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Motivation

▌ Cognitive Radio Technology solves spectrum shortage problem 
by:
 intelligent spectrum sensing
 spectrum reuse planning
 opportunistic spectrum allocation
 learning the spectrum environment

▌ Cognitive Femtocell
 Radio environment measurements
 Dynamic spectrum allocations with frequency reuse
 Interference management of co-channel deployment
 Self organization network and Self optimization network
 Without co-ordinated deployment with macrocell
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Objectives

▌ Co-channel deployment of femtocell and macrocell
 The individual interference to the macrocell users caused by one 

femtocell may be in an acceptable range
 The aggregate interference from a large number of femtocells might 

exceed the acceptable range.

▌ Femtocell Throughput vs. Interference Mitigation
 Mitigation of the aggregate interference from femtocell base stations 

to the macrocell user (limiting Tx power of femtocell AP)
 Maximization of SINR for higher femtocell system throughput 

(maximizing Tx power of femtocell AP)

▌ Interference Tolerable Threshold Ith is analysed.
 Ith limits the FAP Tx power to avoid the interference at macro users. 
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System Model

▌[Interference] The individual and aggregate downlink interference from FAP to 
MUE is considered in co-channel scenario for macrocell and femtocells.

▌[Tx Power] Each FAP will calculate the estimated individual interference at each 
MUE from the own FAP. FAP controls the Tx power to make the estimated 
individual interference lower than Ith. 

▌[Ith broadcast] No interactive communication between MBS and FAP.
MBS transmits Ith to all FAPs by in the macrocell via a unidirectional broadcast.
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Formulations (1/2)

▌Tx Power and Interference
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Formulations (2/2)

▌Target SINR and Accept conditions
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Parameters used in Simulation Model

Parameter Name Value Description

Number of MUEs, N 8 MUEs are uniformly distributed in a macrocell.

Number of channels, N 8 All channels are shared by macrocell and 
femtocell systems.

Macrocell radius 500 [m] MBS is located at the center of the macrocell.

Femtocell radius 10 [m] The femtocell coverage Is not overlapped each 
other. 

Target SINR of macrocell 
system, Sn

m 10 [dB]

Target SINR of femtocell 
system, Skn

f 10 [dB] This value may decrease due to the FAP Tx 
Power limited by Ith.

MUE interference 
coefficient, 1

10 -4 -

FUE interference 
coefficient, 2

10 -

Propagation loss model, L
15.3 + 37.6 log10 d +  L wall  , 

L wall : 15 [dB],  : number of walls
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Static Interference Tolerable Threshold Analysis (1/2)

Number 
of FAPsInterference 

Tolerable 
Threshold (dB)

MUE accepted 
probability, Pm

All MUEs are accepted because the 
aggregate interference from FAPs is small 

enough by low Ith

One of MUEs is not accepted because the 
aggregate interference from FAPs is too large 

by high Ith.

Highest available 
Interference Tolerable 
Threshold Ith

• Guaranteeing Pm = 1 
for MUEs

• Achieving the 
highest SINR of FAPs 
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Static Interference Tolerable Threshold Analysis (2/2)

▌ Highest Available Interference Tolerable Threshold depends on the number of FAPs. 
The number of FAPs affects the aggregate interference to the MUE. 

▌ This figure is useful for the macrocell system configuration to make the aggregate 
interference at MUE in acceptable range.

Number of FAPs

Highest 
Available 

Interference 
Tolerable 

Threshold (dB)

▌ New FAPs may be installed and Some of FAPs may be turned off to save its energy . 
Therefore, the awareness of the exact number of active FAPs is difficult.

 Dynamic Interference Tolerable Threshold control mechanism is proposed.
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Proposed Algorithm
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Proposed Algorithm (Ith decreasing)

Aggregate Interference at MUE 
is high due to the large number 

of active FAPs.

Lower
Lower

Aggregate Interference at MUE 
becomes lower due to mitigated 
interference from affected FAPs.

Higher IthHigher IthLower Ith
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Proposed Algorithm (Ith increasing)

Aggregate Interference at MUE 
is low due to the FAP Tx Power 

is limited by low Ith.

Higher
Higher

Aggregate Interference at MUE 
becomes higher due to larger 

interference from affected FAPs.

Higher IthHigher IthHigher Ith
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State Chart

State Aggregate interference at MUE Estimated individual interference 
from one FAP to MUE

1 For at least one MUE
For all K FUEs and 

all N channels

2 For at least one MUE
For at least one channel 

in one FUE

3 For all N MUEs
For at least one channel 

in one FUE

4 For all N MUEs
For all K FUEs and 

all N channels
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Modified proposed algorithm
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▌ Algorithm activation in State 4 can be avoided by the 
feedback channel from FAP to MBS (the difference). 

▌ State 4 is only observed only when the number of FAPs is 
small enough and interference free scenario.

▌ As the alternative simple solution, range definition of Ith can 
avoid this new part.
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Dynamic Interference Tolerable Threshold Control

▌ The result of the dynamic control scheme is similar to the static analysis.

Dynamic Ith control 
Static Ith analysis

Number of FAPs

Highest 
Available 

Interference 
Tolerable 

Threshold (dB)

Dynamic control scheme has a good benefit because it doesn’t need the 
aware of number of FAPs. Even if the number of FAPs changes dynamically, 
the proposed scheme can adapt Ith to the appropriate value for active FAPs.
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Conclusion and Future work

▌Conclusion
 Highest available interference tolerable threshold depends on the 

number of femtocell access points.
 In the proposed scheme, Interference Tolerable Threshold is well 

controlled and the adaptation of highest available value is possible 
without needing knowledge about the number of femtocell access 
points in the vicinity of MUEs.

▌Future Works
 More flexible Interference Tolerable Threshold, e.g., Ith per channel 

resource used by macrocell user equipment.
 Integration with more realistic scenarios is necessary.

• Multiple spectrum allocation with additional decision to select the spectrum
• Multiple macro cell environment with macrocell Tx Power Control and 

inter-macrocell interference.
• Practical propagation model by user mobility, fading and shadowing.
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