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Problem Statement and Motivation
3

- Cyclostationarity- Cyclostationarity 
- interesting feature for detection and classification
- many digital signals are inherently cyclostationary- many digital signals are inherently cyclostationary

- feature extraction with minimal pre-processing
[Gardner-Napolitana-Paura 2006]

p p g

- Promising reduction in SNR requirements shown 
[Dobre-Abdi-Bar-Ness-Su 2006]

g q
when using robust statistics 

- Drawback: long observation time
[Malady-Beex 2010]

Drawback: long observation time 
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to be addressed here
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Reduce observation time requirements 
for estimating cyclostationarity featuresfor estimating cyclostationarity features
through incorporation of robust statistics 
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Background MaterialBackground Material
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Cyclostationarity Definitions
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Cycle frequency when 
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Cyclostationarity Estimate
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caused by a finite 
observation set
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BPSK
*CF = 6000/48000 = 0.125CTMFE nonzero at 

non-cycle frequencies



Cyclostationarity Estimate in the presence of noise
8

BPSKBPSK
NO AWGN SNR = 5 dB

AWGN further 
degrades ability to 

estimate 
cyclostationaritycyclostationarity
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Cycle frequency 



Robust Statistic Definitions
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Improvements from using the Robust CTMFE
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Robust  1 x Classic 1m x

distinct CF

CF buried in noise
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BPSK @ SNR = 0 dB



Statistical Test for Presence of Cycle Frequencies
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1. Search for a peak1. Search for a peak
SSB BPSK

|C
TM

F|

|C
TM

F|

2. Calculate n q [Dandawade-Giannakis 1994]
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,n q
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Robust test vs. Classic Test
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Estimate CTMF Estimate robust CTMF

Identify candidate CFs*

(l l f |CTMFE|)

Identify candidate CF*

( l b l f |CTMFE|)
At least one peak No peak

Calculate

(local max of |CTMFE|) (global max of |CTMFE|)

Calculate 
No cyclostationarity 

CompareCompare

No cyclostationarity
2,1

2,1
CompareCompare 

2,1   2,1  
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*Two methods to identify candidate CFs: local max and global max. 
Local max criteria: |CTMFE| at least ~4 times larger than “nearest neighbors.” 

(10000 bins in FFT, used nearest ~400 neighbors)



13

Observation Time RequirementsObservation Time Requirements
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Simulation Results: Second-Order First-Conjugate 
Cyclostationarity Detection
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Cyclostationarity Detection
Observation time = 1500 symbols

Sample rate = 100 kHz p
Symbol rate = 10 kHz
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Simulation Results: Second-Order First-Conjugate 
Cyclostationarity Detection
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Cyclostationarity Detection
Sample rate = 100 kHz 
Symbol rate = 10 kHzy

Th b t ( lid) t (99 1)% li bilit
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The robust (solid) curves represent (99;1)% reliability; 
the classic (dashed) curves represent (90;1)% reliability.



Simulation Results: Sixth-Order First-Conjugate 
Cyclostationarity Detection
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Cyclostationarity Detection
Observation time = 1500 symbols

Sample rate = 100 kHz p
Symbol rate = 10 kHz

Note: 8PSK doesNote: 8PSK does 
not exhibit 6,1* 
cyclostationarity
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Simulation Results: Sixth-Order First-Conjugate 
Cyclostationarity Detection
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Cyclostationarity Detection

Sample rate = 100 kHz 
Symbol rate = 10 kHz

BPSK: m = 1 and m = 2 identical
QPSK, m=1 (not shown) has 1 dB improvementSymbol rate  10 kHz Q , ( ) p

Note: 8PSK does 
not exhibit 6,1* 
cyclostationarity

For classic and robust (99;1)% reliable detection of sixth order
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For classic and robust (99;1)% reliable detection of sixth-order 
first-conjugate cyclostationarity.



Conclusions
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U f b t t ti ti d d b ti ti d/ i d- Use of robust statistics reduced observation time and/or improved
reliability for second-order first-conjugate CS feature detection

- Sixth-order first-conjugate CS feature detection also quicker and/or
more reliable when using robust statistics

- Compared performance of two different influence functions
- Performance vs complexity trade-offe o a ce vs co p e y ade o

- Applications in detection and classification problems
D i t- Dynamic spectrum access

- Monitoring
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Questions?Questions?
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