later in this 
section. 

5. stream = stream : Type 5 operators overload the built-
in C++ function operator=. The left-hand side (LHS) 
argument must be an enclosure variable; this property is 
checked for during runtime only. 

6. stream op= stream : Type 6 operations overload a 
built-in C++ math function as well as set an enclosure 
variable. Examples of this operator include += and %=, 
though some operators are specific to certain types (e.g., 
integers only). The LHS argument must again be an 
enclosure variable; this property is checked for during 
runtime only. Defining the LHS stream as A, and the 
right-hand side (RHS) stream as B, this operation is 
internally expanded into either A = tmp_A op B when 
the operator referenced by A is not identical in name and 
all types to than that being requested; tmp_A is an 
temporary enclosure variable that holds the value of A 
when this expression is issued. When the operator 
referenced by A is identical in name and type to that 
being requested, the variable A is augmented with B as 
another input. This operator type allows for internal 

graph optimization beyond what any C++ compiler can 
provide. For example, the accumulator used in Listing 2 
can be reduced from N-1 + operators into a single N-way 
sum, as shown in Figure 3. Such runtime optimizations 
are currently limited to identical operators using identical 
stream types. 

 
Using the above operator types, we can now implement the 
functionality to use templates for type propagation through 
the waveform graph as it is created. 
 
4.3. Type Propagation via Templates 
 
As described in Section 3, the C++ typeid facility is used 
to provide internal type-conversion, and templates are used 
for both operator classes and their methods to allow these 
operator variables to take and return the same or different 
arugment types. This robust type handling means that the 
user’s script is not required to explicitly declare all function 
types. As an example using Listing 2 – which uses just type 
2 operators – the serial_to_parallel function 
prototype could be defined in C++ as 
 
  namespace saline { 
    template < typename arg_t > 
    stream_base < arg_t >& 
    serial_to_parallel 
    (stream_base < arg_t >& arg, 
     int num_outputs, 
     options_t& options); 
  } 
 
where the C++ template type, arg_t, is used to define both 
the input and output stream types. Given the input 
argument’s type, the C++ compiler will choose the correct 
template expansion of the serial_to_parallel function. 
Similarly, the type of the chosen fir_filter function can 
be defined implicitly via the type of its input – in this case 
the variable s2p[1] or s2p[n]. In this manner, variable 
types are implicitly used to determine function template 
expansions, and these types are propagated through the 
waveform program. This form of type propagation from 

Figure 3 – Runtime optimization of N-1 2-way adders into a 
single N-way summation. 
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input to output requires the sole constraint that any prior 
streams must already be define and available for use before 
the current operator is instantiated. Thus, unlike block-
centric programming – which allows the waveform graph to 
be defined in any ordering – the user’s program must define 
the waveform graph from source to sink. 
 
4.4. Runtime operation checks 
 
Certain features of SALINE can be determined during 
runtime only; hence the user’s program will be checked for 
correctness / validity during runtime as well as compile 
time. The three primary areas where runtime checking is 
performed are discussed below. Another area where runtime 
checks could be performed – variable use that creates a 
graph cycle – is currently handled by the underlying SDR 
framework. 
 
1. Variable overwriting : Consider the code 
 
  saline::enclosure < int > A; 
  A = 5; 
  A = 10; 
 
The last line overwrites the expression from the prior line, 
effectively hiding the prior setting of the variable A. C++ 
will compile the above code, and it will execute as directed 
no matter the variable overwriting. During runtime, 
SALINE will print out a warning that the LHS variable is 
being overwritten; internally, the code is reinterpreted as 
 
  A = 5; 
  tmp_A = A; 
  A = 10; 
 
where tmp_A is a temporary enclosure variable. This 
reinterpretation allows for a variable to be set for some 
more-legitimate purpose than the above example, and then 
overwritten once that purpose is no longer in scope. 
Variable overwriting can be performed any number of 
times, using any of the operators from Section 4.2, with 
each overwrite reinterpreted as a uniquely named temporary 
enclosure variable as above but for the given operation. 
 
2. Implicit type changes : Consider the code 
 
  saline::enclosure < int > A; 
  saline::enclosure < float > B; 
  A = 5; 
  B = A; 
 
where the variable A is set to a constant_source with the 
integer value 5, and then the variable B is set to be the same 

value as A – except as the type float instead of int. 
Internally, the last line of the code is reinterpreted as 
 
   tmp_A = saline::type_converter 
            < int, float > (A); 
  B = tmp_A; 
 
where tmp_A is a temporary enclosure variable holding the 
type-converted version of the variable A. When the user’s 
code is augmented in this fashion, SALINE will print a 
warning about the implicit type conversion, allowing the 
code to execute but letting the user know about the potential 
issue. 
 
3. Variable declaration order : Consider the code  
 
  saline::enclosure < int > A, B; 
  A = B; 
 
where the variable A is set to B before B is set to anything. 
This code will compile in C++ without warnings, but does 
not make algebraic sense because the variable B has not 
been set before it is used. SALINE will throw a runtime 
error when executing this code, stating that the RHS 
variable is being used before being set. 
 
4.5. Interface to the Underlying SDR Framework 
 
As each operator is created in SALINE, its corresponding 
block is instantiated by the SALINE SDR interface layer 
using the underlying SDR framework. This layer is 
lightweight, primarily responsible for instantiating and 
connecting blocks. It also provides the glue to manipulate 
the runtime status of the SDR framework – for example 
starting, pausing, locking, unlocking, and stopping both 
individual blocks and the framework. Surfer can generally 
handle the insertion and removal of blocks, during runtime 
without having to stop and restart processing. Further, this 
layer when using Surfer automatically starts framework-
level processing before the user’s waveform program is 
executed, and stops it when the program is finished. That 
said, we recognize that some SDR frameworks do require 
this functionality, and also that some waveforms might 
require it for proper processing. 
 
4.6. Putting it all together 
 
Listing 3 provides a SALINE-based version of the 
polyphase downsample-by-N function. This listing shows a 
function named pp_down_N_SALINE with the same 
function arguments and return as pp_down_N_buffer, and 
where the internally used functions have the same purpose. 
For buffer-centric programming, the variables input, s2p, 
and acc refer to output buffers from previous operators. 
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When compared with Listing 2, the line acc = 0 is not 
used because it is interpreted to mean a constant_source 
of value 0, which at least for the used operator (+) is 
unnecessary. This code is written for efficiency, and does 
not include error checking on the inputs as would be typical 
of such a function.  Also, this code includes all of the 
required C++ glue for compiling, while Listing 2 is meant 
as an example of an interpreted script. 
 This listing shows a number of the properties 
mentioned above: implicit operator type selection, type 
propagation from input to output, operator overloading for 
greater code clarity, and the use of the += operator for 
potential runtime optimization. Compared with Listing 1, 
the core programming (not the C++ glue) reads similarly to 
MATLAB or Octave script – but for data streams instead of 
scalars, vectors, or matrices. In more complicated examples 
– e.g., OFDM modulation or demodulation – SALINE 
programming will reduce the chances of incorrect 
connections as well as the overall program length. Providing 
a scripting experience similar to that of MATLAB should 
make the transition from general-purpose signal processing 
to SDR easier for many users. 
 

5. CONCLUSIONS 
 
We have developed an extension in C++ that provides an 
algebraic-like programming language interface as a novel 
means for creating SDR waveforms. This extension, called 
SALINE, currently works with our Surfer SDR framework 

but has been designed independent of Surfer and hence 
could be ported to other SDR projects. We accomplished 
this task by leveraging standard C++ properties and classes 
to define the variable types and operators, and creating a 
form of variable type propagation through the use of 
appropriate template functions and classes. SALINE reduces 
complexity compared with current SDR text-based 
programming interfaces by using a MATLAB-style buffer-
based implementation that provides implicit graph-style 
connections. For many potential users, who wish to just use 
an SDR framework, the availability of a MATLAB-style 
interface should reduce the SDR learning curve. 
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