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Abstract—This paper presents a novel cyclostationary sig-
nature detector designed for robust detection of embedded
signatures under frequency-selective fading conditions. Cyclo-
stationary signatures are features which may be intentionally
embedded in a digital communications signal, detected through
cyclostationary analysis and used as a unique identifier. It
has been shown that such signatures can also be employed to
derive key signal parameters including carrier frequency and
bandwidth, making them a powerful tool to support network
coordination in dynamic spectrum access scenarios. Signature
detection can be compromised under conditions of frequency-
selective fading whereby a deep fade can destroy an individual
signature. The detector presented in this paper can reduce the
destructive effects of such fading conditions, greatly improv-
ing detection performance. These improvements are illustrated
through simulation results which compare the performance of
our detector with that of existing designs.

I. I NTRODUCTION

A signal is cyclostationary if there exists some nonlin-
ear transformation of that signal which will generate finite-
strength additive sine-wave components [1]. A signal is said
to exhibit second-order cyclostationarity if its mean and auto-
correlation are periodic.

Many of the communications signals in use today exhibit
second and higher-order cyclostationarity due to underlying
periodicities introduced through coupling stationary message
signals with periodic sinusoidal carriers, pilot sequences,
spreading codes and repeating preambles. It has been shown
that these cyclostationary properties can be used to achieve
a number of critical tasks including signal detection [2],
classification [3], synchronization [4], [5] and equalization [6].

Cyclostationary signal analysis is a powerful tool when
applied to the inherent cyclostationary features of transmitted
communications signals. However, the authors have shown
that it is also possible to generate intentionally embedded
cyclostationary features and use these knownsignatures to
achieve key tasks while reducing the computational complexity
typically associated with cyclostationary analysis [7]. In this
way, real-time cyclostationary analysis can become a practical
tool for use in reconfigurable wireless networks.

Nodes within a reconfigurable wireless network may dy-
namically change the properties of their transmitted waveform
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in order to improve the quality of a given wireless link,
to efficiently use available spectral resources, to avoid the
creation of harmful interference or to respond to changes in
their operating environment. A key challenge in this context
is network coordination. If, for example, the carrier frequency
or bandwidth of the waveform in use can be dynamically
changed, how do nodes in the network maintain communi-
cation links? How do new nodes join the network?

One approach to achieve self-configuration and self-
coordination in such networks is to adopt a common control
channel with fixed waveform parameters which are known in
advance. This control channel can be used as a bootstrap-
ping mechanism, allowing nodes to retrieve the information
needed to join the network and maintain communication links.
However, the use of such a control channel requires a static
allocation of resources and presents a bottleneck and single
point of failure for the network.

A more flexible solution to the problem is to embed
a cyclostationary signature in the waveform transmitted by
nodes in the network. While the properties of the waveform
may change, the properties of the signature are fixed. This
permits nodes to detect that signature and use it to discover
key waveform parameters before establishing communication
links.

Previous work by the authors has shown how cyclostation-
ary signatures can be embedded in multicarrier waveforms and
used to achieve signal detection and identification, as wellas to
estimate the carrier frequency and bandwidth of the signal [7],
[8]. It was also seen that frequency-selective fading can destroy
signatures by causing a deep fade at the subcarriers used to
generate the signature. This paper builds on previous work
and presents a novel signature detector design which provides
robust detection in a frequency selective fading environment.

The remainder of the paper is structured as follows. Sec-
tion II gives an overview of cyclostationary signatures and
their generation in multicarrier waveforms. The use of sig-
natures in reconfigurable wireless networks is discussed and
the effect of frequency-selective fading is examined. The
enhanced signature detector design is presented in SectionIII
and its performance is examined through simulation resultsin
Section IV. Section V concludes the paper.
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II. CYCLOSTATIONARY SIGNATURES

Second order cyclostationarity manifests as a correlation
pattern in the spectrum of a signal. This spectral correlation
completely describes the cyclostationarity of the signal and
may be examined using the spectral correlation function
(SCF) [2],
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where
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represents the complex envelope of the narrow-band-pass
component ofx(t) with centre frequencyv and bandwidth
∆f .

The spectral coherence (SC) [9],Cα
x , can be used to

normalize the cyclic spectrum estimates in the range [0,1]:
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whereS0
x(f) is the SCF at cyclic frequencyα = 0.

In order to generate an artificial cyclostationary signature,
we can intentionally generate a correlation pattern in the spec-
trum of a signal. This can be easily achieved in multicarrier
waveforms where individual subcarriers can be manipulated
to alter the spectral properties of the overall waveform.

Orthogonal Frequency Division Multiplexed (OFDM) wave-
forms consist of many subcarriers, separated in frequency and
individually modulated by a sequence of message symbols.
Due to the efficient implementation of OFDM transceivers
using the Fast Fourier Transform (FFT) and the robustness
of the waveform to multi-path fading, OFDM currently forms
the basis for many of the most common wireless standards
including IEEE 802.11g, IEEE 802.16, ETSI DAB, ETSI DVB
and 3GPP LTE.

OFDM signals may be represented as a composite ofN
statistically independent subchannel Quadrature Amplitude
Modulated (QAM) signals [10]:

w(t) =
∑

k

N−1
∑

n=0

γn,ke
j(2π/Ts)ntq(t− kT ) (4)

wherew(t) is the complex envelope of an OFDM signal with
a cyclic prefix,γn,k is the independent, identically distributed
message symbol transmitted on subcarriern during OFDM
symbolk, N is the number of subcarriers andq(t) is a square
shaping pulse of durationT . Ts is the source symbol length
andTg is the cyclic prefix length such thatT = Ts + Tg.

A cyclostationary signature may be embedded in an OFDM
waveform simply by mapping one subset of subcarriers onto
a second subset so that message data transmitted on the first
subset is identically transmitted on the second:

γn,k = γn+p,k, n ∈ M (5)

whereM is the set of subcarrier values to be mapped andp
is the number of subcarriers between mapped symbols. This
approach is illustrated in Fig. 1.
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Fig. 1. Embedding a cyclostationary signature in an OFDM waveform.

Cyclostationary signatures generated by mapping a single
subset of subcarriers consist of a single feature occurringat
cyclic frequencyα = p

Ts
. If this cyclic frequency is known

in advance, the computational complexity associated with
detecting the signature can be greatly reduced. As the signature
is continuously present in the transmitted waveform, it maybe
detected by capturing and analyzing any part of that waveform.

A key advantage of cyclostationary signatures generated
through subcarrier set mapping is the ability to create unique
identifiers by choosing different cyclic frequencies,α for the
embedded feature. This is achieved simply by choosing the
subcarrier mapping distance,p. This can be seen in Fig. 2
which shows the alpha profile of two signals, each containing
a signature generated at a different cyclic frequency.
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(a) Signature atα1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cyclic Frequency ( α / F
s
)

N
or

m
al

iz
ed

 S
C

F

(b) Signature atα2

Fig. 2. Unique cyclostationary signatures at two differentcyclic frequencies.

In addition to their use to detect and identify signals
of interest, signatures can be used to determine key signal
parameters such as carrier frequency and bandwidth. Carrier
frequency acquisition is required for network rendezvous,
where a wireless node wishes to receive a signal, establish
a communication link and join the network. Fig. 3 shows
the spectral frequency of a signal at the cyclic frequency of
an embedded signature. In this case the subcarrier subsets
used to generate the signatures are equidistant from the carrier
frequency of the signal and the feature can be used directly to
determine that carrier frequency.
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Fig. 3. Spectral frequency atαsig, the signature cyclic frequency.

One challenge associated with using cyclostationary signa-
tures in reconfigurable wireless networks is detection in the
presence of frequency-selective fading. A deep fade at the
location of a mapped subcarrier subset can distort the resulting
signature. This can be seen in Fig. 4 where the spectral
frequency of the signal is shown at the cyclic frequency of
the embedded signature.
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Fig. 4. Distortion of cyclostationary signature caused by frequency-selective
fading.

OFDM waveforms exhibit robustness to frequency-selective
fading due to the conversion of a single high-rate data stream
to multiple low-rate streams and the use of a cyclic prefix
to collect multipath components. However, in order to benefit
from these features, close time and frequency synchronization
is required. In the context of signal detection, identification
and parameterization, this is not possible and the effects of
multipath must be overcome in other ways.

The next section presents a signature detector which pro-
vides robust detection in the presence of multipath.

III. E NHANCED DETECTOR

Optimum cyclostationary feature detection can be per-
formed through correlation of the estimated SCF with the ideal

SCF [2]:

yα(t) =

∫ ∞

−∞

Sα
s (f) ∗ S̃

α
x (f)dfe

i2απt (6)

where S̃α
x (f) is the estimated SCF following notch filtering

to remove strong narrow-band interference. Estimation of the
SCF may be performed using the time-smoothed cyclic cross
periodogram (TS-CCP), a consistent, asymptotically unbiased
and complex normally distributed estimator for the cyclic cross
spectrum [11]:

Ŝα
x [k] =

1

L
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∑
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Xl[k]X
∗
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whereW [k] denotes a smoothing spectral window andXl[k]
is the Fourier transform of the discrete-time signalx[n] after
sampling the received signalx(t),

Xl[k] =

N−1
∑

n=0

x[n] exp
−i2πnk

N (8)

Estimates are calculated usingL windows of lengthN where
N is the duration of a single OFDM symbol.

Previous work has shown that an SCF signature detector can
be implemented using the TS-CCP directly and used to achieve
signal detection, identification and frequency acquisition [7].
However, the performance of such a detector in frequency-
selective fading conditions can be greatly improved through
estimation of the spectral coherence (SC) (Eqn.3). The spectral
coherence normalizes the SCF with the power of the signal on
a per-frequency bin basis. This can compensate for some of
the effects of multipath distortion.

Our low-complexity single-cycle signature detector may be
implemented through estimation of the SC as:

yα = max
0≤k≤N−1

M−1
∑
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H[m]Ĉα
x [k −m] (9)

whereH[m] is a rectangular window and̂Cα
x [k] is computed

as
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with (.)N denoting the modulo-N operation. Then,yα is
compared to a threshold for feature detection.

IV. PERFORMANCE

Simulations were used to examine the performance of our
SC detector and to compare it with that of the simpler SCF
detector.

256-subcarrier OFDM signals were considered, with sub-
carriers distributed as follows: 192 data, 55 guard, 8 pilotand
1 DC. Data was randomly generated and QPSK modulated
with a 16 sample cyclic prefix prepended to each OFDM
symbol. Cyclostationary features were embedded at cyclic
frequencyα = 16/Ts using mapped sets of 3 subcarriers.
A 4 MHz signal was simulated with a number of frequency-
selective multipath channels modeled using the COST 207 [12]
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Fig. 5. SCF detector performance - Typical Urban channel.
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Fig. 6. SC detector performance - Typical Urban channel.
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Fig. 7. SCF detector performance - Bad Urban channel.
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Fig. 8. SC detector performance - Bad Urban channel.
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Fig. 9. SCF detector performance - Rural Area channel.
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Fig. 10. SC detector performance - Rural Area channel.
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Fig. 11. SCF detector performance - Hilly Terrain channel.
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Fig. 12. SC detector performance - Hilly Terrain channel.
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Fig. 13. SCF detector performance - Exponential Decay channel.
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Fig. 14. SC detector performance - Exponential Decay channel.

channel profiles as well as an exponentially decayed channel
model. Signatures were generated using between 1 and 5
unique features and Receiver Operating Characteristic (ROC)
performance was examined for each using Monte Carlo sim-
ulations. Probabilities of detection (Pd) and false alarm (Pfa)
were recorded over 2000 simulations. Gaussian white noise
was added forSNR ≈ 5 dB and a single feature detector
with signal observation time of∆t = 30T was used. Fig. 15
illustrates the spread profile of our exponential decay channel
model.
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Fig. 15. Exponential Decay channel spread profile.

Examining the performance of our signature detectors under
conditions of frequency-selective fading illustrates theimpor-
tance of power normalization in estimating spectral correla-
tion. Power normalization is achieved through use of the SC
(Eqn.3). For each of the channel models examined, it can be
seen that the SCF detector performs poorly for an observation
time of 30 OFDM symbols. Performance improves slightly
with an increased number of features per signature but even
with 5 features, aPd of just 0.75 incurs aPfa of 0.25 using an
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exponential decay channel model. Previous work has shown
that the SCF detector can perform well under these conditions
with increased observation times [13]. However, results show
that the SC detector achieves very good performance with
these short observation times and a low number of features
per signature. For each of our channel models, it can be seen
that near-perfect detection performance is achieved usingjust
two features per signature.

V. CONCLUSIONS

Cyclostationary signatures are a powerful tool for realizing
self-coordinating and self-configuring wireless networks. In-
tentionally embedded in transmitted multi-carrier waveforms,
signatures can be used for signal detection and identification,
carrier frequency acquisition and bandwidth estimation. This
paper has examined how existing detector designs based on the
spectral correlation function (SCF) can be improved through
estimation of the spectral coherence (SC) which provides
power normalization and compensates for some of the dis-
tortion introduced by frequency-selective fading.
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[8] P. D. Sutton, B.Özg̈ul, K. E. Nolan, and L. E. Doyle, “Bandwidth-
adaptive waveforms for dynamic spectrum access networks,” inIEEE
International Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN)., Chicago, IL, Oct. 2008, pp. 1–7.

[9] W. Gardner, Introduction to Random Processes with Applications to
Signals and Systems, W. Gardner, Ed. MacMillan, 1985.
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