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Motivation

I Vir

How to reduce the computational
complexity of an adaptive filter?

Solutions: Using partial update (PU)
methods.

What are the tracking performance by
using partial update methods to CG?
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Conjugate Gradient Algorithm

Solve system with form Rw =Db

Equivalent to find a w to minimize the cost

function 1
J(w(n))= EWT (n)Rw(n)—w’ (n)b

The gradient of the cost function is:
V. J(w(n))=Rw(n)-b

The residual vector is defined as:
g(n) =-V,,J(W(n))=b—Rw(n)
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A line search method for minimizing the
cost function has the form:

W(n) =w(n—1)+ap(n)

p(n) is the direction vector

CG chooses the direction is conjugately
orthogonal to the previous directions

0’ (n)Rp(m)=0,n>m

MVirginiaTech Wireless () V&2

Tech
Invent the Future



Now we find & to minimize J(W(n—l) +ap(n))
v, J(W(n-1)+a(n)p(n))

=p" (mR(w(n—1)+a(n)p(n))-p" (n)b =0

0[(71) s pT(n)gb_RW(n_l)) i pTT(n)g(n_l)
P (7)Rp(n) P (n)Rp(n)
The residual vector is also equal to
g(n) =b—Rw(n) =b—R(W(n—1) +a(n)p(n))

=g(n—1)-a(n)Rp(n)
The residual vector is orthogonal to the
previous direction vectors,

g’ (n)p(m)=0,n>m
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CG chooses the direction in the form of
p(n+1) =g(n) + S(n)p(n)
Use Polak-Ribiere (PR) method,

(9(m)—9(n-D) g(n)
g (n—-Dg(n-1)

PR method is chosen because it is a non-reset method and
performs better for non-constant matrix R
CG with PR method usually converges faster than Fletcher-
Reeves (FR) method
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CG Algorithm in adaptive filter system
A basic adaptive filter system model is

d(n) =x" (n)w +v(n)

d(n) is the desired signal
X(n)=[x(n),x(n-1),...,x(n-N+1)]" is the input
data vector of an unknown system
w=[w;*,w,",...,wy\" ]T is the impulse response
vector of the unknown system
w™ is constant for time-invariant system
w™ changes for time-varying sytem
v(n) is a white noise
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To estimatethe Rand bin Rw =D

The exponentially decaying data
window is used

R(n) = Z @)X (1) = AR (1 —1) + x(n)X" (n)

b(n) = Z 2 d ()X () = Ab(n —1) + d (n)x(n)

A is the forgetting factor
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The CG algorithm in an adaptive filter
system is summarized as:
Initial conditions:
w(0)=0, R(0)=0, p(1)=9g(0)
R(n) = AR(n—1) +x(n)x" (n)
K;T(n)g(n—l) , 1-05<p<1 nis used to guarantee
P’ (mR()p() convergence
W(n) =W(n—1)+op(n)
9(n) =b(n) —Rm)wW(n) = A9(n—1) —a(n)R(n)p(n) +X(n)(d () —X(n) W(r —1))
1 90)-9(:-D) o)
2e) g' (n-Dg(n-1)
pP(n-+1) =9(n) + S(n)p(n)
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Partial Update (PU) Methods

0 Update part of the weights to save the
computational complexity

0 Each update step, update M<N coefficients

0 Basic PU methods include periodic,
sequential, stochastic, and MMax methods

The periodic method: update the
weights at every Sth iteration and copy
the weights at the other iterations,
where S:{ﬁl
M
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The sequential method: choose the

subset of the weights in a round-robin
fashion.

The stochastic method: is a randomized
version of the sequential method. Usually

a uniformly distributed random process
will be applied.

The MMax method: the elements of the
weight w are updated according to the

position of the M largest elements of the
input vector x(n).
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Partial Update CG Algorithm

The partial update CG algorithm in an adaptive
filter system is summarized as:

R(n) = AR(n—1) +X(n)X" (n)
Bl - Ge e )

p” (n)R(n)p(n)

W(n) = w(n—1)+ap(n)

9(n) = 29(n 1) — a(m)R(m)p(n) + X(n)(d (n) — x(n) W(n-1))
_(g(m)-g(n-1)) 9(n)

A = T (D1

p(n+1) = g(n) + A(n)p(r)

a(n)=n
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X(m)=1,,(nx(n)

_il(”) Dl o e
0 L(m . :
A O (e

Si)=M, i) elod

The number of multiplications of CG is
3N2+10N+3 per sample

The number of multiplications of PU CG is
2N2+M24+9N+M+3 per sample
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The MMax method: the elements of the
input X are chosen according to the
position of the M largest elements of
the input vector x(n)

M)

5! if ‘Xk (n)‘ = max]szszvﬂxz (n)

[, (n) =5
: kO otherwise

SORTLINE method is used for comparison
Mmax CG needs 2 + 2/og,N comparisons
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Tracking Performance Analysis of PU CG

Desired signal becomes:
d(n) =x" (n)W (n) +v(n)

Time-varying system w™(n) uses
a first-order Markov model

w’(n) = (n—1)+n(n)

Y is very close to unity
n(n) is process noise
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Assumptions:

*The coefficient error w(n)-w*(n) is small
and independent of the input signal x(n) at
steady state

White noise v(n) is independent of the
input signal x(n) and is independent of
process noise n(n)

Input signal x(n) is independent of both
v(n) and n(n)
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At steady state, the MSE of PU CG
with correlated input is

£ \e(n)f}:E{ \d(n)—xT(n)w(n)H

37 T 2
zav2+tr(R(H0'leRRT+ 2 RUD

1+ A |

R = EX(n)x” (n)|
R = ER(m)X" (n)}~ (1 2)R(n)
R(n) = AR(n-1) +X(n)x" (n)
R = ER(m)X" (n) |
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At steady state, the MSE of PU CG with white
Input is

2 2 N (1-41) Dt oi iR Caling
E e(n o i O '0 .0 -0 -
LlePf= o2+ 20220020 20,
12
+1_/12c7xztr(Rn)
o’ =1t (R)
sztr(FAQ)
O';sztr(li)
oc?=E{?(n)} Variance of noise
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For MMax method and white input,

2 2 2 2
- R KO., O: RKO,

K <1, Kiscloseto 1

2 , N(@Q-4 A° )
E{‘e(n)‘ }za (1(+/1)K) +1_/126xtr(R77)

For white process noise n(n)

N@-2 e
E4 [e(n)] J~ o2 (1(+/1)K)0 Tl
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Simulations
System identification model

v(n)

Unknown system i
—. o +

w
d(n)

/

x(n) Adaptivefilter | y(n) _ ¥+ e(n)

The initial impulse response of unknown system
is 16-order (N=16) FIR filter
w*(n)=[0.01,0.02,-0.04,-0.08,0.15,-0.3,0.45,
0.6, 0.6,0.45,-0.3,0.15,-0.08,-0.04,0.02,0.017"
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The variance of the input noise ¢,2=0.0001
Parameter A=0.9 and n=0.6

White input, variance is 1

Y in Markov model is 0.9998
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; racklng Performance of MMax CG
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Comparison of MSE of
MMax CG for varying
process noise n, M=4

Comparison of MSE of
MMax CG for varying
process noise n, M=8
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« The MSE of MMax CG increases when the
process noise increases.

 The variance of the MSE increases when
the process noise increases.

 The partial update length does not have
much effect on the MSE results.

 The partial update length only affects the
convergence rate. The convergence rate
decreases as the partial update length
decreases.
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Table 1. The simulated MSE and theoretical MSE of MMax
CG for varying process noise n, M = 8.

0.0001 -39.2381 -39.3584
0.001 -32.9019 -32.9019
0.01 -13.4403 -11.0287

Table 2. The simulated MSE and theoretical MSE of MMax
CG for varying process noise n, M = 4,

0.0001 -38.9965 -39.0672
0.001 -31.2768 -30.437/8
0.01 -11.6397 -11.0282

The theoretical results match the simulated results.
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Performance comparison between
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at the beginning in this case.
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After 2000 samples/iterations pass, the unknown system is changed
by multiplying all coefficients by -1.
The partial update length only affects the convergence rate
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Table 3. The computational complexities of CG, MMax CG,

RLS, and MMax RLS.

CG (N=16)
MMax CG (N=8)
MMax CG (N=4)

RLS (N=16)
MMax RLS (N=8)
MMax RLS (N=4)

3003
/31
679

3721
825
693
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Summary

[0 The tracking performance of the MMax CG is
analyzed

[0 Theoretical mean-square performance is derived for
white and correlated inputs

[0 The tracking performance of MMax CG is compared
with CG, RLS, MMax RLS by using computer
simulations

B The MMax CG algorithm can achieve similar
performance to the full-update CG while reducing
computational complexity significantly

B The MMax CG algorithm can achieve similar
performance to the MMax RLS while having lower
computational complexity
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