#### SDR'11 – WInnComm

# A Software-Defined Radio Prototyping Platform for Cognitive Radio Applications

Christian Kocks

Department of Communication Technologies

University of Duisburg-Essen

christian.kocks@kommunikationstechnik.org

#### **Outline**

- Motivation
- Platform Overview
- Cognitive Radio System Implementation
- Sensing Results

#### **Motivation**

- Multitude of wireless communication systems came up in the last years
- Increasing system complexity (higher-order modulation, sophisticated forward error correction etc.) to increase spectral efficiency





#### **Motivation**

- The range of usable frequencies is limited
  - Lower frequencies require unworkably large antennas
  - Higher frequencies only propagate over very short distances



- Thus some spectrum bands are more valuable than others
  - Causes an additional squeeze at certain 'sweet-spot' frequencies (typically 500 MHz – 5 GHz)

#### **Motivation**

- Flexible prototyping platform desirable
- Implementation of arbitrary communication systems
- Cognitive radio capabilities
  - Sense the environment
  - Track the changes
  - React upon findings
- Software-defined radio approach advantageous





# ww.kommunikationstechnik.org

## Platform Overview - Requirements

- Rapid Prototyping Capability
- Efficient Scheduling
- Elaborate Debugging Functionality
- High Degree of Parallelization Capability
- High Modularity
- Scalability

#### Platform Overview - DSP

- Prototyping platform *eFalcon* hosts a powerful triple-core C6474 DSP for top-level scheduling and signal processing with elaborate debugging functionality
- DSP features:
  - 1 GHz system clock
  - 3 MB on-chip RAM
  - EDMA controller
  - Gigabit Ethernet
  - Serial RapidIO (two lanes)
  - Antenna interface (6 full-duplex OBSAI/CPRI links)
  - Turbo and Viterbi decoder





**Digital Signal Processor** Random-Access Memory **Enhanced Direct Memory Access** 



Open Base Station Architecture Initiative Common Public Radio Interface





#### Platform Overview - FPGA

- Xilinx Virtex-5 SX50T FPGA directly attached to the DSP using high-speed serial interconnections (Serial RapidIO, OBSAI, CPRI)
- FPGA features:
  - 52,224 logic cells
  - 4.7 Mbit block RAM
  - 12 digital clock managers (DCM)
  - 12 RocketIO transceivers







#### Platform Overview – Additional Features

- 256 MB DDR2 RAM directly attached to the DSP
- DDR2 SODIMM connector directly attached to FPGA
- USB 2.0 controller with 8051 microcontroller connected to the FPGA
- 2 Gigabit Ethernet PHYs connected to the DSP and the FPGA
- SD memory card slot
- Avnet Full EXP connectors acting as daughter card interfaces
- Sophisticated clock subsystem



Double Data Rate Random-Access Memory Digital Signal Processor Small-Outline Dual In-Line Memory Module FPGA USB SD

Field-Programmable Gate Array Universal Serial Bus Secure Digital



## Platform Overview – Block Diagram



# Scalability Aspects

- Crucial design constraint during concept phase
- eFalcon provides high-speed intra-board as well as inter-board communication
- Interconnection of multiple platforms with data rates beyond 1 Gbit/s possible
- Realization of multi-antenna systems possible
- Overall clock synchronization possible by coaxial connectors

### Platform Realization



# Cognitive Radio System Implementation

- Non-occupied frequency ranges in the UHF band (TV white space)
- Can be used for secondary communication systems
- Here:
  - Primary system: CMMB
  - Secondary system: IEEE 802.11
- Sensing approach based on autocorrelation algorithms

# Cognitive Radio System Implementation





# Cognitive Radio System Flow Diagram



# Sensing Results



A Software-Defined Radio Prototyping Platform for Cognitive Radio Applications

# Thank you for your attention!