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Motivation

 How to reduce the computational 
complexity of an adaptive filter?
Solutions: Using partial update (PU) 
methods.

 What are the tracking performance by 
using partial update methods to CG?



Conjugate Gradient Algorithm
Solve system with form
Equivalent to find a w to minimize the cost 

function 

The gradient of the cost function is:

The residual vector is defined as:
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A line search method for minimizing the 
cost function has the form:

p(n) is the direction vector

CG chooses the direction is conjugately 
orthogonal to the previous directions
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Now we find    to minimize 

The residual vector is also equal to

The residual vector is orthogonal to the 
previous direction vectors, 
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CG chooses the direction in the form of

Use Polak-Ribière (PR) method, 
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PR method is chosen because it is a non-reset method and 
performs better for non-constant matrix R
CG with PR method usually converges faster than Fletcher-
Reeves (FR) method 



CG Algorithm in adaptive filter system
A basic adaptive filter system model is

d(n) is the desired signal 
x(n)=[x(n),x(n-1),…,x(n-N+1)]T is the input 
data vector of an unknown system
w*=[w1

*,w2
*,…,wN

*]T is the impulse response 
vector of the unknown system
w* is constant for time-invariant system
w* changes for time-varying sytem
v(n) is a white noise 
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To estimate the R and b in 

The exponentially decaying data 
window is used

bR w
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λ is the forgetting factor
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The CG algorithm in an adaptive filter 
system is summarized as:
Initial conditions:
w(0)=0, R(0)=0, p(1)=g(0)

η is used to guarantee 
convergence



Partial Update (PU) Methods

 Update part of the weights to save the 
computational complexity

 Each update step, update M<N coefficients
 Basic PU methods include periodic, 

sequential, stochastic, and MMax methods
 The periodic method: update the 

weights at every Sth iteration and copy 
the weights at the other iterations, 
where
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 The sequential method: choose the 
subset of the weights in a round-robin 
fashion.

 The stochastic method: is a randomized 
version of the sequential method. Usually 
a uniformly distributed random process 
will be applied.

 The MMax method: the elements of the 
weight w are updated according to the 
position of the M largest elements of the 
input vector x(n).
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Partial Update CG Algorithm
The partial update CG algorithm in an adaptive 
filter system is summarized as:
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The number of multiplications of CG is 
3N2+10N+3 per sample
The number of multiplications of PU CG is 
2N2+M2+9N+M+3 per sample



The MMax method: the elements of the 
input x are chosen according to the 
position of the M largest elements of 
the input vector x(n)
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SORTLINE method is used for comparison
Mmax CG needs 2 + 2log2N comparisons



Desired signal becomes: 

Time-varying system w*(n) uses 
a first-order Markov model

is very close to unity
is process noise

Tracking Performance Analysis of PU CG
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Assumptions:
•The coefficient error w(n)-w*(n) is small 
and independent of the input signal x(n) at 
steady state
•White noise v(n) is independent of the 
input signal x(n) and is independent of 
process noise η(n)
•Input signal x(n) is independent of both 
v(n) and η(n)



At steady state, the MSE of PU CG 
with correlated input is
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At steady state, the MSE of PU CG with white 
input is

Variance of noise
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For MMax method and white input, 

κ <1, κ is close to 1 
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Simulations
System identification model

The initial impulse response of unknown system 
is 16-order (N=16) FIR filter
w*(n)=[0.01,0.02,-0.04,-0.08,0.15,-0.3,0.45,
0.6, 0.6,0.45,-0.3,0.15,-0.08,-0.04,0.02,0.01]T



The variance of the input noise σv
2=0.0001

Parameter λ=0.9 and η=0.6
White input, variance is 1

in Markov model is 0.9998



Tracking Performance of MMax CG

Comparison of MSE of 
MMax CG for varying 
process noise η, M=8

Comparison of MSE of 
MMax CG for varying 
process noise η, M=4
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• The MSE of MMax CG increases when the 
process noise increases.

• The variance of the MSE increases when 
the process noise increases.

• The partial update length does not have 
much effect on the MSE results. 

• The partial update length only affects the 
convergence rate. The convergence rate 
decreases as the partial update length 
decreases.



Process noise ση Simulated 
MSE (dB)

Theoretical 
MSE (dB)

0.0001 -39.2381 -39.3584

0.001 -32.9019 -32.9019

0.01 -13.4403 -11.0287

The theoretical results match the simulated results.

Table 1. The simulated MSE and theoretical MSE of MMax
CG for varying process noise η, M = 8.

Table 2. The simulated MSE and theoretical MSE of MMax
CG for varying process noise η, M = 4.

Process noise ση Simulated 
MSE (dB)

Theoretical 
MSE (dB)

0.0001 -38.9965 -39.0672

0.001 -31.2768 -30.4378

0.01 -11.6397 -11.0282



Performance comparison between 
MMax CG and MMax RLS 

After 2000 samples/iterations pass, the unknown system is changed 
by multiplying all coefficients by -1.
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The partial update length only affects the convergence rate 
at the beginning in this case.



Algorithms Number of 
multiplications 

per symbol

Number of 
comparisons 
per symbol

CG (N=16) 3003 --
MMax CG (N=8) 731 10
MMax CG (N=4) 679 10

RLS (N=16) 3721 --
MMax RLS (N=8) 825 10
MMax RLS (N=4) 693 10

Table 3. The computational complexities of CG, MMax CG,
RLS, and MMax RLS.



Summary
 The tracking performance of the MMax CG is 

analyzed
 Theoretical mean-square performance is derived for 

white and correlated inputs 
 The tracking performance of MMax CG is compared 

with CG, RLS, MMax RLS by using computer 
simulations
 The MMax CG algorithm can achieve similar 

performance to the full-update CG while reducing 
computational complexity significantly

 The MMax CG algorithm can achieve similar 
performance to the MMax RLS while having lower 
computational complexity


