

MIMO OFDM Transceiver for a Many-Core Computing Fabric

A Nucleus based Implementation

T. Kempf, D. Günther, A. Ishaque, G. Ascheid

ISS (Chair of Integrated Signal Processing Systems)

Institute for Communication Technologies and Embedded Systems

- Application Analysis Nuclei Identification
- Efficient Nuclei Implementations on HW Platform (Flavor)
- Algorithmic Performance Evaluation
- Application-to-Architecture Mapping
- Summary & Outlook

Software Defined Radio Vision

Software Defined Radio Vision

The three key properties:

Portability

Software is portable onto different platforms
Standard.exe → Device_1, ..., Device_n

Interoperability

Different devices configured for the same standard interoperate Standard_1/Device_1 ↔ Standard_1/Device_2

Loadability

But we must not forget:

- Efficiency
 - Power consumption of flexible SDR must be close to power consumption of dedicated device (*battery driven!*)

Software Defined Radios Vision

Introduction

- Application Analysis Nuclei Identification
- Efficient Nuclei Implementations on HW Platform (Flavor)
- Algorithmic Performance Evaluation
- Application-to-Architecture Mapping
- Summary & Outlook

- Critical, demanding, algorithmic kernel
- Kernel is common among different waveforms
- Not waveform nor hardware specific

PE1

(ASIP)

PE 4 (GPP)

fice

PE 2

(rASIP)

MEM

Comm. Arch.

PE 3

(DSP)

PE 5 (FPGA)

UNIVERSIT

UNIVERSIT

9

Introduction

Nucleus Methodology

- Application Analysis Nuclei Identification
- Efficient Nuclei Implementations on HW Platform (Flavor)
- Algorithmic Performance Evaluation
- Application-to-Architecture Mapping
- Summary & Outlook

Nuclei Identification: Transceiver Structure

- Outer Modem
 - Channel (De-)coding
 - (De-)Interleaving
- Inner Modem (RX)
 - RX OFDM Processing
 - Channel Estimation

- **IEEE 802.11n** OFDM Symbol Preamble Data Payload Ρ Ρ Ρ Ρ D D D D Ρ Ρ Ρ Ρ D D D D (4µs 4µs 4µs 4µs OFDM Slot 16us
- Spatial Equalizing: Mitigate channel impact on payload
- Soft Demapping: Calculate soft bits (LLRs) BPSK, 4QAM, 16QAM

Nuclei Identification: Kernel Identification

- Analyze different algorithmic choices within RX blocks
 - Identify computational kernels
 - Recurring tasks
 - Operate on data with certain alignment
- Build application as composition of kernels

Nuclei Identification: Kernel Identification (Example)

LMMSE MIMO Equalizer with QRD

- Basic transmission equation y = Hx + n
- Linear MMSE equalization $\hat{\mathbf{x}} = \mathbf{G}\mathbf{y}, \quad \mathbf{G} = \left(\hat{\mathbf{H}}^{\mathbf{H}}\hat{\mathbf{H}} + \frac{\sigma_n^2}{E_s}\mathbf{I}\right)^{-1}\hat{\mathbf{H}}^{\mathbf{H}}$
- Regularized QRD

$$\overline{\mathbf{H}} = \begin{pmatrix} \hat{\mathbf{H}} \\ \frac{\sigma_n}{\sqrt{E_s}} \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_a \\ \mathbf{Q}_b \end{pmatrix} \mathbf{R}$$

Rewrite G using Q_a and Q_b

$$\mathbf{G} = \frac{\sqrt{E_s}}{\sigma_n} \mathbf{Q}_{\mathbf{b}} \mathbf{Q}_{\mathbf{a}}^{\mathbf{H}}$$

- Computational Kernels
 - Regularized QR decomposition
 - Matrix-matrix multiplication
 - Matrix-vector multiplication

Nuclei Identification: Kernel Overview

Application variants consist of a few kernels only!

Introduction

Nucleus Methodology

- Application Analysis Nuclei Identification
- Efficient Nuclei Implementations on HW Platform (Flavor)
- Algorithmic Performance Evaluation
- Application-to-Architecture Mapping
- Summary & Outlook

Application Implementation: P2012 Platform (ST Microelectronics)

- SoC platform with maximum of 32 clusters
- One cluster provides
 - Max. 16 RISC cores (STxP70) @ 600MHz
 - VECx vector extension (SIMD)
 - 128 bit vector registers
 - 8x16 bit or 4x32 bit operations
 - Hardware synchronizer for inter-core signaling
 - Interface for hardware accelerators (ASICs)

Application Implementation: Kernel Overview

	System	23	:2	4 2	x4	
	Operation	cycles	time	cycles	time	
			(μs)		(μs)	
	Matrix/V	ector Ope	rations			
1	mat-mat add	13	0.022	23	0.038	For 2x2 and 4x4 MIMO use case
2	mat hermitian	26	0.043	90	0.150	Cvcles for execution on
3	mat-rscal mul	26	0.043	45	0.075	single STxP70 processor
4	mat-vec mul	44	0.073	70	0.117	acro including VECV unit
5	mat-mat mul	102	0.170	301	0.502	core including VECX unit
6	mat-rmat mul	74	0.123	205	0.342	Corresponding time for
7	mat-mat mul 8vm2 ¹	218	0.363	503	0.838	600MHz clock frequency
8	mat inv	385	0.642	1,328	2.213	
9	tri mat inv	43	0.072	278	0.463	
10	qrd	595	0.992	1,683	2.805	
11	qrd regularized	702	1.170	1,622	2.703	L L
12	ds-qrd-regularized	889	1.482	2,264	3.773	
13	back subst.	954	1.590	2,106	3.510	In the range of
14	back subst. slicing	1,170	1.950	2,538	4.230	
	OFDM sl	ot wise op	erations	ici.	11. 	Competing solutions
15	bpsk soft demap	329	0.548	658	1.097	IEEE 802.11n real time
16	4qam soft demap	658	1.097	1,316	2.193	(Aus per OEDM slot)
17	16qam soft demap	857	1.428	1,705	2.842	
18	fft	1,774	2.957	3,548	5.913	
19	fft mem realign	2,052	3.420	4,084	6.838	
20	ifft	2,028	3.380	4,056	6.760	

Introduction

Nucleus Methodology

- Application Analysis Nuclei Identification
- Efficient Nuclei Implementations on HW Platform (Flavor)
- Algorithmic Performance Evaluation
- Application-to-Architecture Mapping
- Summary & Outlook

Algorithm Performance Evaluation: Investigated Algorithmic Choices

- Wide variety of algorithms is implemented
 - Channel Estimation, Spatial Equalizer, Channel Coding
- Determine superior choice by error correction performance
- Channel simulation
 - Fading: i.i.d. Rayleigh Fading
 - Power delay profile: Exponential 20dB drop along 150ns
 - Noise: AWGN
 - 4x4 MIMO system

Algorithm Performance Evaluation: ZF vs. MMSE MIMO Equalization

Frame Error Rate of 4x4 MIMO System (Short Frames)

Frame Error Rate of 4x4 MIMO System (Short Frames)

Frame Error Rate of 4x4 MIMO System for different Frame Sizes

Introduction

Nucleus Methodology

- Application Analysis Nuclei Identification
- Efficient Nuclei Implementations on HW Platform (Flavor)
- Algorithmic Performance Evaluation
- Application-to-Architecture Mapping
- Summary & Outlook

Application-to-Platform Mapping: Identify Parallelism

Parallelizable dimensions of OFDM receiver application

- Space (RX antennas)
- Frequency (subcarriers)
- Time (OFDM slots)

Application-to-Platform Mapping: Assign Cores to PGs

- **Given**: Single core timing requirements
- **Goal**: Assign cores to match real time constraints (4µs per slot)

Task	time (us)	#cores					
Preprocessing (per OFDM frame)							
LS Channel Estimation	17.47	4					
Equalizer Preprocessing	215.31	4	~ -				
Actual Processing (per OFDM slot)							
OFDM Demodulation (mem. realign)	6.83	2					
Equalizer (Actual Detection)	6.08	4					
Soft Demapping (16 QAM)	2.84	2					

Application-to-Platform Mapping: Assign Cores

Final mapping

- Partitioning of components into processing groups
- Number of cores per group
 - 8 cores enable real time

2PARMA: Occupation Graph

- Implementation on P2012 platform using 8 cores
- Minimum latency for 27 or more OFDM slots of data payload
- Latency = 8.2µs
- IEEE 802.11n allows 16µs (including MAC layer)

Thank you for your attention !

Any questions?

kempf@ice.rwth-aachen.de

