Model-Based Spectrum Management

Making Spectrum Management Agile and Enabling Dynamic Spectrum Access (DSA)

John A. Stine
November 2011
Purpose

■ Familiarize you with
 – Spectrum consumption modeling
 – Using models to improve spectrum management
 – Using models to convey DSA policy

■ Inspire you
 – To want to learn more about Model-Based Spectrum Management (MBSM)
 – To download and review the MBSM Modeling Manual
 ■ http://www.mitre.org/work/tech_papers/2011/11_2071/
 – To contribute to making it better
 – To assist in making it a standard
The Vision

Spectrum consumption modeling becomes the core of a very dynamic spectrum management capability serving as a loose coupler among spectrum management (SM) systems and radio frequency (RF) systems and devices

Enables Innovation #6 of the 10 Most Wanted Wireless Innovations: Flexible Regulatory Framework for Temporary, Cooperative and Opportunistic Access
What is a loose coupler?

- A thing that exists at the intersection of a large set of systems that allow them to interoperate and to be integrated

- A key component of innovation and composable capabilities
 - Layers enable local innovation
 - Loose couplers enable integration
 - Bowties enable composability
Well known examples of loose coupling

- Benefits
 - Integration
 - Interoperability
 - Innovation
Spectrum Consumption Modeling as a Loose Coupler

Network Operations and Spectrum Management

Spectrum Management
Diversity

SCM
(loose coupler)

Spectrum Use
Diversity

RF Coexistence and Dynamic Spectrum Access

Channel configuration
DSA policy

Innovation

Standardization
What is the problem with current approaches?

RF system characteristics
What constitutes interference

Knowledge is created in the planning process but not captured in the output

Channel assignments do not convey the consumption of spectrum or what constitutes compatible reuse.

Consumption and compatibility is based on the analysis methods embedded in tools and the judgment of the spectrum manager.

Analysis methods vary from tool to tool and understanding of intent and judgment vary from manager to manager.

The output is a decision.

Managers must study the problem but the thought processes of the study are lost in the output.
Why is this a problem?

A hard problem that results in managers seeking persistent solutions

- RF system characteristics
 - What constitutes interference
- Knowledge is created in the planning process but not captured in the output

Tool 1

- Models of terrain and propagation
- How the systems will be used

Tool 2

- Models of terrain and propagation
- Must know how the system is being used
- To determine the effect of a channel assignment, spectrum managers must know the intent of the spectrum user and the judgment of the managers that made the decisions.

Output is just a decision

Channel Assignments

Must know the RF system characteristics and what constitutes interference

A hard problem that results in managers seeking persistent solutions
How MBSM is different

RF system characteristics
What constitutes interference

Knowledge in the model

Spectrum Consumption Model

How the systems will be used

Tool 1

Models of terrain and propagation

Tool 2

Models of terrain and propagation

The Spectrum Consumption Model contains the intent of the user and the judgment of the spectrum manager. It is complemented with a specified approach to compute compatibility.

Spectrum Consumption Models convey the consumption of spectrum and what constitutes compatible reuse
Why add modeling?

- Captures and allows sharing of judgment and intent
- Enables distribution of the spectrum management problem
- Changes nature of spectrum management
 - From seeking persistent solutions to one seeking dynamic solutions
 - Greater spatial and temporal resolution
- Enables creation of algorithms for improved spectrum management
 - Assessing compatibility of uses
 - Automation of channel assignment
 - Searching for suitable spectrum
- Supports Dynamic Spectrum Access
 - Models are policy
 - Models are machine readable
 - Provides means to manage DSA systems
- Conceals sensitive details of equipment and its use while still revealing spectrum consumption for spectrum management tasks
Proposed modeling constructs

- Maximum power density
- Spectrum mask
- Underlay mask
- Power map
- Propagation map
- Intermodulation masks
- Platform
- Location
- Start time
- End time
- Minimum power density
- Protocol or policy

Can capture unique characteristics of spread spectrum systems
Can capture antenna effects
Can capture environmental effects
Captures susceptibility to intermodulation
Enable greater resolution in spectrum management
Can capture behaviors that enable compatible reuse

Not data about a system but used to build a model of spectrum use
Models are information!
Combining constructs into models

Modeling constructs are found in transmitter and receiver models and in system and collection headings.

Proposal provides an XML schema for this type of model construction.
Model and collection function

■ System Model
 - Constructs in heading define the boundaries of system operation
 - Lists transmitter and receiver models with more limiting constructs

■ Collective Consumption Listing
 - Constructs in heading define the limits to which the collection is complete
 - Lists systems, transmitters and receivers of spectrum consumers that consume spectrum within the limits of the collection

■ Spectrum Authorization Listings
 - Constructs in the heading define the limits of the overall authorization
 - The lists of system, transmitter, and receiver models identify available spectrum

■ Spectrum Constraint Listings
 - Constructs in the heading define the limits of the collection of constraints
 - The lists of system, transmitter, and receiver models identify existing uses of spectrum that have precedence
Dynamic spectrum management

1. Request spectrum
2. Spectrum manager (SM) sends authorization listing
3. Mission planner creates plan and the necessary spectrum consumption models (SCM)
4. Mission level SCM sent to the SM as a request
5. Mission level spectrum use granted
6. SM identifies reuse opportunities
7. Potential users of spectrum notified of opportunities with a collective listing
8. Network manager (NM) identifies reuse and requests spectrum using a SCM
9. SM reviews NM’s request and authorizes use
10. NM informs cognitive radios of policy using SCM
Conveying Policy to DSA Systems

End-to-end direct authorization
Spectrum Management System

<table>
<thead>
<tr>
<th>Database of active models</th>
<th>Spectrum Manager</th>
</tr>
</thead>
</table>

Dynamic Spectrum Access System

<table>
<thead>
<tr>
<th>Systems Manager</th>
</tr>
</thead>
</table>

Direct Authorization
A collection of models that define spectrum that may be used

End-to-end dynamic authorization
Spectrum Management System

<table>
<thead>
<tr>
<th>Database of active models</th>
<th>Spectrum Manager</th>
</tr>
</thead>
</table>

Dynamic Spectrum Access System

<table>
<thead>
<tr>
<th>Systems Manager</th>
</tr>
</thead>
</table>

Dynamic Authorization
A collection of two types of models:
1. Models that define in general spectrum that may be used
2. Models that constrain that use

Hybrid authorization
Spectrum Management System

<table>
<thead>
<tr>
<th>Database of active models</th>
<th>Spectrum Manager</th>
</tr>
</thead>
</table>

Dynamic Spectrum Access System

<table>
<thead>
<tr>
<th>Systems Manager</th>
</tr>
</thead>
</table>

Hybrid Authorization
A collection of models that define in general spectrum that may be used and models that constrain that use.
Dynamic Authorization

Example of a primary system with a single transmitter and a single receiver

This transmitter would interfere

These transmitters will not interfere

This receiver cannot hear

This receiver can receive

In natural language or as a nested if-then-else statement how would you write the policy?
Dynamic Authorization - 2

Modeling the transmitter and receiver pair

Components used to model a simplex radio link

<table>
<thead>
<tr>
<th>Model Constructs</th>
<th>System Heading</th>
<th>Transmitter</th>
<th>Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power Density</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Spectrum Mask</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Underlay Mask</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Propagation Map</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Power Map</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Intermodulation Mask</td>
<td></td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Platform Name</td>
<td></td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td>R - Point</td>
</tr>
<tr>
<td>Start Time</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>End Time</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Minimum Power Density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol or Policy</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

R - Required, O - Optional, T - Typical (To provide a refined definition)

Spectrum consumption models are policy!
Protocol or Policy- 1

■ Rationale
 – Enables finer resolution sharing through behaviors at components
 ■ Means to specify how spectrum sensing may be used to inform spectrum use decisions
 ■ Means to exploit reuse opportunities that come from knowing the specific behaviors of incumbents
 – Protocols specify specific access mechanisms while policies specify conditions for use – policy driven systems can choose their own access mechanism among themselves

■ Data Structure
 – Name plus parameters

■ Units
 – Units of parameter values are specified as part of the named protocol or policy definition

■ Dependencies
 – Apply to spectrum in the larger model
 – DSA systems must be rated for the different policies and protocols to use them
A protocol example

- **The scenario**
 - Multiple co-located MANETs with one a primary user
 - Goal is to ensure primary users get precedence and secondary users can use whatever spectrum the primary users do not use

![Diagram showing a network with primary users and contending radios](image)
A protocol that enables sharing

- Synchronous Collision Resolution (SCR) – a slotted protocol using signaling to arbitrate access
A protocol that enables sharing

- Differentiating primary and secondary use

<table>
<thead>
<tr>
<th>P</th>
<th>E</th>
<th>Broadcast</th>
<th>Data 1</th>
<th>Data 2</th>
<th>Data 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SM → Priority Phase → EI 1 2 3 4 5 6 7 8 9 ...

Large circle shows range of signals
Pink circles remain contenders
Grey circles lost the contention

Overlapping circles show coverage of echo signals
Echo signals defeat more contenders

Approved for Public Release 11-4572. Distribution Unlimited

© 2011 The MITRE Corporation. All rights reserved.
The Result

- The primary always get precedence in access
- Secondary users can fill in the spaces around the primary user

Filled circles are the surviving contending radios
Secondary contenders are well separate from the primary contender
Specifying the Protocol

Name Parameters

<SCR PS, 0.05, 0.035, 2>

Signal Slot Size

Transmission Slot Duration

Signal Duration
Policy Example

- A policy is a generalized behavior with no restriction on the protocols used by the system for arbitrating its own access.

- Simple sensing
 - Sense the channel for a particular power threshold, p_{th}
 - A duration of non-use indicates availability, t_f
 - A sensing period for verifying availability, t_s
 - An abandonment time, t_a

- Policy Description

\[
\left\langle Simple_Sensing, p_{th}, t_f, t_s, t_a \right\rangle
\]
What we want you to do

Support the development of a spectrum consumption modeling standard and consider its use for spectrum use databases and for specifying DSA policy.

The “Modeling and Computation Manual” is a first attempt to create a standard and is available at http://www.mitre.org/work/tech_papers/2011/11-2071
Conclusion

- Model-Based Spectrum Management has the potential to greatly improve spectrum management and to liberalize access to spectrum
- MBSM enables the management of DSA systems
- MITRE has made a first attempt to create a standard for modeling which we want you to review and try to make better

http://www.mitre.org/work/tech_papers/2011/11_2071/

- You can join our collaboration workspace by sending me a request

jstine@mitre.org
Backup
General process of computing compatibility

- Determine if uses will overlap in time and spectrum
- Determine the constraining points (the point of primary operation and the point of secondary operation that most restrict the secondary user)
- Compute the allowed transmit power of the secondary user
Determining compatible reuse

Signal to interference margin, PM_{underlay}

Bound on the transmitter power

Allowed secondary power density at 1 meter in the constraining point direction

Attenuation from the secondary transmitter to the constraining point

Distance to the constraining point

Constraining point

Secondary transmitter

Primary transmitter

$PM_{\text{r_prop}}(d_1)$

$PM_{\text{prop}}(d_2)$

$PM_{\text{masks}} = 0 \text{dB}$
As an example, imagine modeling the spectrum consumption of a UAV that flies along the path shown above.
Without a model, a secondary user does not have complete knowledge of the UAV’s use

To avoid interference, secondary user assumes UAV’s location may be anywhere within a larger area that fully captures the actual path
By using a finer model, the path can be covered by a series of smaller cylinders, each covering 20 minutes of the route.

Total time = 5 hrs
Value of Modeling – an Example

- To determine consumption, we must integrate over time, space, and spectrum.
- The volume of the region that experiences interference changes depending on the frequency.

Volume: 1.931e+015 m3

Volume: 5.119e+012 m3
Value of Modeling – an Example

Computing the consumptions of both models, we can see that the total consumption of the refined model is ~1/3 that of the coarse model.
Key differences in future tools

Today

Data → Tools → Decision

Judgment

The judgment of the spectrum manager is lost after the decision is made

Proposed

Data → Tools → **Models** → Tools → Decision

Judgment & Intent

The judgment of the spectrum manager and the intent of the user is embedded in the model

The models enable algorithms to perform hard spectrum management tasks