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ABSTRACT

Partial update (PU) conjugate gradient (CG) algorithms have
been developed to reduce the computational complexity of the
full-update CG. Among the basic partial update methods, the
MMax CG can achieve convergence performance and steady-
state mean-square-error (MSE) performance comparable to
the full-update CG in a time-invariant system while signifi-
cantly reducing the computational complexity. In this paper,
the tracking performance of the MMax CG for a time-varying
system is studied. Theoretical MSE results of the PU CG are
derived for the steady state. The performance of the MMax
CG is also compared with the MMax recursive least squares
(RLS) algorithm. Computer simulations are presented to sup-
port the theoretical analyses.

1. INTRODUCTION

Adaptive filters play an important role in fields related to
digital signal processing such as system identification, noise
cancellation, and channel equalization. In the real world, the
computational complexity of an adaptive filter is an impor-
tant consideration for applications which need long filters.
Usually, least squares algorithms, such as recursive least
squares (RLS), Euclidean direction search (EDS) [1], and
CG, have higher computational complexity and give better
convergence performance than steepest-descent algorithms.
Therefore, a tradeoff must be made between computational
complexity and performance. To reduce the computational
complexity, one option is to use partial update techniques
[2]. The partial update adaptive filter only updates part of
the coefficient vector instead of updating the entire vector.
The theoretical results on the full-update case may not apply
to the partial update case. Therefore, performance analysis
of the partial update adaptive filter is very meaningful. In
the literature, partial update methods have been applied to
several adaptive filter algorithms, such as Least Mean Square
(LMS), Normalized Least Mean Square (NLMS), RLS, EDS,

This work was supported in part by NASA grant #NNG06GE95G and
the Institute for Critical Technology and Applied Science.

Affine Projection (AP), Normalized Constant Modulus Algo-
rithm (NCMA), etc. Most analyses are based on LMS and
its variants [2]-[8]. There are some analyses for least squares
algorithms. In [9], the mean and mean-square performance
of the MMax RLS has been analyzed for white inputs. In
[7], the tracking performance has been analyzed for MMax
RLS. In [10], the mean and mean-square performance of PU
EDS is studied. In [11], partial update techniques have been
applied to the CG algorithm. The mean and mean-square
performance of different PU CG algorithms are analyzed in a
time-invariant system. Among the basic partial update meth-
ods, the MMax CG can achieve convergence performance and
steady-state mean-square-error (MSE) performance compa-
rable to the full-update CG.

In this paper, the tracking performance of the MMax CG
for a time-varying system is studied. Theoretical MSE results
are derived for the PU CG at steady state. Computer simu-
lation results are also presented to show the tracking perfor-
mance of the MMax CG. The performance of the MMax CG
is also compared with the full-update CG, full-update RLS,
and MMax RLS. Analysis of time-varying systems is neces-
sary because the unknown systems in system identification,
echo cancellation, and channel equalization are often time-
varying in real world applications. This paper is organized as
follows. In Section 2, PU CG algorithms are reviewed. The
MSE results of the PU CG for a time-varying system are de-
rived in Section 3. In Section 4, computer simulation results
are shown.

2. PARTIAL UPDATE CG

The partial update CG is briefly reviewed in this section. A
system identification model is shown in Fig. 1. It can be
written as:

d(n) = xT (n)wo + v(n), (1)

where d(n) is the desired signal, x(n) = [x(n), x(n −
1), ..., x(n−N +1)]T is the input data vector of the unknown
system, wo = [wo

1 , w
o
2, ..., w

o
N ]T is the impulse response vec-

tor of the unknown system, and v(n) is zero-mean white
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Fig. 1. System identification model.

noise, which is independent of any other signal. In a station-
ary environment, wo is time-invariant. In a non-stationary
environment, wo is time-varying.

Let w be the coefficient vector of an adaptive filter. The
estimated signal y(n) is defined as

y(n) = xT (n)w(n − 1), (2)

and the output signal error is defined as

e(n) = d(n) − xT (n)w(n − 1). (3)

The CG algorithm solves the same least-squares cost
function as the RLS. It aims to minimize the the cost function

J(n) =
1
2
wT (n)Rw(n) − bT w(n), (4)

where R is the autocorrelation matrix of the input data vector
x(n) and b is the cross-correlation vector between the input
data vector x(n) and the desired signal d(n). Unlike RLS, the
CG minimizes the cost function using the line search method
to avoid matrix inversion. The CG algorithm has two basic
implementation methods, reset method and non-reset method.
In this paper, we consider only the modified CG algorithm
with the non-reset Polak-Ribière (PR) method [12]. The main
advantages of this method include the fact that no reset and
termination steps are needed and lower computational com-
plexity is needed compared to the reset method. The partial
update method aims to reduce the computational cost of the
adaptive filters. Instead of updating all of the N × 1 coef-
ficients, it usually only updates M × 1 coefficients, where
M < N . For the CG algorithm, the calculation of R results
in high computational cost. To reduce the computational com-
plexity, the sub-selected tap-input vector x̂ = IMx is used.

The partial update CG algorithm in an adaptive filter sys-

tem is summarized as follows [11]:

e(n) = d(n) − xT (n)w(n − 1), (5)

R̂(n) = λR̂(n − 1) + x̂(n)x̂T (n), (6)

α(n) = η
pT (n)g(n − 1)
pT (n)R̂(n)p(n)

, (7)

w(n) = w(n − 1) + α(n)p(n), (8)

g(n) = λg(n − 1) − α(n)R̂(n)p(n)
+x̂(n)e(n), (9)

β(n) =
(g(n) − g(n − 1))T g(n)

gT (n − 1)g(n − 1)
, (10)

p(n + 1) = g(n) + β(n)p(n), (11)

where

x̂ = IMx, (12)

and

IM (n) =

⎡
⎢⎢⎢⎢⎣

i1(n) 0 . . . 0

0 i2(n)
. . .

...
...

. . .
. . . 0

0 . . . 0 iN(n)

⎤
⎥⎥⎥⎥⎦ , (13)

N∑
k=1

ik(n) = M, ik(n) ∈ {0, 1}, (14)

For each iteration, only M elements of the input vector are
used to update the weights. Note, the calculation of out-
put signal error still uses the the whole input vector, not the
subselected input vector. Basic partial update methods in-
clude sequential PU, stochastic PU, MMax, etc. According
to [11], the MMax CG has the fastest convergence rate and
can achieve similar steady-state MSE to the full-update CG
in a time-invariant system. Therefore, only the MMax CG is
studied for a time-varying system in this paper. The MMax
CG selects the input vector according to the first M max ele-
ments of the input x. The condition of ik(n) [2] becomes

ik(n) =
{

1 if |xk(n)| ∈ max1≤l≤N{|xl(n)|, M}
0 otherwise

. (15)

The sorting of the input x increases the computational com-
plexity. The sorting result can be achieved more efficiently by
using SORTLINE or Short-sort methods [12]. If the SORT-
LINE method is used, the MMax CG needs 2N 2 + M2 +
9N + M + 3 multiplications and 2 + 2log2N comparisons.

3. TRACKING PERFORMANCE OF PARTIAL
UPDATE CG

In a non-stationary environment, the unknown system is time-
varying. The desired signal can be rewritten as

d(n) = xT (n)wo(n) + v(n). (16)
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A first-order Markov model [13] is used for the time-varying
unknown system. It has the form as follows:

wo(n) = γwo(n − 1) + η(n), (17)

where γ is a fixed parameter of the model and is assumed to
be very close to unity. η(n) is the process noise vector with
zero mean and correlation matrix Rη.

The coefficient error vector is defined as

z(n) = w(n) − wo(n). (18)

To determine the tracking performance of partial update CG,
three more assumptions are needed: (1) Noise v(n) has zero
mean and variance σ2

v , and is independent of the noise η(n);
(2) The input signal x(n) is independent of both noise v(n)
and noise η(n); (3) At steady state, the coefficient error vector
z(n) is very small and is independent of the input signal x(n).

Using these assumptions, the MSE equation of the PU CG
algorithm at steady state becomes

E{|e(n)|2} = σ2
v + tr(RE{z(n)zT (n)}), (19)

where R = E{x(n)xT (n)} is the autocorrelation matrix of
the input x. At steady state, the coefficient vector is approxi-
mate to [11]

w(n) ≈ R̃−1(n)b̂(n), (20)

where

R̃(n) = λR̃(n − 1) + x̂(n)xT (n)

=
n∑

i=1

λn−ix̂(i)xT (i), (21)

b̂(n) = λb̂(n − 1) + x̂(n)d(n). (22)

Take the expectation of (21),

E{R̃(n)} =
n∑

i=1

λn−iE{x̂(i)xT (i)}

=
n∑

i=1

λn−iR̃

=
R̃

1 − λ
n → ∞, (23)

where R̃ = E{x̂(n)xT (n)}. Assuming a slow adaptive pro-
cess (λ is very close to unity), R̃(n) becomes [13]

R̃(n) ≈ R̃
1 − λ

n → ∞. (24)

The coefficient vector at steady state is further approximated
to

w(n) ≈ (1 − λ)R̃−1b̂(n)

= (1 − λ)R̃−1(λb̂(n − 1) + x̂(n)d(n))

= λw(n − 1) + (1 − λ)R̃−1x̂(n)x(n)wo(n)

+ (1 − λ)R̃−1x̂(n)v(n). (25)

Subtracting wo(n) from both sides of (25), using (17) and
(18), using the direct-averaging method [13], and applying
the assumption that γ in (17) is very close to unity, we get

z(n) ≈ λz(n − 1) − λη(n) + (1 − λ)R̃−1x̂(n)v(n). (26)

Note, the term (1 − λ)R̃−1x̂(n)x(n)wo(n) in (25) becomes
(1−λ)R̃−1E{x̂(n)x(n)}wo(n) = (1−λ)wo(n) after using
the direct-averaging method. Define the weight error correla-
tion matrix as

K(n) = E{z(n)zT (n)}. (27)

Since the input noise is white,

E{v(i)v(j)} =
{

σ2
v for i = j

0 otherwise
. (28)

Using these assumptions, K(n) becomes

K(n) ≈ λ2K(n − 1) + λ2Rη

+ σ2
v(1 − λ)2E{R̃−1x̂(n)x̂T (n)R̃−T } (29)

At steady state K(n) ≈ K(n − 1), therefore K(n) becomes

K(n) ≈ 1 − λ

1 + λ
σ2

vR̃
−1E{x̂(n)x̂T (n)}R̃−T

+
λ2

1 − λ2
Rη. (30)

The MSE equation becomes

E{|e(n)|2} ≈ σ2
v + tr(R(

1 − λ

1 + λ
σ2

vR̃
−1R̂R̃−T

+
λ2

1 − λ2
Rη)), (31)

where tr(·) is the trace operator and R̂ = E{x̂(n)x̂T (n)}.
For a white input signal with variance σ2

x, the MSE can be
simplified as

E{|e(n)|2} ≈ σ2
v +

N(1 − λ)
1 + λ

σ2
vσ2

xσ2
x̂σ−4

x̃

+
λ2

1 − λ2
σ2

xtr(Rη), (32)

where σ2
x̂I = E{x̂(n)x̂T (n)} and σ−2

x̃ I = R̃−1.
For the MMax method and a white input signal, σ 2

x̂ ≈ κσ2
x

and σ2
x̃ ≈ κσ2

x, where κ is smaller than 1, but is close to 1.
Therefore, the MSE can be further simplified as

E{|e(n)|2} ≈ σ2
v +

N(1 − λ)
(1 + λ)κ

σ2
v +

λ2

1 − λ2
σ2

xtr(Rη). (33)

Assume the process noise is white with variance σ2
η . Then,

the MSE of MMax CG can be further simplified as

E{|e(n)|2} ≈ σ2
v +

N(1 − λ)
(1 + λ)κ

σ2
v +

Nλ2

1 − λ2
σ2

xσ2
η. (34)
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Fig. 2. Comparison of MSE of MMax CG for varying process
noise η, M = 8.

4. SIMULATIONS

4.1. Tracking performance of the MMax CG using the
first-order Markov model

The system identification model is shown in Fig. 1. The first-
order Markov model (17) is used for the time-varying impulse
response. It is a 16-order FIR filter (N=16). The initial state
of the impulse response [6] is

wo(0) = [0.01, 0.02,−0.04,−0.08, 0.15,−0.3, 0.45, 0.6,
0.6, 0.45,−0.3, 0.15,−0.08,−0.04, 0.02, 0.01]T. (35)

In our simulations, the lengths of the partial update filter
are M=8 and M=4. The variance of the input noise v(n) is
0.0001. The initial weights of the CG are w = 0 and the
initial autocorrelation matrix R(0) = 0. The parameters λ
and η of the CG are equal to 0.99 and 0.6, respectively. The
initial residue vector is set to be g(0) = d(1)x(1). The results
are obtained by averaging 100 independent runs.

Fig. 2 and Fig. 3 show the tracking performance of the
MMax CG with different process noise η for M = 8 and
M = 4, respectively. The parameter γ in the first Markov
model is 0.9998. The white input signal with unity variance
is used. The white process noise is used with difference vari-
ances. We can see that the MSE of MMax CG increases when
the process noise increases. The variance of the MSE also
increases when the process noise increases. The same situa-
tion also happens to the full-update CG. However, the partial
update length does not have much effect on the MSE results
in this case. The partial update length only affects the con-
vergence rate. The convergence rate decreases as the partial
update length decreases.

Table 1 and Table 2 show the simulated MSE and theoret-
ical MSE of MMax CG algorithms at steady state for white
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Fig. 3. Comparison of MSE of MMax CG for varying process
noise η, M = 4.

input. The simulated results are obtained by taking the time
average over the last 1000 samples. The theoretical results are
calculated from (34). The partial-update lengths are M = 8
and M = 4. We can see that the theoretical results match the
simulated results.

Table 1. The simulated MSE and theoretical MSE of MMax
CG for varying process noise η, M = 8.

Process noise ση Simulated Theoretical
MSE (dB) MSE (dB)

0.0001 -39.2381 -39.3584
0.001 -32.9019 -30.4766
0.01 -13.4403 -11.0287

Table 2. The simulated MSE and theoretical MSE of MMax
CG for varying process noise η, M = 4.

Process noise ση Simulated Theoretical
MSE (dB) MSE (dB)

0.0001 -38.9965 -39.0672
0.001 -31.2768 -30.4378
0.01 -11.6397 -11.0282

4.2. Performance comparison of the MMax CG with the
CG, RLS, and MMax RLS

The tracking performance of the MMax CG is also com-
pared with the full-update CG, full-update RLS, and MMax
RLS. The same system identification model is used. After
2000 samples/iterations pass, the unknown system in (35) is
changed by multiplying all coefficients by -1. Fig. 4 and Fig.
5 show the MSE results among CG, MMax CG, RLS, and

198



0 500 1000 1500 2000 2500 3000 3500 4000
−50

−40

−30

−20

−10

0

10

20

30

samples

M
S
E
(
d
B
)

CG
MMax CG M=8
RLS
MMax RLS M=8

Fig. 4. Comparison of MSE of MMax CG with CG, RLS,
MMax RLS for white input, N=16, M=8.

MMax RLS, when M = 8 and M = 4, respectively. White
input is used. The results show that the four algorithms have
a similar convergence rate after the unknown system changes.
It is also shown that the MMax CG and MMax RLS with
M = 4 can have a similar convergence rate to the MMax
CG and MMax RLS with M = 8 after the unknown system
change. The partial update length only affects the conver-
gence rate at the beginning in this case. This is because R(n)
gives a worse estimation of the real autocorrelation matrix
R at the beginning when partial update length decreases.
If the SORTLINE sorting method is used for both MMax
CG and MMax RLS, the total number of multiplications of
MMax CG and RLS are 2N 2 + M2 + 9N + M + 3 and
2N2 + 2NM + 3N + M + 1, respectively. In this case, the
full update length N is 16. The partial update length M is 8
and 4, respectively. The detailed computational complexities
of the four algorithms are shown in Table 3. The results show
that the MMax CG with M=4 can achieve similar tracking
performance to the full-update RLS or CG while reducing the
computational complexity significantly.

Table 3. The computational complexities of CG, MMax CG,
RLS, and MMax RLS.

Algorithms Number of Number of
multiplications comparisons

per symbol per symbol
CG (N=16) 3003 –

MMax CG (M=8) 731 10
MMax CG (M=4) 679 10

RLS (N=16) 3721 –
MMax RLS (M=8) 825 10
MMax RLS (M=4) 693 10
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Fig. 5. Comparison of MSE of MMax CG with CG, RLS,
MMax RLS for white input, N=16, M=4.

5. CONCLUSION

In this paper, the tracking performance of the MMax CG is
analyzed. The MSE expression of the partial update CG is
derived for a time-varying system. The MSE of MMax CG is
further simplified with white inputs. Simulation results agree
with the derived theoretical results in steady state. The track-
ing performance of the MMax CG is also compared with the
full-update CG, full-update RLS, and MMax RLS. The results
show that the MMax CG can achieve similar tracking perfor-
mance to the full-update CG and full-update RLS, while re-
ducing the computational complexity significantly.
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