www.rdlcom.com

Improving Robustness, Throughput, Latency and Channel Awareness in Software Defined Radios

Nov 2011

Octavian Sarca, PhD
Leigh Chang
Redline Communication Inc.

Overview

- Common wireless communication systems performance targets:
 - + Throughput
 - Latency
 - Link Reliability: availability, robustness against interference
- Extra SDR challenges
 - Cannot take advantage ASIC speeds
 - Be cognitive and adapt with the channel
- Is there a secret sauce that we can use?
- Yes! The Automatic Repeat reQuest (ARQ) mechanisms
- Counterintuitive because we all "know" ARQ increases latency significantly and decreases throughput. But is it true?

Common ARQ schemes

WiFi ARQ

- Compensates for varying signal strength but also collisions
- Essential for good operation
- Stop-and wait no new packet sent until ACK received for current
- + Selective Repeat for 802.11n aggregated packets
- Uses multiple retries on different modulations → high latency → typically delay sensitive services (e.g. voice) use a scaled down retry scheme
- The retries may worsen congestion

TCP ARQ

- Get a single ACK for a number of sent of packets (TCP window)
- Selective Repeat ARQ
- Multiple retries
- High latency because of ACK latency
- + Designed to guarantee delivery even under network congestion
- Not designed to deal with random PHY packet loss

Common ARQ schemes

- 802.16d (WiMAX-d)
 - + ARQ was considered non-important → not mandatory
 - + ARQ used a TCP-like scheme → very high latency
 - + TCP ARQ could kick in before 802.16 ARQ → a lot of wasted bandwidth
 - Nobody used ARQ → larger link margins
- LTE and 802.16e (WiMAX-e)
 - + Lessons learned from 802.16d:
 - ARQ is important for link budget
 - ARQ feedback must be fast
 - + Two-tier ARQ:
 - Hybrid ARA (HARQ)
 - Fast feedback
 - Same modulation
 - Standard, TCP-like ARQ

New ARQ scheme

- Immediate ARQ feedback
 - + For DL, schedule ARQ feedback in the UL in the same frame
 - + For UL, BS knows immediately anyway
- Selective Repeat
 - + No wasted bandwidth
- Single retry
 - + At most one extra frame
- Use lower modulation and/or coding to ensure delivery
 - + Improves PER by >10⁴

Retry Modulation: same or lower?

Lower modulation or coding → >10⁴ BER improvement

Is latency really an issues with ARQ?

- YES, if using multiple retries (WiFi scheme)
 - + 10 retries means 10x the latency
- YES, if there is no explicit NACK (WiFi scheme)
 - Transmitter waits for time-out to infer packet did not arrive at destination
- YES, if not using fast feedback (TCP-like scheme)
 - + Selective-repeat is nice but let's get that feedback immediately
- NO, if done properly, e.g. in a TDD system
 - Send packet in frame K, get feedback in the same frame
 - + If needed retry in frame K+1 than stop
 - Guarantee retry success by lower modulation and/or coding

Latency depends on implementation

Measurement	WiMaxD	WiMaxE/LTE	Redline
Average DL delay no ARQ	2 frames	2 frames	0.5 frames
Average DL delay with ARQ	15-20 frames	6 frames	1.5 frames
Average UL-RTP delay no ARQ	3 frames	3 frames	1.5 frames
Average UL-RTP delay with ARQ	15-20 frames	6 frames	2.5 frames

WiMax frame size: 5/10/20ms

LTE Frame size: 2ms

Redline frame size: 2...20ms

Can ARQ improve throughput?

- YES, if combined with adaptive modulation:
 - Single retry on a lower modulation that boosts packet error rate (PER)
 - Push principal modulation and coding as high as possible relying on retries to cover for increased PER
 - Switch to a lower modulation and coding rate only when the bandwidth loss to retries exceeds the bandwidth that would be lost if switching to a lower PHY modulation and coding, i.e. if:

$$\mathsf{T}_1 \cdot (1 + \mathsf{PER}_1 \cdot \mathsf{T}_2) > \mathsf{T}_3$$

Where:

 T_1 = time it takes to send the packet at main modulation and coding

 T_2 = time it takes to send the packet at retry modulation and coding

T₃ = time it takes to send the packet at a lower modulation and coding

Can ARQ improve throughput?

Yes, by allowing a higher PHY rate!

Can ARQ improve link reliability

- YES, because it can be more aware of the channel
 - + PER on main modulation and coding can run > 1% and still maintain overall PER $< 10^{-6}$ dues to the retry
 - \rightarrow can easily sense when link worsens way before it becomes critical
- YES, because it can eliminate random over-the-air errors

Do we really need such complex ARQ?

- Why not use a better channel coding?
 - For same reasons file systems have error recovery mechanisms despite having Error Correcting Codes (ECCs) at physical level
- TCP or higher layer protocol (for UDP) will ensure anyway reliable delivery
 - + TCP will interpret packet loss as a sign of congestion and it will lower the throughput to reduce congestion → very low throughput
 - Many UDP-based protocols actually brake when placed in high packet-loss networks
- Why not use adaptive modulation?
 - Proposed ARQ lowers modulation and/or coding only for retries
 - It is not worth lowering modulation for thousands of packets following a random error
 - However it is worth lowering modulation just to ensure that random error does not cause end-to-end packet loss

Questions?

