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Abstract—Adaptive Multiple-Input Multiple-Output (MIMO)
systems achieve a much higher information rate than convention-
al fixed schemes due to their ability to adapt their configurations
according to the wireless communications environment. However,
current adaptive MIMO detection schemes exhibit either low
performance (and hence low spectral efficiency) or huge com-
putational complexity. In particular, whilst deterministic Sphere
Decoder (SD) detection schemes are well established for static
MIMO systems, exhibiting deterministic parallel structure, low
computational complexity and quasi-ML detection performance,
there are no corresponding adaptive schemes. This paper solves
this problem, describing a hybrid tree based adaptive modulation
detection scheme. Fixed Complexity Sphere Decoding (FSD) and
Real-Values FSD (RFSD) are modified and combined into a
hybrid scheme exploited at low and medium SNR to provide
the highest possible information rate with quasi-ML Bit Error
Rate (BER) performance, while Reduced Complexity RFSD, B-
Chase and Decision Feedback (DFE) schemes are exploited in the
high SNR regions. This algorithm provides the facility to balance
the detection complexity with BER performance with compatible
information rate in dynamic, adaptive MIMO communications
environments.

Index Terms—Adaptive Modulation MIMO, Hybrid Detection,
FSD/RFSD, Detection Ordering, Performance Complexity Trade-
off

I. INTRODUCTION

The maximum information rate of a communication system,
i.e. its Shannon capacity, adapts with the environment in terms
of the average SNR and channel condition [1]. In environments
such as this, Adaptive Multiple-Input Multiple-Output (A-
MIMO) systems can outperform their fixed counterparts by
adapting their configurations in terms of aspects such as
number of activated antennas [2] [3], modulation types [4][5],
coding schemes [6] and transmit power [7]. However, whilst
detection of the symbols impinging on a MIMO receiver
is a key factor in the overall performance of a MIMO
configuration, current Adaptive Modulation (AM) schemes
apply either low Bit Error Ratio (BER) detection algorithms
such as Zero Forcing (ZF) or Minimum Mean Square Error
(MMSE) [2] (leading to either low spectral efficiency) or
highly complex BER-optimal algorithms such as Maximum
Likelihood Detection (MLD) [8].

The Fixed-Complexity Sphere Decoder (FSD) [9] and Real-
valued FSD (RFSD) [10] are quasi-ML, deterministic de-
tection algorithms which exhibit much lower computational
complexity than MLD, and are well suited to embedded
implementation [11][12]. However, conventional FSD and

RFSD are unable to consider the variation in modulation
schemes when ordering received signals according to their
robustness and hence directly applying these to AM-MIMO
systems will lead to BER degradation. In addition, whilst
they exhibit good BER performance (hence the high spectral
efficiency), their computational complexities grow rapidly with
the number of antennas or QAM constellation size. When
this complexity becomes so severe as to become more crit-
ical than detection performance, lower complexity detection
algorithms with similar structure should be applied to redress
the complexity/performance imbalance. Such adaptive hybrid
detection approaches do not currently exist.

In this paper, we present such a scheme: a novel tree-
based hybrid detection algorithm for AM-MIMO systems.
Specifically, we make three main research contributions.

1) We demonstrate how weight metrics representing dif-
ferent modulation schemes can be integrated into the
FSD/RFSD channel matrix ordering process.

2) We present a novel adaptive detection algorithm, which
adapts its behaviour amongst a number of pre-defined
tree-based detection schemes to balance the spectral
efficiency, BER and detection complexity according to
the channel conditions.

3) By applying the modified FSD/RFSD in 1) and algo-
rithm selection methods in 2), we present a novel AM
and Adaptive Algorithm (AA) for a 4×4 MIMO system
based on the BER simulation results, which shows good
capability in balancing the information rate, BER and
complexity.

The remainder of this paper is as follows. Section II
introduces the AM-MIMO system and the tree-based detection
candidates. Section III shows how to modify the FSD/RFSD
in the ordering process for hybrid modulated AM-MIMO
systems and a tree-based adaptive spatial detection approach
is proposed in Section IV. Finally, Section V applies the
proposed approaches to a 4×4 AM MIMO system to reveal the
capability of the hybrid detection in balancing the information
rate, BER and detection complexity.

II. BACKGROUND

A. Adaptive Modulated MIMO System

In a spatially multiplexed MIMO system with mt transmit
antennas and nr receive antennas (mt ≤ nr) operating on
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quasi-static flat fading channels [13], the nr-element received
vector y = (y1, y2, ..., ynr )

T is given by equation (1).

y = Hs+ n (1)

In equation (1), s = (s1, s2, ..., smt)
T is the transmit-

ted QAM symbol vector with normalized transmit power
E[|si|2] = 1/mt, n = (n1, n2, ..., nnr )

T is the vector of
independent and identically distributed (i.i.d) complex additive
white Gaussian noise (AWGN) with variance of σ2 = N0,
and H is the nr ×mt Rayleigh fading channel matrix, where
hij denotes the transform function from transmit antenna j to
receive antenna i with E[|hij |2] = 1.

In an adaptive MIMO system, the transmitter updates its
configuration in terms of the number of activated antennas
[2][3], modulation constellation sizes [4][5], transmit power
[7] and coding schemes [6], according to the average SNR
and channel condition [1] of the communication environment,
endeavouring to achieve the highest possible information rate
with guaranteed BER performance [5]. Of these, only adap-
tive antenna and adaptive modulation schemes influence the
behaviour of detection algorithms, and given the expense (in
terms of area and monetary cost) of highly complex RF chain
[14], we concentrate on uncoded AM-MIMO systems with
square M-ary Quadrature Amplitude Modulations (QAM). The
architecture of a generic AM-MIMO systems is illustrated in
Fig. 1 [5].
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Fig. 1. AM System Architecture For Flat Fading MIMO Channels

As shown in Fig. 1, the transmitter adjusts its modulation
types on each transmit antenna according to the suggested
modulation schemes based on feedback from the receiver.
Perfect feedback and channel state information are assumed
at the receiver. In [5], the AM system described shows
that a limited range of modulation modes, with successive
constellation size increments, i.e. adjacent modes change from
the smaller constellation size to the next-highest order M-
QAM that can provide the required spectral efficiency. For
example, AM modes for a 4×4 MIMO system with M-QAM
(up to 64-QAM) can be set as in Table I.

The AM scheme is defined by 2 steps before feeding back
to the transmitter: firstly, according to the average SNR at
the receiver and a pre-calculated error rate pattern, a specific
AM mode is selected, e.g. one of the mode in Table I is
selected for a 4×4 AM MIMO system; secondly, each transmit
antenna is assigned to one M-QAM constellation specified in
the selected mode. As described in [5], the channel conditions

TABLE I
ADAPTIVE MODES

Antenna
Modes and Modulations (M-QAM)

1 2 3 4 5 6 7 8 9
Tx1 4 4 4 4 16 16 16 16 64
Tx2 4 4 4 16 16 16 16 64 64
Tx3 4 4 16 16 16 16 64 64 64
Tx4 4 16 16 16 16 64 64 64 64

of the mt transmit antennas are ranked by calculating ∥hi∥2
of the channel matrix H, where hi is the ith column of H.
Higher order QAM schemes are assigned to transmit antenna
indices with larger ∥hi∥2.

Ideally, to retrieve the transmitted symbol vector, s, from
the received vector, y, ML detection [8] is used to compare
the received symbols with every combination of transmitted
symbols, with the most likely candidate selected. However
the huge complexity of ML detection makes it practically
infeasible. Instead, sub-optimal detection algorithms, such as
ZF, MMSE, Vertical Bell Laboratories Layered Space-time (V-
BLAST) [15], are applied in building practical implementa-
tions. Deterministic SDs are particularly attractive due to near-
optimal performance and reduced complexity as compared to
MLD [9].

B. Tree-based Spatial Detection Algorithms

1) Fixed-Complexity Sphere Decoder: FSD [9] is a deter-
ministic SD algorithm employing a breadth-first tree search
behaviour. It not only provides quasi-ML BER performance,
but also has low computational complexity compared with
MLD and a highly parallel structure, which enables highly
efficient implementations.

In the detection process, FSD firstly determines the detec-
tion ordering by permuting the columns of the channel matrix,
as described in Function FSD Ordering.

Function Horder= FSD Ordering(H)
1 NFS = ⌈√mt − 1⌉;
2 Ĥmt=H;
3 for i = mt : −1 : 1 {
4 Di = diag[(Ĥi · ĤT

i )
−1];

5 If i > (mt −NFS) {
6 index(i) = argmaxindex∈∂(Di);
7 else
8 index(i) = argminindex∈∂(Di);
9 }

10 Ĥi−1 = Remove(Ĥi, ĥi(index(i)));
11 }

where ∂ = [1, 2mt]− index(i+ 1 : 2mt);
12 Horder = H(index);

FSD operates in two phases: Full Search (FS) and Single
Search (SS). The Number of FS (NFS) layers is firstly
calculated in line 1 [16]. By applying the V-BLAST ordering
metrics [15], the ordering metric is specified in line 4, where
diag indicates the diagonal elements of a matrix. During the
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first NFS iterations, the index of the largest elements of Di

are sorted to the end of the vector index (line 6), whilst the
remainder are selected in a converse strategy (line 8). At the
end of each iteration, the selected column is removed from
Hi, indicated by the Remove function in line 10. Next, H is
ordered by the index.

Subsequently, FSD decomposes the ordered channel matrix
Horder in equation (1) into an orthogonal matrix and a upper
triangular matrix using QR decomposition. The objective
function of the FSD algorithm is then defined as the (squared)
Euclidean Distance (Euc) between the ZF and SD estimation
results, given by equation (2).

Euc = ∥R(szf − s)∥2 (2)

In (2), szf and s are the detected ZF and detecting SD
vectors respectively. R is derived by QR decomposition of H
and its upper triangular nature allows the Euclidean Distance
to be calculated by working backwards through the rows of
R from i = mt to form a tree searching structure. Finally,
the candidate vector, s, provides the smallest Euc is selected
as the hard detection results. Note that different modulation
types have different tree structures, e.g. the searching tree in
detecting pure 4QAM and 16QAM modulated 4 × 4 MIMO
are shown in Fig. 2(a) and Fig. 2(b) respectively, where the
roots of the trees are the ZF detected symbols and each
arrow represents an Accumulative Partial Euclidean Distance
(APED) calculation.

(a) Tree
for 4QAM

(b) Tree for 16QAM

Fig. 2. Detection Tree for FSD

Although FSD provides quasi-ML performance when all
transmit antennas apply the same modulation type, it shows
BER degradation if we directly apply the channel matrix order-
ing method in Function FSD Ordering in hybrid modulated
AM system.

2) Real-valued FSD: Whilst the FSD algorithm assumes
complex-valued received symbols, in reality the real and
imaginary parts of each received symbol are orthogonal and
may hence be processed independently [17]. Real-Valued FSD
(RFSD) [10] decomposes the complex-valued FSD tree into
a real-valued tree, which doubles the depth but shrinks the
breadth of the original tree. More specifically, in the new
RFSD algorithm, the worst ÑFS = ⌈

√
2mt − 1⌉ real layers

are ordered to the upper layers of the decode tree for fully
expansion, with the remainder undergoing single expansion.
Fig. 3 illustrates the effect of this change in converting a single

layered 4 QAM complex detection tree into a double layered
2 PAM real tree.

-1-i -1+i 1-i 1+i

(a) Uncut 4QAM FSD tree

-1 1

(-1,-1)(-1,1) (1,1)(-1,1)

(b) Uncut RFSD tree

Fig. 3. 4QAM FSD/RFSD Processing

The finer FS granularity RFSD enables by searching the real
and imaginary parts of each symbol independently enables
a huge complexity reduction by eliminating unnecessary FS
layers - indeed [10] shows that RFSD maintains quasi-ML
whilst saving over 70% of the computational complexity of
FSD for all practical MIMO cases except mt = 3, 4 and 9. As
such, a low-complexity AM decoder should be able to operate
in both FSD and RFSD modes.

3) Sub-optimal Low-Complexity Detectors: Decision-
Feedback (DFE) or Successive Interference Cancellation
(SIC) [18] apply a V-BLAST ordering [15] to detect symbols
from the strongest to weakest layer. After cancelling the
previous detected layers, only the best candidate in current
layer is maintained. B-Chase [18] generates l candidates
from the first detection layer, and the l subsequent detections
operated in parallel in expanding their descendants. As
with FSD/RFSD, both DFE and B-Chase have tree search
structures, trading-off the BER of the received signal by
adapting search complexity via maintaining a variable number
of search paths.

FSD and RFSD provide quasi-ML performance by apply-
ing FS strategies, i.e. NFS = ⌈√mt − 1⌉ and ÑFS =
⌈
√
2mt − 1⌉ respectively for higher order QAM systems, or

systems with high SNR. In the case where either excessivley
computationally complex detection, or simplified detection
given a high quality wireless communications channel are
encountered, FSD/RFSD with reduced NFS/ÑFS or even
lower complexity schemes such as B-Chase or DFE are all
desirable to balance BER and detection complexity. There
is no AM detection scheme which can integrate all these
approaches in general, or tree-based detection schemes in
particular. In Section IV we derive the first such adaptive
modulation and detection approach.

III. MODIFIED FSD/RFSD IN AM SYSTEM

A. Weight Metrics in Ordering the Hybrid Modulated MIMOs

In contrast to V-BLAST and other conventional nulling
and cancellation detection algorithms, the key feature of FSD
and RFSD is to fully expand the candidates of the worst
distorted symbols at the top layers of the detection tree. Since
conventional FSD and RFSD are designed for fixed MIMO
systems with identical modulation schemes at each transmit
antenna, the worst distorted layers are equivalent to those
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layers with the worst channel conditions, as described in line 4
of the function FSD Ordering. However, as the modulation
types on each transmit antenna are adaptive in AM-MIMO
systems, hybrid modulations can appear. Since different con-
stellations exhibit different error robustness, the robustness of
a transmitted symbol should be defined by considering both
channel condition and the applied constellation type.

Hence, besides measuring the robustness of the trans-
mit symbols with the channel conditions in function FS-
D Ordering, additional weight metrics should be added on
each detection layer according to the applied constellations.
Thus, the equation in line 2 of the function FSD Ordering is
updated to (3).

Ĥmt = H ∗W, (3)

In (3), W is a diagonal matrix representing the robustness
of the applied constellations. Note that the weight matrix W
is only applied in finding the detection ordering rather than
the detection process itself. The values on the diagonal of W
are derived via experiment.

B. Weight Metrics for FSD and RFSD

The ultimate purpose of permuting the ordering of the
detection scheme is to obtain the lowest possible BER, by
diminishing the influence of the worst distorted symbols via
FS, and reducing the error propagation of the remainder via
SS. Hence we strive to obtain, via experiment, the appropri-
ate weight metrics to best represent the robustness between
different constellations and provide the lowest BER.

Since higher-order M-QAM schemes exhibit higher error
rate than lower-order ones, the modulation type with the
larger constellation size dominates the error rate of the MIMO
system. Hence, as described in Table I, an AM system with
high spectral efficiency generally applies at most two adjacent
QAM constellations in each mode [5]. Therefore the elements
of W only have to reflect the robustness ratio between
those two adjacent constellations, e.g. w1 =

robust4QAM

robust16AQM
and

w2 =
robust16QAM

robust64AQM
for M-ary QAM candidates, where M =

4, 16 and 64 for our case. The columns of the H which
exploit lower order QAM are multiplied by either w1 or w2,
while the remainder are unweighted (i.e. weighted by 1). For
example, for mode 2 and 6 are shown as equation (4). Note
that within this expression, we assume the higher order QAM
is transmitted on the 4th transmit antenna.

W2 =


w1 0 0 0
0 w1 0 0
0 0 w1 0
0 0 0 1

 ; W6 =


w2 0 0 0
0 w2 0 0
0 0 w2 0
0 0 0 1


(4)

Since the constellation points from lower-order QAMs have
a higher average power than the higher-order ones, the weights
w1 and w2 should have values larger than 1. Hence, we
enumerate the weight elements from 1 to 5 with a step of
0.05 to find the value that brings the lowest BER.

Firstly, we configure the MIMO system with 4 transmit and
receive antennas. The wireless channels are set as quasi-static
flat fading channels as described in Section II-A. We select
mode 2 and mode 6 in Table I as the testing configurations,
since both of them contain only one higher order QAM layer,
where the biased ordering will effectively remove the errors
from the less robust higher order modulated symbol and bring
significant performance improvement. Overall, 12500 frames
with 300 symbols per frame are tested at fixed SNRs to give
the BER results in Fig. 4.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
−3

10
−2

Weights

B
E

R

 

 

mode 2, SNR=12dB FSD
mode 2, SNR=14dB FSD
mode 6, SNR=20dB FSD
mode 6, SNR=24dB FSD
Weight=1.90
Weight=1.75

Fig. 4. BER of FSD in a 4× 4 AM-MIMO with Varying Weights

Fig. 4 shows that applying the appropriate weighting scheme
dramatically improves the BER in contrast with the unweight-
ed cases. The minimum BER observed for mode 2 in FSD
appears at w1 = 1.90, while the w2 = 1.75 brings the best
BER for mode 6. Note that a higher SNR value results in a
more significant BER improvement, e.g. 39.80% and 46.04%
BER improvement under SNR = 14 and 24 for mode 2 and
mode 6, respectively. However, flexibility in the SNR does
does not change the weights for either modes 2 or 6.

Furthermore, Fig. 5 shows that the BER adapts as the weight
updates, by applying RFSD on both 4×4 and 6×6 AM-MIMO
system where 4×4 MIMO is modulated as in mode 2 in Table
I and the 6 × 6 MIMO set with 4 4-QAM and 2 16-QAM
constellations. The simulation results show that the weights
within the same range results in the best BER performance
for both the hybrid modulated 4×4 and 6×6 MIMO systems
when applying RFSD.

Intuitively, lower weights emphasise on the channel con-
dition, whilst higher values overestimate the effect of the
modulation. Hence neither scheme provides minimum BER
performance. The experiment shows the weight metrics, i.e.
w1 = 1.90 and w2 = 1.75 for 4/16-QAM and 16/64-QAM
modulated MIMO systems respectively, provide the best BER
performance for both FSD and RFSD regardless of average
SNR and number of antennas. In other words, the weight
metrics reflect the robustness of the constellations. Next, we
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Fig. 5. BER of RFSD in an AM-MIMO System with Varying Weights

will exam the efficiency in trading-off the performance and
complexity by adding the weights.

C. Weighting Performance/Complexity Trade-Off

The weight matrix employed during ordering translates into
higher BER performance in the hybrid modulated MIMO
systems. By applying the obtained weight metrics onto the
4 × 4 AM-MIMO system with configuration as described in
Section III-B, the BER curves for each hybrid modulation
modes of Table I are as shown in Fig. 6. Since FSD works
better than RFSD when mt = 4 [10], we apply FSD as the
near-optimal detection algorithm.
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Fig. 6. Variation of BER with SNR of FSD in a 4× 4 AM-MIMO

As shown in Fig. 6, the weight metrics provide significant
performance improvement when only one transmit antenna
works on a high-order QAM, such as in modes 2 and 6, which
shows almost 2dB and 1dB SNR improvement at BER=10−5,
respectively. This is because the 16/64 QAM dominates the
errors in mode 2/6; thus, with the bias between modulations
the detector is prone to fully expending the only layer with

higher-order QAM. However, when the system is dominated
by high-order QAMs, the weight metric will not affect the
BER as in modes 4 or 8. This is because the higher-order QAM
dominates the errors and fully expanding only one higher
order QAM cannot prevent errors propagating through single
expanding the rest of the high-order QAM layers.

However, this modulation ordering imposes additional com-
plexity. For example, without the bias on the modulations,
mode 2 exploits a detection tree such as that in Fig. 2(a).
However, for large weighting factors, the detection tree morphs
into the structure shown in Fig. 2(b). In other words, em-
ploying (w > 1) imposes extra complexity in the detection
process. Hence, the smallest weight that provides the best
BER is preferred in the detecting hybrid AM-MIMOs. Table
II shows the complexity increment in terms of real operations
in detecting mt mixed QAM symbols by adding the weight
metrics.

TABLE II
COMPLEXITY INCREMENT IN TERMS OF REAL OPERATIONS BY ADDING

THE WEIGHTS

Mode
Unweighted Weighted Complexity Increment
± × ± × ± ×

2 323 208 632 371 95.67% 78.37%
3 323 208 922 525 185.45% 152.4%
4 323 208 1083 610 235/29% 193.27%
6 1139 640 1977 1084 73.57% 69.37%
7 1139 640 3160 1710 177.44% 167.19%
8 1139 640 4013 2162 252.33% 237.81%

As Table II shows, the complexity increases as the pro-
portion of the higher-order modulation grows, i.e. mode 2
or 6 provides the most significant performance improve-
ment with the lowest complexity increment, whilst modes
4 or 8 experience a factor three complexity without much
performance improvement. The ranges w1 ∈ [1, 1.90] and
w2 ∈ [1, 1.75] are particularly interesting, since they improve
the BER performance with relatively low extra complexity.
On the other hand, this trade-off is only efficient in the AM-
MIMO configurations where smaller constellations dominate,
i.e. we prefer this weight only in efficient modes, such as 2
or 6, and insist the original weight, i.e. w = 1, for inefficient
modes, such as modes 4 or 8.

Note that, although [19] describes a similar weighting
scheme for cancellation-based detectors, its weight derivation
process is unclear and the derived coefficients (equivalent
to w1 = 2.23 and w2 = 2.04) enable far less efficient
performance-complexity trade-off than the coefficients pro-
posed in this paper.

IV. TREE BASED ADAPTIVE DETECTION ALGORITHM

Besides the variation in AM modes, a variety of detection
algorithms can be employed in AM-MIMO to provide lower
complexity detection options, which is particularly useful
when detection complexity is the most crucial issue or the
system works in a high SNR region. Since the breadth of
the FSD/RFSD detection tree grows as the constellation size
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increases, higher-order QAM modulation leads to larger de-
tection complexity. When this becomes a system bottleneck,
sub-optimal detection schemes can be exploited to reduce this
complexity, at the cost of lower BER performance. Further,
if the average SNR is large enough, sub-optimal detection
algorithms may still achieve the required BER in the AM
mode with the highest-order QAM candidates, and so it is
unnecessary to apply high performance detection at the cost
of huge complexity. Thus, a serial of sub-optimal detection
algorithms can be applied to make this trade-off for AM
MIMOs.

Since both FSD and RFSD are near-optimal detection
algorithms, B-Chase, DFE/SIC and FSD/RFSD with a reduced
number of FS layers can be used as sub-optimal approaches to
trade-off performance and complexity. In targeting the highest
possible information rate of a MIMO system, a possible
algorithm selection method is proposed in Table III.

TABLE III
ADAPTIVE DETECTION ALGORITHMS

Trans. antennas
Average SNR

<SNR1 [SNR1,SNR2] [SNR2,SNR3] >SNR3

mt =3, 4, 9 FSD RFSD B-Chase DFE/SIC
mt ̸=3, 4, 9 RFSD B-Chase DFE/SIC

FSD can be used to achieve near-optimal detection when
required, i.e. in the low SNR region (SNR ≤ SNR1) when
mt = 3, 4, 9, whilst RFSD can be applied in the remainder
of the mt cases. In addition, because RFSD provides finer
granularity for full search, it can be used as sub-optimal
detection algorithm by full searching ÑFS < ⌈

√
2mt − 1⌉

layers. Furthermore, B-Chase with K2 maintained branches
(where K is an integer number) is selected to make a further
trade-off complexity and performance at higher SNR. Finally,
DFE/SIC (i.e. the tree with a single maintained branch) is used
if SNR is sufficiently high (SNR > SNR3). Adapting the
thresholds represented by SNR1 − SNR3 can be achieved
either by the BER estimation method of the QAM-MIMO
system [5] or from simulated BER results. We demonstrate
the latter, in the context of an AM and AA example for a
4× 4 MIMO in Section V.

V. CASE STUDY: ADAPTIVE HIGH PERFORMANCE
DETECTORS ON AM MIMO SYSTEM

We apply the proposed weighted FSD/RFSD and the adap-
tive spatial detection algorithm for an AM-MIMO system.
Table III indicates that FSD is applied only at mt = 3, 4
and 9, and 4 × 4 MIMO system is one of the most widely
applied system setting in modern wireless standards, e.g. IEEE
802.11n. Without loss of generality, we set our system as a
4 × 4 MIMO system in this case study. We exploit squared
M -QAMs (M up to 64) as the candidate constellations, and
setting the adaptive modulation modes as shown in Table I.

Since mt = 4, according to Table III, FSD is used
as the near-optimal detector; RFSD, B-Chase and DFE are
applied as the sub-optimal detection algorithms. In targeting

the maximum spectral efficiency by the chosen detection
algorithms, the near-optimal scheme, i.e. FSD, will be applied
as long as higher information rate is achievable (the weights
in determining the ordering, as described in Section III, are
applied only on modes 2, 3, 6 and 7), whilst the sub-optimal
algorithms are only used when the average SNR is sufficiently
high to saturate the information rate within the candidate
modulation modes.

Fig. 7 shows the results of a Monte Carlo simulation of
the candidate detection algorithms with variety of modulation
modes on SDM 4 × 4 AM-MIMO systems over quasi-static
flat Rayleigh fading channels, as described in Secion II-A. We
process 105 frames of 300 symbols each for each configura-
tions.
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Fig. 7. BER performance of FSD over Adaptive Modulated MIMO 4 × 4

By adding weight metrics between different modulations for
ordering the detection tree, the BER performance of FSD from
different modes reveals steady gaps, i.e. roughly 2 dB, between
adjacent modes. In other words, since the information rate gap
between adjacent modes is 0.5 bits per channel use, the FSD
provides a good trade-off between the spectral efficiency and
required average SNR, i.e. as 1 dB average SNR increment
achieves roughly 0.25 extra bits per channel use, within the
adaptable SNR range, e.g. from 14.4 dB to 28.9 dB in targeting
BER of 10−3 for this example.

If the average SNR is sufficiently high, e.g. SNR >
28.9 dB, the information rate is saturated by the candidate
modulations. Then, the sub-optimal detection algorithms can
be applied to further trade off the detection complexity with
BER performance. As indicated in Fig. 7, the RFSD with a
single NFS layer in mode 9, which has comparable complexity
to B-Chase with 8 branches, outweighs the BER from B-Chase
with 49 maintained branches; thus we apply RFSD as the
sub-optimal algorithm instead of B-Chase with more than 8
candidates.

The thresholds (in terms of average SNR) of the adaptive
modulation schemes and candidate algorithm selection method
in targeting BER of 10−3 are indicated in Table IV. Note that
although ZF has very low complexity, its BER performance is
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much worse than those tree-based algorithms. Hence, it offers
much lower information rate [4]. For example, in targeting
BER = 10−3, the ZF at mode 2 is only enabled from SNR =
33.4 dB (as described in Figure 7), whilst mode 9 is activated
in the flexible tree-based algorithm at the same SNR. Hence,
the information rate of the applied tree-based detector (24 bits
per channel use) is three times the ZF (8 bits per channel use).
In addition, the space-time coding can be combined with ZF
[2], yet this technique dramatically decreases the throughput
from SDM MIMO systems. Furthermore, this AM and AA
approach reveals a practical detection complexity in building
efficient implementations [12], unlike MLD methods [5].

TABLE IV
EXAMPLE OF ADAPTIVE MODULATIONS MODES AND DETECTION

ALGORITHMS AS THE AVERAGE SNR CHANGES

Averg. SNR Mode Algo. Averg. SNR Mode Algo.
[14.4, 16.7] 1 FSD [25.6, 27.4] 7 FSD
[16.7, 18.5] 2 FSD [27.4, 28.9] 8 FSD
[18.5, 20.3] 3 FSD [28.9, 31.4] 9 FSD
[20.3, 22.1] 4 FSD [31.4, 34.9] 9 RFSD
[22.1, 23.8] 5 FSD [34.9, 39.6] 9 B-Chase (4)
[23.8, 25.6] 6 FSD >39.6 9 DFE/SIC

Besides defining the AM and AA scheme from the simu-
lation results, the adaptive solutions can be obtained by the
accurate BER prediction methods as well, e.g. the optimal
uncoded BER estimation in [5] and the sub-optimal DFE in
[3].

VI. CONCLUSION

In this paper, we have presented a hybrid modulated MIMO
nulling and cancellation detection approach employing tree-
based detection algorithms, i.e. FSD and RFSD. We have
shown how channel matrix weighting factors may be deter-
mined via experimentation and applied during ordering to
reduce the BER for tree-based detection schemes. Further,
we have proposed a novel adaptive detection algorithm that
consists of a series of tree-based detection candidates, enabling
the AM system to balance the BER and detection complexity.
By applying the proposed ordering method and detection
algorithm selection techniques, a novel AM and AA scheme
was presented based on the simulation results for a 4 × 4
AM MIMO system, which shows a good trade off among the
achievable information rate, BER performance and detection
complexity.
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