A Many-Core Software Defined Solution for the Development and Deployment of Wireless Systems

SDR'11-WInnComm Wednesday, November 30, 2011 Session 4A – SDR Systems

John Irza Solutions Architect Coherent Logix, Inc. Andover, Massachusetts irza@coherentlogix.com Bryan Schleck Applications Engineer Coherent Logix, Inc. Austin, Texas schleck@coherentlogix.com

About Coherent Logix

Coherent Logix™

Coherent Logix, Incorporated (Incorporated in 2002)

Headquarters: 1120 S. Capital of Texas Hwy Building 3, Suite 310 Austin, Texas 78746

Maker of ultra low-power, extremely-high performance, C-programmable processors (HyperXTM) and RF chipsets (rfX^{TM}) for the embedded systems market – enabling low-power, real-time software defined systems.

Customers and Markets

Coherent Logix

- Wireless
- Image / Video
- Defense
- High-Rel / Rad-Tol

- Commercial Markets
- Mil / Aero Markets

Enabling Systems for the Warfighter

Low Power • High Performance • Portable • Battery Operated

Coherent Logix

In a word...

COMPLEX

Modern Communications Systems

Coherent Logix

System-level Complexity

- Multi-carrier waveforms
- Spectral "conformance"
- Interoperability
- Network management
- Cognitive operation

Algorithm-level Complexity

- Channel coding
- Adaptive modulation
- Digital Pre-Distortion
- Interference cancellation
- MAC-PHY interaction

"How do we <u>design</u> a product that addresses these challenges in the most timely manner?"

"How do we <u>verify</u> our design before the product is assembled for the first time?"

"How do we <u>deploy</u> our design to meet SWaP constraints, possibly as a SoC?"

Traditional Design Flows and Development Cycles

Traditional Design Flows and Development Cycles

Coherent Logix

Observation: engineers traditionally design to hardware targets

- This leads to a "brittle solution"
 - A change in design requires a change in hardware and vice-versa
- This results in a broken verification flow
 - Cannot connect system-level design verification to implementationlevel verification. Multiple languages, multiple tools.
- The design focus is not on system-level solution

Integrated Design Flow and Development Cycle

- System solution is hardware independent
 - Processing capability is sufficient
 - I/O throughput is sufficient
 - SWaP requirements are met
 - Scalable solution

- One language throughout the design flow
 - Preserve the "software stack" as-is, from design exploration through deployment
 - Integrated verification flow

Coherent Logix

Lingua Franca: "...a language systematically used to make communication possible between people..."

"**C**"

Why?

- Portability
- Efficiency
- Existing libraries
- Legacy project code
- Etc.

One Target

Coherent Logix

Wish list for the ideal embedded computing target:

- As much as processing power as needed
- Scalable with little/no glue logic
- Reconfigurable architecture
- Lots of I/O options (both size & type)
- Easy (preferably "invisible") to use
- Low power
- Low cost

Implies the following:

- Many-core computing fabric
- Programmable network/topology
- Tools. Tools. Tools!

HyperX

- 100 Core Processor
 - 10 x 10 processor fabric
- Software re-configurable network/topology
 - Memory-Network re-configurable on-the-fly
- 8 DDR2 memory channels
- 16 LVDS I/O channels
 - Zero glue logic for multi-chip scalability
- Integer and floating point processing
 - 8,16, extended precision integer, 32 bit floating point
- 25 GFLOPS 32-bit, 50 GMACs 16-bit

Ultra-low power

hx3100a - total chip power

- 75 mW < P < 3.5 W</p>
- (13 Pico-Joules/Op)

hx3100bxx* - total chip power

- 25 mW < P < 1.75 W</p>
- (7 Pico-Joules/Op)

Demo: Scalable OFDM Reference Waveform Implementation

Radio and Waveform Development System (RWDS)

- Fully modular and customizable
- Plug-and-play capability with HyperX ISDE
- Clear path to form-factor product
- Supports
 - PClexpress I/O
 - Data conversion
 - RF/IF inputs

OFDM System Model Coherent Logix TΧ Payload R=1/3 CRC-24 Packet Mode · ТΧ Convolutional ID Generation Buffer Length Encoder s_n Insert QPSK Scrambler IFFT Cyclic Modulation Prefix W_n RX Remove QPSK FFT Descramble Cyclic Demodulation r_n Prefix CRC-24 Retrieve Viterbi RX Payload -Packet ID Check Decoder Buffer

Frame Structure

Copyright © 2011 Coherent Logix, Incorporated. All Rights Reserved.

Resource Block Structure

Coherent Logix Sub-frame Slot Slot **Reference Signals** R interspersed among Subcarriers **Resource Elements** RB: 12 R Frame (10ms) Slot Sub-frame (0.5 ī 🗲 (1ms) 🔿 ms) 10 19 0 11 1 2 3 Slot: 6/7 Symbol Periods (0.5ms) 5 6 5 3 6 0 1 2 4 0 1 2 3 4 6/7-OFDM Symbol CP Periods (extended/normal CP)

OFDM System Comparison

Coherent Logix[™]

		WiFi	Fixed WiMAX		Mobile WiMAX				
	Parameter	(802.11a/g)	(802.16d)		(802.16e)		LTE		
	DL Access	OFDM	OFDM		S-OFDM		OFDM		
	UL Access	OFDM	OFDMA		S-OFDMA		SC-FDMA		
В	Bandwidth	20	DL	1.75/3/	DL	1.25/	1.4/3/5/2	10/15/20	MHz
				3.5/5.5/7		2.5/5/10/20			
			UL	1.25/	UL	1.25/5/10/			
				3.5/7/14/28		20			
N _{FFT}	FFT Dimension	64	DL	256	128/	/512/1024/	128/256/5	512/1024/	pt
					2048		1536/2048		
			UL	2048					
Δf	Subcarrier	312.5	11.16		10.94		15		<i>kHz</i>
	Spacing								
T _{FFT}	FFT Duration	3.2	89.6		91.4		66.67		μs
T_G	Guard Interval	2-2	2 ⁻³		2 ^{-[2:5]}		2 ^{-[2, 3.83, 3.678]}		%T _{FFT}
T_{S}	Symbol	4	100.8		114.25, 102.83,		83.27, 71.36, 71.88		μs
	Duration				97.11, 94.26				
М	Modulation	BPSK,	BPSK, QPSK,		BPSK, QPSK,		QPSK, 16QAM,		
		QPSK,	16/64QAM		16/64QAM		64QAM (DL)		
		16/64QAM							
С	Coding	CC	RS-CC, BTC,		CC, BTC, CTC,		CC, CTC		
			CTC		LDPC				
r	Data Rates	6-54	2-134.4		2-134.4		DL	100	Mb/s
							UL	50	

Copyright © 2011 Coherent Logix, Incorporated. All Rights Reserved.

SC-OFDM Timing Related Parameters

Nominal System BW			0.96	1.92	3.84	7.68	15.36	23.04	30.72	MHz
Occupied System BW			0.80	1.58	3.14	6.26	12.50	18.74	24.98	MHz
FFT Size			64	128	256	512	1024	1536	2048	
Data Subcarriers		48	96	192	384	768	1152	1536		
Pilot Subcarriers		4	8	16	32	64	96	128		
Occupied Subcarriers			53	105	209	417	833	1249	1665	
Resource Blocks/slot			2	4	8	16	32	48	64	
Data Symbols per RB			6	6	6	6	6	6	6	
Training Symbols per RB			1	1	1	1	1	1	1	
Subcarrier Spacing			15	15	15	15	15	15	15	kHz
Useful Period, T _{FFT}			66.67	66.67	66.67	66.67	66.67	66.67	66.67	μs
Т _{СР}	extended	N _{fft} /4	16	32	64	128	256	384	512	Samples
T _{SYM}	extended	16.67	83.33	83.33	83.33	83.33	83.33	83.33	83.33	μs
Block Period			583.33	583.33	583.33	583.33	583.33	583.33	583.33	μs
Modulation			QPSK							
Tail bits		6	6	6	6	6	6	6		
Code Rate		0.33	0.33	0.33	0.33	0.33	0.33	0.33		
Coded Bits Per Block			576	1152	2304	4608	9216	13824	18432	
Uncoded Bits + Tail Per Block			192	384	768	1536	3072	4608	6144	
Uncoded Bits Per Block			186	378	762	1530	3066	4602	6138	
Bitrate			0.32	0.65	1.31	2.62	5.26	7.89	10.52	Mb/s
			39.86	81.00	163.29	327.86	657.00	986.14	1315.29	kBytes/s

Spinning Box Demo on hxHADS – hx3100A

Coherent Logix

Motion JPEG image sequence sent over the SC-OFDM PHY transport:

- QAM with convolutional encoding
- BW scalability according to I/FFT dimension
- AWGN impairment configurable at runtime to enable swept error rate studies over a selected SNR range
- CRC protected packet transport mapped to a fixed Resource Block structure
- ACK|NACK signaled out of band

AWGN Impairment

TX Input data process with CRC, ACK/NACK

Double-buffered main processing loop

Cell Instantiation

Coherent Logix

Instantiate different cells, with an interface composed of communication routes

Cells can be instantiated multiple times for scalability and code re-use

Cells are self-contained hierarchical processes. Can be composed of any number of processing elements

000

```
304
       CELL INSTANTIATIONS
305
306
307
     if (CLX_RANK == CLX_INSTS) (
308
309
       // Transmitter
310
        encoder tx:
                      encoder ( ROUTE CONTROL TO ENCODER,
311
            ROUTE SOURCE TO ENCODER,
312
            ROUTE ENCODER TO MODULATOR) ;
313
314
       modulator tx: modulator ( ROUTE CONTROL TO MODULATOR,
315
            ROUTE ENCODER TO MODULATOR,
            ROUTE MODULATOR_TO_IFFT_REAL,
316
317
            ROUTE MODULATOR TO IFFT IMAG);
318
319
        ifft tx: ifft( ROUTE CONTROL TO IFFT,
320
            ROUTE MODULATOR TO IFFT REAL,
321
            ROUTE MODULATOR TO IFFT IMAG,
322
            ROUTE IFFT REAL TO CHANNEL,
323
            ROUTE IFFT IMAG TO CHANNEL);
324
     }
325
326
     return 0;
327 }
328
329
```

Example cell: Modulator

Modulation processing subroutine

Real-Time Analysis: BER / PER Characterization

Copyright © 2011 Coherent Logix, Incorporated. All Rights Reserved.

- High level representation of SC-OFDM model PHY
 - Implemented on a many-core low-power processor
- Tools solve the mystery of parallel programming for you
 - Tools extract parallelism from your code and map to processor fabric
 - Manual parallelization and processor mapping also allowed
- Real-time analysis and visualization with no performance penalty
 - Use many-core processor as a HW simulation accelerator
 - Finish BER tests faster (in minutes, not days/weeks)
- No change to source code moving from sim to deployment
 - Preserve verification flow
 - Eliminate introduction of errors
 - Get to market faster

Take Aways

- One code base: for both development and deployment
 - Preserving the software stack
- One hardware target: for simulation acceleration and deployment
 - Scales transparently to multi-chip implementations

- Faster design exploration
 - Characterize systems in minutes, not days/weeks
- Faster time to product
 - Eliminate multiple language & design flows

Thank you for attending!

More demos and Q&A in the Exhibit Hall at booth #10