Reducing Observation Time for Reliable Cyclostationarity Feature Extraction

Amy C. Malady and A.A. (Louis) Beex

DSPRL – Wireless@VT – ECE Department Blacksburg, VA 24061-0111

SDR'11-WInnComm 1 DEC 2011

Outline

Problem Statement and Motivation

Background Material

- Cyclostationarity definitions
- Robust statistics definitions
- Feature extraction method

Simulation Results

- Second-order first-conjugate observation time requirements
- Sixth-order first-conjugate observation time requirements Conclusion

Problem Statement and Motivation

- Cyclostationarity
 - interesting feature for detection and classification
 - many digital signals are inherently cyclostationary

[Gardner-Napolitana-Paura 2006]

- feature extraction with minimal pre-processing

to be addressed here

[Dobre-Abdi-Bar-Ness-Su 2006]

- Promising reduction in SNR requirements shown when using robust statistics [Malady-Beex 2010]
- Drawback: long observation time

Research Goal

Reduce observation time requirements for estimating cyclostationarity features through incorporation of robust statistics

Background Material

Cyclostationarity Definitions

DSP Research Laboratory

Cyclostationarity Estimate

Cyclostationarity Estimate in the presence of noise

Wireless

ech

Robust Statistic Definitions

Improvements from using the Robust CTMFE

Robust $\Psi_{m=1}(x)$

BPSK (a) SNR = 0 dB

Classic

Statistical Test for Presence of Cycle Frequencies

Robust test vs. Classic Test

*Two methods to identify candidate CFs: local max and global max.

Local max criteria: |CTMFE| at least ~4 times larger than "nearest neighbors."

(10000 bins in FFT, used nearest ~400 neighbors)

Wireless

Observation Time Requirements

13

Simulation Results: Second-Order First-Conjugate Cyclostationarity Detection

Wireless

Simulation Results: Second-Order First-Conjugate Cyclostationarity Detection

Sample rate = 100 kHz Symbol rate = 10 kHz

The robust (solid) curves represent (99;1)% reliability; the classic (dashed) curves represent (90;1)% reliability.

Simulation Results: Sixth-Order First-Conjugate Cyclostationarity Detection

Simulation Results: Sixth-Order First-Conjugate Cyclostationarity Detection

For classic and robust (99;1)% reliable detection of sixth-order first-conjugate cyclostationarity.

- Use of robust statistics reduced observation time and/or improved reliability for second-order first-conjugate CS feature detection
- Sixth-order first-conjugate CS feature detection also quicker and/or more reliable when using robust statistics
- Compared performance of two different influence functions
 - Performance vs complexity trade-off
- Applications in detection and classification problems
 - Dynamic spectrum access
 - Monitoring

Questions?

19

References

- [1] W. Gardner, A. Napolitano, and L. Paura, Cyclostationarity: half a century of research, Signal Processing 86 (4), pp. 639–697, 2006.
- [2] A. C. Malady and A. A. (Louis) Beex, "AMC Improvements from Robust Estimation", Proc. GLOBECOM, pp. 1-5, 2010.
- [3] T. Biedka, L. Mili, and J. H. Reed, "Robust estimation of cyclic correlation in contaminated Gaussian noise", Proc. 29th Asilomar Conference on Signals, Systems and Computers, pp. 511-515, Pacific Grove, CA, 1995.
- [4] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "Cyclostationarity based blind classification of analog and digital modulations," Proc. IEEE MILCOM, Washington DC, USA, 2006.
- [5] P. J. Huber, Robust Statistics, Wiley, 1981.
- [6] A. V. Dandawade and G. B. Giannakis, "Statistical tests for presence of cyclostationarity," IEEE Trans. SP, vol. 42, pp. 2355-2369, 1994.
- [7] W. A. Gardner, Cyclostationarity in Communications and Signal Processing. New York: IEEE Press, 1993.
- [8] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, Don Mills, Ont., Canada: Addison-Wesley, 1989.

