

ON THE USE OF AN ALGEBRAIC LANGUAGE INTERFACE FOR

WAVEFORM DEFINITION

Michael Dickens (Graduate Student, University of Notre Dame, IN : mdickens@nd.edu)
J. Nicholas Laneman (Associate Professor, University of Notre Dame, IN : jnl@nd.edu)

ABSTRACT

We discuss implementation aspects of a software-defined
radio system that allows the user to define waveforms using
an algebraic language interface, currently as an extension to
C++. Current software-defined radio systems provide
waveform definitions through a combination of a graphical
interface, markup language, interpreted script, and compiled
code. No matter which methods are used, the actual
executed code generates each waveform via a series of
graph-style connections: instantiating blocks and then
explicitly connecting ports between blocks. We propose a
system that allows the user to define waveforms using a
novel text-based algebraic language interface similar to that
found in MathWorks MATLAB or GNU Octave. Our
system simplifies the waveform programming abstraction
by using implicit graph-style connections; it makes
extensive use of C++ templates and operator overloading to
allow this high-level abstraction. Our interface is solely an
abstraction layer providing an alternative means for coding
waveforms when compared with current techniques, and
hence has no more overhead than current techniques.
Example code is provided for comparison and contrast of
different methods of waveform definition.

1. INTRODUCTION AND MOTIVATION

Developing software-defined radio (SDR) technologies
requires knowledge of both hardware and software, drawing
from antenna physics to analog and digital signal processing
techniques, from operating system (OS) kernel extensions to
full graphical user interfaces (GUI) – not to mention
knowledge of regulatory policies and the intellectual
property scene. In the Open Systems Interconnection seven
layer model [1], SDR technologies are involved at all layers
– though certain layers are more strongly represented than
others. Although SDR developers can specialize in a
specific area, many end up spanning multiple disciplines in
order to create a more integrated platform. The
learning curve for developing and using SDR continues to
be discussed [2][3], but the reality is that there are actual
and perceived barriers to developing and using SDR
technologies.

 Current SDR frameworks – the collection of
executables and libraries, header, resource, and data files for
a given project – provide waveform definition through a
combination of one or more of the following: GUIs, markup
languages, interpreted scripts, and compiled code. No matter
which methods are used, the actual executed code generates
each waveform via a series of graph-style connections:
instantiating signal processing blocks and then explicitly
connecting ports between blocks.
 This block-centric approach to stream-based signal
processing differs from that used by industry standard
applications such as MathWorks MATLAB [4] and GNU
Octave [5]. Going back to the early 1980’s, MATLAB
(among related projects) has provided digital signal
processing capabilities with a relatively simple learning
curve. MATLAB script is written in a buffer-centric
algebraic-like programming language, which is now being
used by millions of end-users – many in academia but
plenty in industry as well [6]. By “algebraic-like”, we mean
a mathematical expression in which only numbers,
variables, and arithmetic operations are used. MATLAB
scripts can currently work with scalars, arrays, and matrices
of varying types, but not with streams beyond splitting
stream data into arrays and doing array processing. One
goal in this work is to show that MATLAB-style C++ code
can be made to work with streams using data-flow
techniques.
 Block-centric (traditional SDR) and buffer-centric
(industry standard) digital signal processing can be used to
accomplish the same task, albeit using different language
abstractions. For example, in typical Monte Carlo
experiments for testing a channel coding model, vectors of
random data are generated and then processed using
operations in a set order that represent the encoder, channel,
and decoder. With each new vector of random data, the
simulation converges towards a result; each operation may
keep state between random vector iterations. Such
simulations are often written first in a MATLAB-style script
because it generally provides the fastest development time.
If the interpreted script is too slow, then it can be converted
into a compiled language.
 To perform such a Monte Carlo simulation using
MATLAB-style script, an extended loop is used, within
which the random data is created and processed; statistics

Proceedings of the SDR 11 Technical Conference and Product Exposition, Copyright © 2011 Wireless Innovation Forum All
Rights Reserved

224

are kept using variables declared outside of the loop. Such a
simulation can also be performed using SDR-style
processing techniques, where the random data vectors
become frames generated by a random source, and the
ordered operations are SDR blocks joined to make a
“waveform” of sorts, performing signal processing on those
frames. Statistics can be handled either directly inside a
decoder sink, or via a callback from the sink. The primary
difference between these MATLAB-style and SDR-style
scripts is the programming abstraction. One of our goals in
this work is to start bridging the gap between these styles,
with the hope of making SDR-style programming more
accessible, and with a more-familiar learning curve, to
programmers who learned signal processing using
MATLAB-style programming.
 Our Surfer SDR framework aims to enhance the user’s
experience by pushing complexity into the framework’s
programming [7]. Continuing this trend from the
perspective of reducing the user’s learning curve for
creating script-based waveforms, we augmented Surfer to
provide an alternative, algebraic-like language interface –
using a buffer-centric approach similar to that provided by
MATLAB and Octave.
 The Surfer algebraic language interface (SALINE) is
written in C++, as an independent layer that resides in its
own C++ namespace, and provides an algebraic-like
language interface for waveform definition. SALINE is split
into the core user accessible classes, functions, and macros,
and an interface to the underlying SDR framework.
Although SALINE is designed with Surfer in mind, an
interface into other SDR frameworks, e.g. GNU Radio [8],
could be created relatively easily. SALINE is an abstraction
layer that merely acts as an alternative means for coding
waveforms when compared with current techniques; it has
no more overhead that any other technique. The underlying
SDR framework supplies the blocks / components and
actual connections methods, and thus the framework is
responsible for any heterogeneous processing or specialized
instructions such as SSE, Neon, or Altivec.
 Both Surfer and SALINE make extensive use of C++
templates; for example, all currently implemented Surfer
blocks are written as templates and thus must be explicitly
instantiated by the user’s waveform application. By using
template classes for all blocks, Surfer avoids code
redundancy and related bug duplication issues, and also
allows for easier debugging of code issues because the
source is directly available as a header file. That said,
explicit-typed SALINE functions and Surfer blocks can be
created and utilized through the use of Surfer’s signal-
processing flavors [7].
 We provide relevant background information, in
Section 2, on how SDR waveforms are defined in different
abstractions. Section 3 presents important C++ concepts
needed to understand the SALINE implementation. In

Section 4, we describe the SALINE programming
implementation, with emphasis on the types of operators
required to create its algebraic-like interface as well as how
C++ templates can be used to promote type propagation
through the waveform graph. Example scripts and C++ code
snippets are provided throughout, displayed in the Bold
Courier font in order to help set them apart from the rest
of the text. Conclusions, acknowledgements, and references
are then provided in Sections 5, 6, and 7, respectively.

2. BACKGROUND

In this section, we discuss the programming abstractions
used by current SDR frameworks to define waveforms, in as
broad terms as possible. Our goal is to provide enough
relevant information such that the implementation described
in Section 4 can be compared with the current methods; we
are not trying to fully describe how GNU Radio or JTRS
SCA [9] defines waveforms, but rather to look at the way
waveform definitions take place in a general sense.
 Each SDR waveform can be described by an acyclic
graph, whether performing packet or frame processing of
data. Such a processing abstraction allows for a GUI to
describe a given waveform – e.g., the GNU Radio
Companion [10], MathWorks Simulink [11], National
Instruments LabVIEW [12], and others [13-15] – as well as
a text-based definition via a script or compiled program.
Although we are considering expanding the SALINE
concept into an interpretive script, for this work we are
concentrating on compiled script-style programs. We firmly
believe that both GUI and script interfaces have their
benefits and usage. SALINE is not meant to replace any of
the various GUIs; rather, it is meant to augment current
scripting methods.
 Figure 1 shows a generic signal-processing block,
including input and output buffers (also called ports) and
data streams, and the block state. Note that there must be
exactly one input data stream per input buffer, while there
can be more than one output data stream per output buffer.
Source blocks provide only outputs, while sink blocks
require only inputs. The waveform designer sets an initial
state for each block requiring it. In the following

Figure 1 – General diagram of a SDR signal-processing block

225

subsections, we provide scripts showing different
programming abstractions for waveform description.

2.1. Block-centric abstraction

 Current SDR frameworks, when defining the waveform
graph via scripts or text-based programs, use a block-centric
abstraction. In this abstraction, each block is created and
then connections are formed between adjacent blocks’
output and input ports. Data is manipulated by each block’s
signal-processing algorithm, taking data from input ports,
performing processing, and the writing data into output
ports. In a block-centric language, individual buffers are
generally hidden from the user’s script; the primary user-
interface is each block: its instantiated object, input / output
ports, and state.
 As a simple example of block-centric programming,
consider the polyphase downsample-by-N [16]
implementation found in Listing 1, written in a script
combining features of MATLAB and C++ in order to
reduce code complexity while providing the features
necessary for comparison and contrasting with other
programming abstractions. This listing shows a function
named pp_down_N_block that takes three arguments
(input, N, and options) and returns one (output). The
function serial_to_parallel takes a stream of items
and parses them to N output streams, in order and without
duplication. The function fir_filter creates a finite-
impulse response filter using the provided vector as the filter
taps.
 For the function connect, the first argument pair
always refers to a block and its output port, and the second
argument always refers to a block and its input port; this
function creates a graph connection between the provided

pairs. The connect function is meant for demonstration
purposes only, and can be assumed to be type-agnostic. For
the sake of simplicity, we assume for this and related
listings that array and port indices are 1-based (i.e., start
numbering with 1, not 0), and that options contains the
polyphase filter coefficients in the variable ppf[n] as well
as anything else required for instantiation the blocks. For
block-centric programming, the variables input, s2p,
filter[n], and acc refer to instantiated block objects.
 In this code listing, blocks are created first and then
connected together to form the waveform graph; one could
combine the block creation and connection stages, but it
does not change the underlying abstraction. Note that with
this abstraction, the waveform graph can be connected in
any order: from source to sink, sink to source, or from
internal blocks towards both the source and sink. No
matter the graph ordering, connect calls are required to
form the graph.

2.2. Buffer-centric abstraction

 MATLAB and Octave scripts are written in an
algebraic-like language using a buffer-centric abstraction to
define signal-processing algorithms. In this abstraction, data
– in the form of scalars, arrays, or matrices – is manipulated
by functions in the user’s script via data buffers. In a buffer-
centric language, objects are exposed in the user’s script to
the degree that the user and language allow.
 Listing 2 provides a buffer-centric script for the
polyphase downsample-by-N function. This listing shows a
function named pp_down_N_buffer with the same
function arguments and return as pp_down_N_block, and
where the internally used functions have the same purpose.
For buffer-centric programming, the variables input, s2p,
and acc refer to output buffers from previous operators. The
line acc = 0 is shorthand for zeroing out the buffer before
it is used; this code is written for clarity, not efficiency.
Because connections are defined implicitly through the

Listing 2 – Polyphase downsample-by-N written
using buffer-centric programming

output = pp_down_N_buffer
 (input, N, options)
{
 s2p = serial_to_parallel
 (input, N, options)
 acc = 0
 for n = 1:N {
 // ‘acc’ reused
 acc += fir_filter (s2p[n],
 options.ppf[n]))
 }
 return (acc)
}

output = pp_down_N_block
 (input, N, options)
{
 // declare blocks first
 s2p = serial_to_parallel (N, options)
 for n = 1:N {
 filter[n] = fir_filter (options.ppf[n])
 }
 acc = sum (options)
 // connect blocks second
 connect ((input, 1), (s2p, 1))
 for n = 1:N {
 connect ((s2p, n), (filter[n], 1))
 connect ((filter[n], 1), (acc, n))
 }
 return (acc)
}

Listing 1 – Polyphase downsample-by-N written using
block-centric programming

226

manipulation of buffers, the underlying waveform graph is
abstracted away from the user’s script and hence no
connect calls are required. The use of the += operator
provides a more intuitive language interface than that found
when using block-centric programming, and also allows for
certain runtime graph optimizations – both of which will be
discussed further in Section 4.

2.3. Definition via GUI

GUI representations of waveforms are neither entirely
buffer- nor block-centric, but rather a mix of the two –
though more towards the latter because the user does not
directly manipulate the buffers, but rather draws
connections between blocks (ports). Each GUI-described
waveform must contain both blocks as well as explicit
connections between them. Figure 2 shows, approximately,
the same polyphase downsample-by-N waveform drawn
using GNU Radio Companion (GRC), for N=3. Please note
that GRC provides a single block that performs this
function; the goal here is to show the abstraction used for
GUI waveform creation.

2.4. Other waveform definition methodologies

A variety of other script-oriented waveform or data-flow
definition methodologies and languages have been proposed
and/or are in use [17-24], the most notable of which in SDR
circles is JTRS SCA. For the most part, these frameworks
define waveforms (or the equivalent data-flow) through
some combination of markup and compiled languages. All
of the definition languages we have encountered, when
reduced to their essence, use block-centric programming.

3. IMPORTANT C++ FEATURES

SALINE heavily relies on three standard features of C++
that are not available in C or other similar languages:
templates, operator overloading, and runtime variable type
comparison. These features are covered briefly in the
following subsections.

3.1. Templates

Templates are part of the current C++ standard [25] and
allow the definition of any instance of a class, method,
variable, or function concisely, with minimal redundancy. A
template function or class is designed to work on many
different data types without being rewritten specifically for
each one. For example, let us compare the C and C++
implementations for a max function, which takes two same-
typed arguments and returns the maximum of them. In C the
function max of two same-typed arguments for the types
int and float could be written

 int max_i (int a, int b)
 { return (a > b ? a : b); }
 float max_f (float a, float b)
 { return (a > b ? a : b); }

Note that in C the function names must be unique, as must
the input arguments and return type for each function.
Clearly, there is significant code redundancy, and to expand
these functions to include other types beyond those provided
would require more similarly named functions.
 C++ provides templates to reduce the code complexity
for such functions. The max function taking two same-typed
arguments, as above, can be written generically via a C++
template function as

 template < typename T >
 T max (T a, T b)
 { return (a > b ? a : b); }

This template function will be expanded by the compiler
into an explicit-typed (non-template) function at compile-
time. For example, if the code

 float fm = max < float > (1, 2);

is issued, then the compiler will implicitly create the max
function for type float. Templates are a powerful
abstraction that can be used to greatly reduce written-code
size and increase code-reuse.
 That said, the current C++ standard does not allow for a
variable number of template arguments (e.g., for a function
taking those types as arguments); nor does C++ robustly
handle a variable number of arguments to functions or

Figure 2 – Rough diagram of the polyphase downsample-by-N
created using the GNU Radio Companion, for N = 3

227

methods. The recently ratified standard, called C++11 [26],
does allow for variadic templates, which in turn will allow
for robust handling of a variable number of arguments to
functions or methods.
 Templates in and of themselves cannot be used to
create a robust algebraic abstraction in C++. We still desire
standard math operators (e.g., +, *, &, <, and %) to be
available; in C++, we can use operator overloading to fulfill
this need.

3.2. Operator overloading

In the C language, the math operators +, *, &, <, and % (and
a handful of others similar to these) are defined solely for
the built-in variable types, e.g., int and long; some are
defined for float, but none can be made to work with user-
defined classes. In C++, these operators can be overloaded
to work with any class type; the function names for those
listed above are operator+, operator*, operator&,
operator<, and operator%. This type of operator
overloading provides a robust abstraction mechanism,
allowing end-user programs to hide complexity. For
example, suppose we define a template class that stores a
type value, as

 template < typename T > class foo {
 public:
 T d_value;
 foo (T value = 0) : d_value (value) {}
 ~foo () {}
 T value () { return (d_value); }
 }

Given this class, we want to be able to manipulate the stored
value through operator overloading. One could concisely
write the code for the + operator for same-typed arguments
as

 template < typename T > foo < T > operator+
 (foo < T > lhs, foo < T > rhs) {
 return (foo < T > (lhs.value () +
 rhs.value ()))
 }

such that the + operator for identical foo template types
returns another foo with the internal value of the sum of
the provided arguments internal values. The above code can
be used to produce the algebraic-like code segment

 foo < int > a, b, c;
 a = 1;
 b = 2;
 c = a + b;

Given the availability of templates and operator
overloading, one can almost construct a C++ extension
providing an algebraic-like abstraction. The missing key is
for operator overloading in cases when the argument types
are not identical. In this case, in order for the C++ code to
compile and function correctly, the arguments’ types must
be able to be compared. The standard library type_info
class provides this utility.

3.3. type_info and typeid

The typeid facility provided by the type_info class
allows for type comparison of almost any two active
variables, as well as a means of retrieving the actual variable
type as a string. The typeid facility is not limited to built-
in C++ types, but is also available for user-created types.
Continuing from the previous examples, suppose we wanted
to add two potentially different foo class types. Then, using
typeid, one way to implement this functionality is

 template < typename lhs_t,
 typename rhs_t >
 foo < lhs_t > operator+
 (foo < lhs_t > lhs, foo < rhs_t > rhs)
 {
 lhs_t rhs_to_use = 0;
 if (typeid (lhs) == typeid (rhs)) {
 rhs_to_use = rhs.value ();
 } else {
 rhs_to_use = lhs_t (rhs.value ());
 }
 return (foo < lhs_t > (lhs.value () +
 rhs_to_use));
 }

Admittedly, for basic types such as int and float, the
above function could be written with less complexity
because the C++ compiler will do any type conversion
implicitly. That said, the above code could also be used with
any lhs_t and rhs_t types, so long as the type cast from
rhs_t to lhs_t is valid and operator+ is defined for the
lhs_t type. The above code can now be used to produce
the algebraic-like code segment

 foo < int > a, c;
 foo < float > b;
 a = 1;
 b = 2;
 c = a + b;

where the addition is between the types int and float, and
the result stored as an int. Similarly, we can also overload
the operator= method (an in-class function), to allow code
such as

228

 foo < int > a;
 foo < short > b;
 foo < long > c;
 a = 1;
 b = 2;
 c = a + b;

With the above three C++ concepts in mind, we now
describe the C++ extension allowing for algebraic-like
language waveform definition.

4. ALGEBRAIC ABSTRACTION

SALINE is written as an independent user-interface layer
that resides in its own C++ namespace, and provides an
algebraic-like language interface for waveform definition.
This section describes the basic classes and concepts
required to implement SALINE, including the types of
variable classes and operators, how templates are used to
perform type propagation through the waveform graph as it
is being defined, and its runtime operation. We then briefly
describe the interface to the underlying SDR framework.

4.1. Types of variables

Algebraic expressions are combinations of variables and
operators on those variables. A variable might represent
static data in the form of a scalar, vector, matrix, or constant
stream, dynamic data being generated by from a source, or
processed data generated by an operator. In order to
represent these algebraic expressions using SALINE, three
basic variable-oriented classes are required. Examples of the
latter two classes are provided after their definition.

1. A base stream class from which all other stream-oriented

variable classes are derived.
2. An operator class that can be either directly or indirectly

instantiated, which represents the output buffer(s)
resulting from some specific operator. When multiple
output buffers are available, they are obtained using
array indexing via overloading the C++ operator[]
method.

3. An enclosure variable class that contains a reference to
an operator variable. Enclosure variables are either
explicitly declared in the waveform script or program, or
created as temporary placeholders when multiple
operators are executed before the operator= method is
issued. When as the latter, a new object is created and
knowledge of this memory allocation is retained by
SALINE for later deletion.

 The first two classes’ prototypes are defined as

 namespace saline {
 template < typename item_t >
 class stream_base;
 template < typename item_t >
 class enclosure :
 public stream_base < item_t >;
 }

such that the enclosure class inherits from the
stream_base class, and both are defined within the
saline C++ namespace. Prototypes for operators such as
fft and serial_to_parallel can be defined similarly to
that of the enclosure class. Note that the stream_base
template type defines the output buffer data type, as is
required by buffer-centric implementations. For SALINE,
types are defined explicitly at compile type; when using
runtime-compiled kernels such as those available in
OpenCL [27], types can be defined at compile-time or
runtime as needed.
 In the case where a single template type is used in the
class definition, then at least one input or output stream
must be of that type. It is possible to use explicitly typed
streams when defining operators, but this definition
technique is discouraged. In order to use input and output
streams of different types, multiple template parameters can
be provided and used. Thus, for example, to create an fft
operation taking in, processing, and returning streams of
different types, one could use the class prototype

 namespace saline {
 template < typename in_t,
 typename proc_t,
 typename out_t >
 class fft_i_p_o :
 public stream_base < out_t >;
 }

Note that only the output buffer type of the new fft class is
provided to the base stream class.

4.2. Types of operators

There are six primary C++ compatible types of operators
needed to form SALINE. Each is described briefly, with
example functions. For all operator types below, op refers to
an operator function, options to user-supplied
initialization parameters, stream to a single class inheriting
from saline::stream_base, and streams to two or
more stream arguments separated by commas.

1. op (options) : Type 1 operators take no data streams

as arguments, only options. Examples include stream
sources, such as reading from a file, generating random
data, or providing a constant value.

229

2. op (stream, options) : Type 2 operators take a
single data stream and options. Examples include many
common math and signal-processing functions, such as
sin, and fft, and serial_to_parallel.

3. op (streams, options) : Type 3 operators take a
variable number of input streams, followed by options.
This operator type is currently implemented as
(options, streams) because the current C++
specification does not robustly handle a variable number
of arguments to a function or method [28]. The next C++
specification should provide the necessary functionality
via variadic templates, which will allow for the desired
argument ordering. Examples include
parallel_to_serial and analysis_filterbank,
which in this case both take multiple input streams and
return a single stream. Certain native-C++ mathematical
operators, such as sum and +, are implemented as both
this type as well as the next.

4. stream op stream : Type 4 operators are those that
overload built-in C++ math functions. Examples include
command math functions such as +, *, &, <, and %, but,
instead of operating on scalars (or vectors, as provided
by some libraries) these operators are overloaded to
handle streams. C++ handles just a single instance of this
operator at a time: the command A + B + C is
interpreted by C++ to be (A + B) + C where the
parentheses denote operator ordering. SALINE internally
splits this equation into two separate equations: tmp =
A + B and tmp + C, where tmp is a temporary
enclosure variable allocated as a placeholder for the first
sum. Under some circumstances, multiple type 4
operators can be combined together, as a sort of runtime
optimization; this technique is described later in this
section.

5. stream = stream : Type 5 operators overload the built-
in C++ function operator=. The left-hand side (LHS)
argument must be an enclosure variable; this property is
checked for during runtime only.

6. stream op= stream : Type 6 operations overload a
built-in C++ math function as well as set an enclosure
variable. Examples of this operator include += and %=,
though some operators are specific to certain types (e.g.,
integers only). The LHS argument must again be an
enclosure variable; this property is checked for during
runtime only. Defining the LHS stream as A, and the
right-hand side (RHS) stream as B, this operation is
internally expanded into either A = tmp_A op B when
the operator referenced by A is not identical in name and
all types to than that being requested; tmp_A is an
temporary enclosure variable that holds the value of A
when this expression is issued. When the operator
referenced by A is identical in name and type to that
being requested, the variable A is augmented with B as
another input. This operator type allows for internal

graph optimization beyond what any C++ compiler can
provide. For example, the accumulator used in Listing 2
can be reduced from N-1 + operators into a single N-way
sum, as shown in Figure 3. Such runtime optimizations
are currently limited to identical operators using identical
stream types.

Using the above operator types, we can now implement the
functionality to use templates for type propagation through
the waveform graph as it is created.

4.3. Type Propagation via Templates

As described in Section 3, the C++ typeid facility is used
to provide internal type-conversion, and templates are used
for both operator classes and their methods to allow these
operator variables to take and return the same or different
arugment types. This robust type handling means that the
user’s script is not required to explicitly declare all function
types. As an example using Listing 2 – which uses just type
2 operators – the serial_to_parallel function
prototype could be defined in C++ as

 namespace saline {
 template < typename arg_t >
 stream_base < arg_t >&
 serial_to_parallel
 (stream_base < arg_t >& arg,
 int num_outputs,
 options_t& options);
 }

where the C++ template type, arg_t, is used to define both
the input and output stream types. Given the input
argument’s type, the C++ compiler will choose the correct
template expansion of the serial_to_parallel function.
Similarly, the type of the chosen fir_filter function can
be defined implicitly via the type of its input – in this case
the variable s2p[1] or s2p[n]. In this manner, variable
types are implicitly used to determine function template
expansions, and these types are propagated through the
waveform program. This form of type propagation from

Figure 3 – Runtime optimization of N-1 2-way adders into a
single N-way summation.

230

input to output requires the sole constraint that any prior
streams must already be define and available for use before
the current operator is instantiated. Thus, unlike block-
centric programming – which allows the waveform graph to
be defined in any ordering – the user’s program must define
the waveform graph from source to sink.

4.4. Runtime operation checks

Certain features of SALINE can be determined during
runtime only; hence the user’s program will be checked for
correctness / validity during runtime as well as compile
time. The three primary areas where runtime checking is
performed are discussed below. Another area where runtime
checks could be performed – variable use that creates a
graph cycle – is currently handled by the underlying SDR
framework.

1. Variable overwriting : Consider the code

 saline::enclosure < int > A;
 A = 5;
 A = 10;

The last line overwrites the expression from the prior line,
effectively hiding the prior setting of the variable A. C++
will compile the above code, and it will execute as directed
no matter the variable overwriting. During runtime,
SALINE will print out a warning that the LHS variable is
being overwritten; internally, the code is reinterpreted as

 A = 5;
 tmp_A = A;
 A = 10;

where tmp_A is a temporary enclosure variable. This
reinterpretation allows for a variable to be set for some
more-legitimate purpose than the above example, and then
overwritten once that purpose is no longer in scope.
Variable overwriting can be performed any number of
times, using any of the operators from Section 4.2, with
each overwrite reinterpreted as a uniquely named temporary
enclosure variable as above but for the given operation.

2. Implicit type changes : Consider the code

 saline::enclosure < int > A;
 saline::enclosure < float > B;
 A = 5;
 B = A;

where the variable A is set to a constant_source with the
integer value 5, and then the variable B is set to be the same

value as A – except as the type float instead of int.
Internally, the last line of the code is reinterpreted as

 tmp_A = saline::type_converter
 < int, float > (A);
 B = tmp_A;

where tmp_A is a temporary enclosure variable holding the
type-converted version of the variable A. When the user’s
code is augmented in this fashion, SALINE will print a
warning about the implicit type conversion, allowing the
code to execute but letting the user know about the potential
issue.

3. Variable declaration order : Consider the code

 saline::enclosure < int > A, B;
 A = B;

where the variable A is set to B before B is set to anything.
This code will compile in C++ without warnings, but does
not make algebraic sense because the variable B has not
been set before it is used. SALINE will throw a runtime
error when executing this code, stating that the RHS
variable is being used before being set.

4.5. Interface to the Underlying SDR Framework

As each operator is created in SALINE, its corresponding
block is instantiated by the SALINE SDR interface layer
using the underlying SDR framework. This layer is
lightweight, primarily responsible for instantiating and
connecting blocks. It also provides the glue to manipulate
the runtime status of the SDR framework – for example
starting, pausing, locking, unlocking, and stopping both
individual blocks and the framework. Surfer can generally
handle the insertion and removal of blocks, during runtime
without having to stop and restart processing. Further, this
layer when using Surfer automatically starts framework-
level processing before the user’s waveform program is
executed, and stops it when the program is finished. That
said, we recognize that some SDR frameworks do require
this functionality, and also that some waveforms might
require it for proper processing.

4.6. Putting it all together

Listing 3 provides a SALINE-based version of the
polyphase downsample-by-N function. This listing shows a
function named pp_down_N_SALINE with the same
function arguments and return as pp_down_N_buffer, and
where the internally used functions have the same purpose.
For buffer-centric programming, the variables input, s2p,
and acc refer to output buffers from previous operators.

231

When compared with Listing 2, the line acc = 0 is not
used because it is interpreted to mean a constant_source
of value 0, which at least for the used operator (+) is
unnecessary. This code is written for efficiency, and does
not include error checking on the inputs as would be typical
of such a function. Also, this code includes all of the
required C++ glue for compiling, while Listing 2 is meant
as an example of an interpreted script.
 This listing shows a number of the properties
mentioned above: implicit operator type selection, type
propagation from input to output, operator overloading for
greater code clarity, and the use of the += operator for
potential runtime optimization. Compared with Listing 1,
the core programming (not the C++ glue) reads similarly to
MATLAB or Octave script – but for data streams instead of
scalars, vectors, or matrices. In more complicated examples
– e.g., OFDM modulation or demodulation – SALINE
programming will reduce the chances of incorrect
connections as well as the overall program length. Providing
a scripting experience similar to that of MATLAB should
make the transition from general-purpose signal processing
to SDR easier for many users.

5. CONCLUSIONS

We have developed an extension in C++ that provides an
algebraic-like programming language interface as a novel
means for creating SDR waveforms. This extension, called
SALINE, currently works with our Surfer SDR framework

but has been designed independent of Surfer and hence
could be ported to other SDR projects. We accomplished
this task by leveraging standard C++ properties and classes
to define the variable types and operators, and creating a
form of variable type propagation through the use of
appropriate template functions and classes. SALINE reduces
complexity compared with current SDR text-based
programming interfaces by using a MATLAB-style buffer-
based implementation that provides implicit graph-style
connections. For many potential users, who wish to just use
an SDR framework, the availability of a MATLAB-style
interface should reduce the SDR learning curve.

6. ACKNOWLEDGEMENTS

This work has been supported in part by NIJ Grant 2006-IJ-
CX-K034 and an NVIDIA Professor Partnership Award.

7. REFERENCES

[1] H. Zimmermann, “OSI Reference Model – The ISO Model of

Architecture for Open Systems Interconnection”, IEEE
Transactions on Communications, vol. 28, no. 4, pp. 425 –
432, April 1980.

[2] L. J. Williams (ITT; Technical Director, JTRS Business
Area), “Software Defined Radios: Are They Really That
Hard?”, presented at the IPFW Wireless Summer School,
June 17, 2009.

[3] GNU Radio Discussion Email List, thread on “Why Isn't
GNU Radio Used More”, accessed June 2011:
https://lists.gnu.org/archive/html/discuss-gnuradio/2011-
05/msg00173.html

[4] MathWorks MATLAB Website, accessed October 2011:
http://www.mathworks.com/products/matlab

[5] GNU Octave Website, accessed October 2011:
https://www.gnu.org/software/octave

[6] MathWorks Company Facts Sheet, accessed October 2011:
http://www.mathworks.com/company/factsheet.pdf

[7] M.L. Dickens, J.N. Laneman, and B.P. Dunn, “Seamless
Dynamic Runtime Reconfiguration in a Software Defined
Radio”, Proceedings of SDR’11 – WInnComm – Europe,
Brussels, Belgium, June 2011.

[8] GNU Radio Website, accessed June 2011: http://gnuradio.org/
[9] Software Communications Architecture Website, accessed

October 2011: http://sca.jpeojtrs.mil
[10] GNU Radio Companion Website, accessed October 2011:

http://www.joshknows.com/grc
[11] MathWorks Simulink Website, accessed October 2011:

http://www.mathworks.com/products/simulink
[12] National Instruments Corporation, LabVIEW Website,

accessed October 2011: http://www.ni.com/labview
[13] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs, and Y. Xiong, “Taming
Heterogeneity – the Ptolemy Approach”, Proceedings of the
IEEE, v. 91, No. 1, pp. 127-144, January 2003.

[14] Agilent VEE Website, accessed October 2011:
http://www.agilent.co/find/vee

[15] Mitov Software OpenWire Website, accessed October 2011:
http://www.mitov.com/products/openwire

Listing 3 – Polyphase downsample-by-N written in
C++ using SALINE

namespace saline {
 template < typename arg_t >
 stream_base < arg_t >
 pp_down_N_SALINE
 (stream_base < arg_t >& input,
 size_t N,
 options_t& options)
 {
 enclosure < arg_t > s2p, acc;
 s2p = serial_to_parallel
 (input, N, options);
 acc = fir_filter
 (s2p[1], options.ppf[1]))
 for (size_t n = 2; n < N; n++) {
 // ‘acc’ reused
 acc += fir_filter
 (s2p[n], options.ppf[n]))
 }
 return (acc);
 }
}

232

[16] P. Schniter, “Polyphase Decimation Filter”, Connexions
Website, accessed October 2011:
http://cnx.org/content/m10433/2.12

[17] J. P. Morrison, Flow-Based Programming, 2nd Edition: A New
Approach to Application Development, self-published: EAN-
13 978-1451542325; https://www.createspace.com/3439170,
2010.

[18] C.-J. Hsu, I. Corretjer, M.-Y. Ko, W. Plishker, S. S.
Bhattacharyya, “Dataflow Interchange Format”, Technical
Report UMIACS-TR-2007-32, Institute for Advanced
Computer Studies, University of Maryland at College Park,
June 2007.

[19] SystemC Website, accessed October 2011:
http://www.systemc.org

[20] C. Grimm, ed., Languages for System Specification, Kluwer
Academic Publishers, Boston, MA, USA, 2004.

[21] NoFlo (Flow-based programming for Node.js) Website,
accessed October 2011: https://github.com/bergie/noflo

[22] A. V. Berka, “Interlanguages and Synchronic Models of
Computation”, published 25 May 2010 on the Isynchronise
Ltd. Website, accessed October 2011:
http://arxiv.org/pdf/1005.5183

[23] ParC Website, accessed October 2011: http://parallel.cc/
[24] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A

Language for Streaming Applications”, in the Proceedings of
the International Conference on Compiler Construction,
Grenoble, France, 2002.

[25] C++ Working Group Documents Website, accessed October
2011: http://www.open-std.org/JTC1/SC22/WG21

[26] C++11 Wikipedia Entry, accessed October 2011:
http://en.wikipedia.org/wiki/C%2B%2B11

[27] The Khronos Group, OpenCL Website, accessed October
2011: http://www.khronos.org/opencl

[28] B. Stroustrup, The C++ Programming Language: Special
Edition, Addison-Wesley, ISBN 0201700735, 2000.

233

