

Implementation of Parallel Lattice Reduction-Aided MIMO Detector using Graphics Processing Unit

2011. 11. 30.

Taehyun Kim

School of Electronics and Computer Engineering, Hanyang University 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791, Korea Tel : 82-2-2299-6267, Fax : 82-2-2299-6263 E-mail : semoise6@dsplab.hanyang.ac.kr

semoise6@dsplab.hanyang.ac.kr Tel: 82-2-2299-6267 Fax: 82-2-2299-6263 All rights reserved by Taehyun Kim

Contents

- Introduction
- System Model
- Implementation
- Performance Analysis
- Conclusion

Introduction

- Multiple Input Multiple Output (MIMO) technology
 - High data rate
 - Key technology in the next generation mobile communication
- MIMO-Detector
 - Maximum Likelihood (ML), Zero Forcing (ZF)
- Lattice Reduction (LR)
 - Provides a performance comparable to that of ML with a lot less complexity
 - Lenstra-Lenstra-Lovasz (LLL) algorithm
 - Complex LLL (CLLL)
- Graphics Processing Unit (GPU) Parallel processor
 - Consists of multiple threads
 - Save operation time by parallel processing
- Implementation on WiMAX system
 - To verify a real-time applicability

System Model [1]

- The # of antenna: 2 Tx antenna, 2 Rx antenna
- Modulation : 16-QAM
- Received signal : y = Hx + n
 - \mathbf{H} is 2X2 channel matrix
 - **H** follows Normalized Gaussian distribution
 - Assume that ${f H}$ is estimated perfectly
 - **n** is Gaussian noise vector

System Model [2]

- Lattice Reduction-Aided Detector (LRAD)
 - LR is to transform H into a nearly orthogonal matrix \tilde{H} using unimodular matrix T consisting of integers
 - Quasi-orthogonality of $\,\tilde{H}$ reduces the effect of noise enhancement

Implementation [1]

- GPU
 - SIMD(Single Instruction Multiple Data)
 - Consists of multiple blocks & threads

<Block diagram of WiMAX receiver system>

Implementation [2]

- Operation time of GPU
 - Depends on the # of Blocks (k) and threads (l)
 - Due to the internal structure of GPU, it operates faster if the # of threads is multiple of 32 or
 - if the # of threads per block gets larger
 - Maximum # of threads per block is 512

<Operation time of MIMO decoder
according to the number of blocks and threads>

Performance Analysis [1]

(2x2 MIMO, 16QAM, uncoded)

Performance Analysis [2]

• Parallel processing capability of GPU

1 symbol	1 frame (17,280 symbols)	
0.07ms	0.42ms	

<Operation time of LR-aided detector processing 1 frame and 1 symbol>

- Real-time processing on WiMAX system
 - To achieve real time processing, the operation time for 1 frame should be less than 3ms

Algorithm	ML	LR	ZF
MIMO detector	3.84ms	0.42ms	0.04ms
all blocks except detector in the receiver		2.33ms	
Total	6.17ms	2.75ms	2.37ms

<Comparison of operation time of ML, LR and ZF algorithm on WiMAX system>

Conclusion

- We have implemented LR-Aided Detector on the MIMO WiMAX system.
- CLLL algorithm has been adopted for implementing LRAD.
- The system has been coded on GPU for parallel processing.
- We demonstrate that operation time of LRAD is short enough for realtime processing of WiMAX.
- The performance of LRAD is quite comparable to that of MLD while the processing time of the former is less than that of the latter by nearly 9 times.
- We conclude that LRAD implemented on GPU can be widely applied to future communication systems.

Q & A

semoise6@dsplab.hanyang.ac.kr Tel: 82-2-2299-6267 Fax: 82-2-2299-6263 All rights reserved by Taehyun Kim