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ABSTRACT 

 
 The reliability of second-order first-conjugate and sixth-
order first-conjugate cyclostationarity feature extraction is 
improved for a subset of digital signals through the 
incorporation of robust statistics. The improvement is 
reflected in reduced minimum SNR and/or reduced 
minimum observation time for given performance. Two 
robust estimation methods – of different computational 
complexity – are contrasted. In most cases, a trade-off 
between SNR and computational complexity can be made 
and 1-2 dB of further improvement is realized by using the 
more complex influence function in the robust estimator. 
For the signals and observation times considered here, both 
robust methods yield reliability equivalent to that of the 
classic estimators of cyclostationarity at significantly 
reduced observation times.  

1. INTRODUCTION 

Cyclostationarity is a good feature for signal classification 
and detection as extracting cyclostationarity features can be 
done with minimal pre-processing tasks, i.e., bypassing 
tasks that require a priori knowledge of channel 
characteristics and signal parameters often unavailable 
during detection and classification stages [1]. Additionally, 
the incorporation of robust statistics successfully reduces 
SNR requirements for second-order cyclostationarity feature 
extraction [2] and improves QPSK symbol timing estimates 
when SNR is greater than or equal to 0 dB [3].   

For some applications of interest, the most restrictive 
requirements for using cyclostationarity features is the long 
observation time required for reliable classification and 
detection. Previously published results using the second-
order first-conjugate Cyclic Temporal Moment Function 
(CTMF) to classify a subset of analog and digital signals 
indicate an SNR requirement of 5 dB and an observation 
time of 6000 symbols to achieve reliable second-order first-
conjugate cyclostationarity feature extraction [4].  

In this work, we use a robust estimator of second-order 
first-conjugate cyclostationarity and provide a direct 
comparison of observation time requirements with a classic 
estimator. All else being equal, the robust estimator needs 
only 10% of the observation time of the classic estimator to 

achieve reliable feature extraction at 5 dB. Additionally, we 
extend the robust estimator to a higher-order feature which 
can be used to further distinguish QPSK signals from 8PSK 
signals. As a result of the incorporation of robust statistics, 
higher-order cyclostationarity feature extraction also 
experiences a reduction in required observation times for a 
given level of performance. 

2. CYCLOSTATIONARITY DEFINITIONS 

The n-th order q-conjugate lag product of  x t , a generally 

complex signal normalized to have unit variance, is defined 
in (1) [7].  
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The symbol (*) denotes optional conjugation, such that there 
are q conjugations in total, and τ  is the delay vector. For all 
results reported here, τ 0 .  A signal exhibits n-th order q-

conjugate cyclostationarity if there exists an  , τ  pair, for 

0  , for which the lag product contains discrete spectral 
components [2]. Any such   is called a cycle frequency 

(CF). Given a finite observation of the signal  x t , the 

classic estimate of the spectral content of the lag product, 
the Cyclic Temporal Moment Function Estimate (CTMFE), 
can be found as in (2) [7].  
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While the ideal CTMF will be nonzero only at cycle 

frequencies, finite estimation errors will cause the CTMFE 
to contain nonzero spectral content at non-cycle frequencies. 
Additionally, in wireless communications, the available 
signal is often contaminated by environmental factors, e.g., 
additive noise, such that the lag product is no longer a 
function of only the desired signal  s t . In the AWGN 

model, the desired signal is contaminated by complex 
Gaussian noise  n t , producing the received signal  r t . 
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Robust techniques have been proposed to mitigate the 

influence of outliers in  r t  when trying to estimate the 

underlying statistics of the desired signal  s t [5]. As was 

demonstrated in previous work [3], robust techniques 
mitigate the SNR requirements on  r t  when estimating 

cyclic statistics, specifically the CTMFE, when SNR 
requirements are at or above 0 dB. In this work, we explore 
how robust techniques can reduce observation time 
requirements as well as SNR requirements.  

 To find the robust CTMFE, the data is first normalized 
by the robust estimate of scale, the Complex Median 
Absolute Deviation (CMAD) from the mean, rather than the 
traditional variance. The (CMAD) of an arbitrary complex 
signal  x t  is defined in (4).  

 
  1.2011 | ( ) |CMAD med x t  (4) 

 
An influence function ( )xY  can be used to modify the 

data such that samples are preferentially weighted based on 
their magnitude [3]. While many influence functions have 
been defined, we limit our present consideration to the two 
influence functions, 1( )xY  and 2 ( )xY , defined below.  
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The influence function described by (5) is commonly 
referred to as Huber’s function, and is widely accepted as an 
ideal choice for many applications. Note that the phase 
information of a complex signal is preserved by Huber’s 
function. The influence function in (6), on the other hand, 
can be computationally more efficient.  

The choice of a impacts the percentage of the data that 
will be modified according to (5) and (6). The value of a 
was determined heuristically, and is so far unique to the 
choice of influence function. The choice of a will be 
specified in the results section.  

Using an influence function, the choice of which is 
indicated by index m, the robust n-th order q-conjugate lag 
product is given in (7). 
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Finally, the robust CTMFE is found from the robust lag 
product as given in (8). 
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The term    1nCMAD Tc


 
is included for scaling and Fisher 

consistency, but given the nature of our classifier, it is not 
necessary, as will be shown in the next section. 

The digital signals of interest contain second-order 
first-conjugate cyclostationarity and therefore have a cycle 
frequency, which corresponds to the symbol rate, in the 
second-order first-conjugate CTMF. Figure 1 shows the 
classic and robust estimates, respectively, of the second-
order first-conjugate CTMFE of a QPSK signal in 2 dB 
SNR with an observation time of 3000 symbols. The robust 
estimate is found using Huber’s function with a = 1.  

 

 
 
Figure 1 The classic (top) and robust (bottom) second-order first-
conjugate CTMFE based on a QPSK signal in additive noise at 2 

dB SNR and an observation window of 3000 symbols. 
 

Observe that in the robust estimate the peak at the cycle 
frequency is prominent while in the classic estimate it is not. 

The prominence of the CTMFE at a cycle frequency in 
the robust estimate motivates the investigation of robust 
estimators to improve the reliability and practicality of using 
cyclostationarity features for detection and classification. 

3. STATISTICAL TEST FOR CYCLOSTATIONARITY  

Both the robust and classic CTMFE have spectral content at 
non-cycle frequencies, as seen in Fig. 1. At low enough 
SNR and short enough observation times, it is possible that 
the peaks at a non-CF appear as distinct as those at CFs. A 
statistical test was proposed in previous work as a solution 
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to determining the statistical significance of peaks in the 
CTMFE [6]. In summary, the statistic test is applied at each 
candidate cycle frequency   according to the procedure 
below. The outcome of the test is a test statistic which can 
be compared against a threshold for statistical significance. 
Justification for the test is provided elsewhere [6].  

The test procedure for CF presence, using the classic 

CTMFE, is as follows. Estimate    ,x n qR


0


, according to (2), 

where   is a candidate CF. From    ,x n qR


0


, create the row 

vector ĉ . 
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where ( )W s  is a window of length L, used for smoothing in 

the “spectral” domain. A 61-point Kaiser window is used. 
Using (10) and (11) assemble the covariance matrix 

estimate  ,n q .  
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The test statistic ,n q  is then found as follows. 
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The distribution of the test statistic at a non-CF follows a 
chi-squared distribution with two degrees of freedom 
regardless of the distribution of the underlying data set [6].  

Recall that the robust CTMFE in (8) is normalized by

  1nCMAD Tc  . Of particular interest here is to 

demonstrate that the normalization constant does not 

influence the distribution of the test statistic at non-CFs. 

Consider the following reorganization of ,( )x n qR 0
 .  
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The robust cumulant estimate c  is expressed as follows  
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The robust estimates of the conjugated ( *)
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(17) 

and the robust covariance estimator ,n q  in (18) follows. 
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Finally, the robust test statistic ,n q  in (19) results.  
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Using basic rules of algebra and the property that 

  1 1 1kA k A
   , where k is a constant and A is a square 

matrix, the final robust test statistic is seen to be 

independent of the scaling constant   1nCMAD Tc  , and 

given by the reduced expression in (20). 
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Since the scaling constant does not appear in the final 
test statistic in (20), the only impact of applying the Huber 
function is a change in the distribution of the data set, but 
this change does not introduce cyclostationarity. Therefore, 
at non-CFs the robust test statistic also follows a chi-
squared distribution with two degrees of freedom [3]. The 
knowledge of the distribution of the test statistic at non-CFs 
can be used to set tolerable false alarm thresholds for either 
method – classical or robust – of estimating the CTMF. 

4. SIGNALS OF INTEREST 

Second-order first-conjugate and sixth-order first-conjugate 
cyclostationary features can be used to distinguish a subset 
of analog and digital signals. Particularly, the absence or 
presence of second-order first-conjugate cyclostationarity 
can be used to distinguish SSB and DSB signals from 
MPSK signals, as was done in previous work [4]. The 
analog signals, in particular, do not exhibit second-order 
first-conjugate cyclostationarity, while the digital signals do.  

Further, sixth-order first-conjugate cyclostationarity can 
be used to distinguish QPSK signals from 8PSK signals, as 
indicated in previous work [7]. Since we have shown that 
the behavior of the test statistic at non-CFs is unaffected by 
the incorporation of robust statistics, we will not study the 
entire classification problem here, but rather focus on how 
robust statistics improve the reliability of extracting 
cyclostationarity features. The classification problem is only 
one example of when cyclostationarity features are useful.  

 Feature extraction will be done at baseband, such that 
the (baseband) signals ( )r t  at the input of a receiving filter 

are of the form,  

   ( ) exp 2 ( ) ( )cr t j f t s t n t      (21) 

where cf  is the carrier frequency offset and   is the 

random phase offset. The signal of interest is ( )s t  and ( )n t  
is uncorrelated complex zero mean Gaussian noise. The 
entire received signal is then filtered such that the noise is 
no longer white.  

 The digital signals of interest in this work are BPSK, 
QPSK, and 8PSK signals. The signals are RC-pulse shaped 
with a pulse shape parameter of 0.25. The symbol rate is 
10,000 symbols per second, and the signal is oversampled 
by a factor of 10 such that the sampling rate is Fs = 100 
kHz. The noise bandwidth of the receiver is 0.25Fs, the 
phase offset is a uniform random variable, and the carrier 
frequency offset is 0.01c sf F  . 

  All of these digital signals have a second-order first-
conjugate CF corresponding to their symbol rate [4]. 

Additionally, BPSK and QPSK signals both have a sixth-
order first-conjugate CF corresponding to 4 cf  [7].  

5. SIMULATION RESULTS  

First, we compare the behavior of the classic and robust test 
statistic when calculated at the known second-order first-
conjugate cycle frequency of 10 kHz. The threshold for 
statistical significance was set at 13.814, which corresponds 
to a false alarm rate of 0.1% [8].  

 In each trial, a long version of each signal: BPSK, 
QPSK, and 8PSK - is generated and then segmented based 
on the observation time of interest. Based on the same 
observation data, two robust test statistics and a classic test 
statistic are calculated. The robust test statistics are 
calculated using the influence functions in (5) and (6). 

The resulting test statistics are compared to the 
threshold for statistical significance. If the test statistic 
exceeds the threshold, the test successfully detected the 
second-order first-conjugate cyclostationarity; otherwise the 
test failed to detect the cyclostationarity. The detector is not 
given any information about SNR or the phase offset, but is 
provided with the location of the cycle frequency.  

 A choice of a = 1 in the Huber influence function (5) is 
used based on recommendations in the literature [3]. A 
choice of a = 1.2011 is used for the second influence 
function 2 ( )xY . This choice of a reflects the best choice for 

maximizing detection rates based on preliminary 
experimental results which considered a range of 1≤a≤2. 
This specific value of a was investigated because it appears 
as the normalization constant in (4); however, it is not 
guaranteed to be the optimal choice.  

 Figure 2 illustrates the probability of detecting the 
cyclostationarity feature in each of the digital signals when 
the observation window is 1500 symbols. 

 
Figure 2 Detection curves for the robust (using 1( )xY   and 2( )xY ) 

and classic statistical tests of second-order first-conjugate 
cyclostationarity. The observation time is 1500 symbols and the 

threshold for statistical significance is 13.814. 

x 
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Observe that the robust detector using 1( )xY  achieves 

reliable detection in all three cases at 4 dB SNR. The robust 
detector using 2 ( )xY  achieves reliable detection in all three 

cases at 5 dB SNR. However, the classic detector has a 
much higher SNR requirement of at least 13 dB.  

 Note also in Fig. 2 that the robust detection curves are 
much steeper than the classic detection curves, which 
indicates that an increase in SNR yields better performance 
more quickly when using the robust estimator than when 
using the classic estimator of the CTMF.  

The reduced SNR requirements enjoyed by the robust 
estimators, as compared to the classic estimator, vary as a 
function of observation time. Figure 3 illustrates the 
relationship between observation time and minimum SNR 
required for reliable detection; the notation (x;y)% reliability 
is used to indicate >x% probability of detection at <y% false 
alarm probability. The classic detector has significantly 
worse detection rates than either of the robust detectors; 
therefore it was not possible to plot the minimum SNR 
requirements for short observation times since they 
exceeded the maximum simulated SNR of 15 dB. 

 
Figure 3 Minimum SNR requirements as a function of 

observation time for reliable detection of second-order first-
conjugate cyclostationarity. The robust (solid) curves represent 
(99;0.1)% reliability while the classic (dashed) curves represent 

(90;0.1)% reliability. 
 

In Fig. 3, the reliability of the classic detector is only at 
least 90% for the indicated SNR and observation time, 
whereas the robust detectors have a detection reliability of at 
least 99% for all plotted SNR and observation times.  

The robust test statistic associated with using the 
influence function 1( )xY  for all three digital signals of 

interest is statistically significant in 99% of the trials for an 
observation time of 400 symbols and an SNR of at least 7 
dB. The robust test statistic associated with using the 
influence function 2 ( )xY  for all three digital signals of 

interest is statistically significant in 99% of the trials for an 
observation time of 400 symbols and an SNR of at least 9 
dB. The classic test statistic is not statistically significant for 
even 90% of the time when given an observation time 

almost 4 times as long – 1500 symbols – and an SNR of 9 
dB. 

As observed in Fig. 3, for the studied observation times, 
the reduction in SNR requirements when using influence 
function 1( )xY  is at least 5 dB for all signals. Moreover, at 

10 dB, the robust estimator needs less than 20% of the 
observation time required by the classic estimator while 
providing better detection. In exchange for using the less 
computationally complex influence function 2 ( )xY , the 

SNR requirements are reduced by at least 4 dB. In general, 
the more complex influence function yields an additional 1 
dB improvement in comparison to the less complex 
influence function. 

Previously published results report that a 6000 symbol 
observation time and an SNR of 5 dB is needed to achieve 
reliable detection of cyclostationarity when using classic 
estimation techniques [2]. The robust estimator using 1( )xY  

achieves reliable detection for an observation time of 600 
symbols at SNR of about 5 dB. Therefore, there exist some 
cases where the robust estimator, all else being equal, only 
needs 10% of the data required by the classic estimator of 
cyclostationarity. This reduction in observation time 
requirements improves the practicality of using 
cyclostationarity feature-based detectors and classifiers.  

 While not explored in depth here, the results in Figs. 2 
and 3 along with the visual improvements in the CTMFE 
seen by using the robust estimator in Fig. 1 suggest that the 
use of robust estimators would improve the performance of 
a blind statistical test, where the CF is unknown and a 
search over the CTMFE is necessary to determine candidate 
cycle frequencies. Previous results [2] already have shown 
that for long observation times blind classification is 
possible, and it is likely that reliable blind classification can 
be done for shorter observation times as well by using 
robust estimators of cyclostationarity.  

In a similar fashion to the second-order first-conjugate 
cyclostationarity detection trials, trials were conducted to 
compare the statistical significance of the sixth-order first-
conjugate classic and robust test statistic at known cycle 
frequencies. In these trials, only BPSK and QPSK signals 
are considered, as 8PSK signals do not contain discrete 
spectral content in their CTMF. The robust test statistics and 
classic test statistics are again computed based on the same 
data set. The same threshold of 13.814 is used to determine 
statistical significance. A choice of c = 1.8 was used for the 
influence function 2 ( )xY  as this consistently yielded the 

best detection rate in preliminary trials. 
The probability of detection versus SNR curves are 

shown in Fig. 4. The observation time is 1000 symbols. In 
both the robust and classic case, there is considerable 
difference in SNR requirements for BPSK and QPSK 
signals. When using influence function 2 ( )xY  the use of 

robust estimation techniques alleviates SNR requirements 
by only 1-2 dB. 

x 
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Figure 4 Detection curves for the robust and classic statistical tests 
of sixth-order first-conjugate cyclostationarity. Observation time 

1000 symbols; threshold for statistical significance is 13.814. 
 

Using the more complex influence function 1( )xY , it is 

possible to achieve 2-3 dB improvements when estimating 
the cyclostationarity features of QPSK signals. Interestingly, 
there is little additional performance gain for BPSK signals. 

The SNR improvements, in the sixth-order first-conjugate 
case are less dependent on the observation window – 
compare Figs. 3 and 5 – than in the second-order first-
conjugate case.  

 
 

Figure 5 Minimum SNR requirements as a function of observation 
time for (99;0.1)% reliable detection of second-order first-

conjugate cyclostationarity. 
 

The robust estimator consistently enjoys a 1-2 dB 
improvement across observation window size. Unlike 
before, the plotted curves indicate the minimum 
requirements for (99;0.1)% reliability in both cases. In Fig. 
5 only the results for the less complex influence function 

2 ( )xY are plotted. In the case of BPSK, the two reliability 

lines associated with ( )m xY , for m = 1 and m = 2, are 

equivalent. For all QPSK cases, the more complex influence 
function provides an additional improvement of 1 dB.  

While the improvements at the higher-order 
cyclostationarity feature are not as profound, it is 
encouraging that robust techniques continue to provide 
improvement.  

Since this was, to the best of our knowledge, the first 
investigation into robust techniques for higher-order 
cyclostationarity, it is possible that a better choice of a or a 
better choice of the influence function could provide more 
performance enhancement. Further investigation is needed 
to understand how well the robust estimator improves 
overall classifier performance at shorter observation times 
with the additional challenge of unknown CF location(s). 

6. CONCLUSION 

We have presented a novel application of robust 
estimators to mitigate the long observation time 
requirements of cyclostationarity feature extraction.  

All else being equal, for an observation time of 1500 
symbols, the robust estimator of second-order first-
conjugate cyclostationarity has an SNR requirement which 
is at least 7 dB less than for the classic estimator. 
Additionally, the robust estimator of second-order first-
conjugate cyclostationarity enjoys (99;0.1)% reliable 
classification at an SNR of about 5 dB and an observation 
time of 600 symbols, while the classic estimator needs an 
observation time of 6000 symbols to achieve (99;1)% 
reliable classification at 5 dB. For this case, the robust 
estimator alleviates the observation time requirements by a 
practically significant 90%. 

  While not as dramatic, using the robust estimator of 
sixth-order first-conjugate cyclostationarity in BPSK and 
QPSK signals consistently reduced SNR requirements  by 
1-2 dB or observation time requirements by 35 to 50%.  
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